Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS5498415 A
Publication typeGrant
Application numberUS 08/234,638
Publication dateMar 12, 1996
Filing dateApr 28, 1994
Priority dateFeb 11, 1991
Fee statusPaid
Publication number08234638, 234638, US 5498415 A, US 5498415A, US-A-5498415, US5498415 A, US5498415A
InventorsRonald L. Jones
Original AssigneeBio-Lab, Inc.
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Disinfectant for the treatment of water systems
US 5498415 A
Abstract
Disclosed are solid oxidizer compositions that provide either hypochlorous or hypobromous acid for disinfecting water systems comprising either of the following mixtures: (a) approximately 50-99.99% by weight of trichloro-s-triazinetrione and 0.01-50% by weight of glycolurils of the following structure: ##STR1## wherein R and R1 are members selected from the group consisting of hydrogen, lower alkyl radicals of from 1-4 carbon atoms and phenyl, and X is selected from the group consisting of hydrogen, chlorine and bromine and a, b, c, d and e are integers of from 0-1;
and (b) approximately 50-99.99% by weight of trichloro-s-triazinetrione, 0.01-50% by weight of glycolurils of the above structure (a) and 0-20% by weight of an alkali bromide salt.
Images(6)
Previous page
Next page
Claims(14)
I claim:
1. A solid disinfecting composition in the form of a tablet, stick or puck consisting essentially of a mixture of:
a. 50-99% by weight of trichloro-s-triazinetrione;
b. 0.01-50% by weight of glycolurils having the structure: ##STR5## in which R and R1 are independently selected from the group consisting of hydrogen, lower alkyl radicals of from 1 to 4 carbon atoms, and phenyl; each X is hydrogen; and a is either 0 or 1; and
c. about 5-20% by weight of an alkali bromide salt selected from the group consisting of sodium bromide and potassium bromide,
said composition providing a controlled and uniform rate of release of hypobromous or hypochlorous ion to a water system.
2. The composition of claim 1 in which the composition consists essentially of a mixture of trichloro-s-triazinetrione, glycoluril and sodium bromide, and in which R, R1 and X are hydrogen and a is 0.
3. The composition of claim 2 in which the composition consists essentially of 70-90% trichloro-s-triazinetrione, 5-20% glycoluril, and 5-10% sodium bromide salt.
4. The composition of claim 1 in which the composition consists essentially of a mixture of trichloro-s-triazinetrione, glycoluril and potassium bromide, and in which R, R1 and X are hydrogen and a is 0.
5. The composition of claim 4 in which the composition consists essentially of 70-90% trichloro-s-triazinetrione, 5-20% glycoluril, and 5-10% potassium bromide salt.
6. The composition of claim 1 and which includes less than about 20% glycoluril.
7. The composition of claim 6 and which includes less than about 10% glycoluril.
8. A method for providing prolonged release of hypobromous ion or hypochlorous ion into a water system which comprises the steps of:
a. providing a solid disinfecting composition in the form of a tablet, stick or puck consisting essentially of a mixture of 50-99.99% by weight of trichloro-s-triazinetrione; 0.01-50% by weight of glycolurils having the structure: ##STR6## in which R and R1 are independently selected from the group consisting of hydrogen, lower alkyl radicals of from 1 to 4 carbon atoms, and phenyl; each X is hydrogen; and a is either 0 or 1; and about 5-20% by weight of an alkali bromide salt selected from the group consisting of sodium bromide and potassium bromide, said composition providing a controlled and uniform rate of release of hypobromous or hypochlorous ion to a water system; and
b. contacting the tablet, puck or stick with the water to obtain a controlled and uniform rate of release of hypobromous or hypochlorous to the water.
9. The method of claim 8 in which the composition consists essentially of a mixture of trichloro-s-triazinetrione, glycoluril and sodium bromide, and in which R, R1 and X are hydrogen and a is 0.
10. The method of claim 9 in which the composition consists essentially of 70-90% trichloro-s-triazinetrione, 5-20% glycoluril, and 5-10% sodium bromide salt.
11. The method of claim 8 in which the composition consists essentially of a mixture of trichloro-s-triazinetrione, glycoluril and potassium bromide, and in which R, R1 and X are hydrogen and a is 0.
12. The method of claim 11 in which the composition consists essentially of 70-90% trichloro-s-triazinetrione, 5-20% glycoluril, and 5-10% potassium bromide salt.
13. The composition of claim 8 and which includes less than about 20% glycoluril.
14. The composition of claim 8 and which includes less than about 10% glycoluril.
Description

This application is a continuation of application Ser. No. 07/898,293, filed Jun. 15, 1993, now abandoned, which is a continuation of application Ser. No. 07/652,983, filed Feb. 11, 1991, now abandoned.

FIELD OF THE INVENTION

This invention relates to solid oxidizer compositions that provide either hypochlorous or hypobromous acid for disinfecting water systems, such as swimming pools, spas, decorative fountains, recirculating water cooling systems, health related baths, dehumidifier systems, ponds and reservoirs.

BACKGROUND

A number of different compositions and methods that provide hypobromous or hypochlorous acid for disinfecting water systems have been utilized. These technologies currently in use have some serious deficiencies. Trichloro-s-triazinetrione (T.C.C.A.) can be pressed into a solid composition such as a stick, tablet or puck and placed in an erosion feeder, skimmer, or a floating slow release device. However, for a number of applications these solid compositions erode too rapidly. In some cases they do not maintain their integrity as water is circulated through the release device. Consequently, the disinfectant splits, cracks and breaks into small pieces. These small pieces expose more surface area and increased erosion occurs. The disinfectant is released too rapidly and is not satisfactory for the treatment of most water systems. This is also true of blended compositions containing T.C.C.A. and sodium bromide. An example blend contains 96% T.C.C.A., 2% sodium bromide and 2% inert. In other cases as the water temperature increases the erosion rate of the disinfectant increases. The disinfectant is then released too rapidly into the water system and is not satisfactory for treatment of most water systems.

PRIOR ART

The process for the preparation of glycoluril is disclosed in U.S. Pat. No. 2,731,472 (Reibnitz). U.S. Pat. No. 3,071,591 (Paterson) discloses a method for the preparation of N-halogenated glycolurils containing both bromine and chlorine for use as disinfecting agents. The use of haloglycolurils for the sanitizing agent in swimming pools is disclosed in U.S. Pat. No. 3,165,521 (Lezak). The use of polyhaloglycolurils for controlling algae in water is disclosed in U.S. Pat. No. 3,252,901 (Zettler). The use of chlorinated glycolurils in the treatment of sewage is disclosed in U.S. Pat. No. 3,445,383 (Horvath et al).

The use of substituted glycolurils in combination with trichlorocyanuric acid and sodium stearate in sanitizing sticks is disclosed in U.S. Pat. No. 3,342,674 (Kowalski). Use of chlorinated glycolurils in combination with a metallic hypochlorite in treating sewage is disclosed in U.S. Pat. No. 3,629,408 (Horvath). U.S. Pat. No. 3,187,004 (Slezak) discloses the synthesis of alkyl and aryl substituted glycoluril and their use in sanitizing swimming pools. This patent discloses the use of these N-halogenated glycolurils with alkaline metal salts.

SUMMARY OF THE INVENTION

It is an object of the present invention to provide solid oxidizer compositions that provide either hypochlorous or hypobromous acid for use in slow release feeders or skimmers for disinfecting water systems which will dissolve at a relatively slow rate so that the disinfectant will be released uniformly into the water system over an extended period of time.

These objects have been obtained by developing solid oxidizer compositions to provide either hypochlorous or hypobromous acid for disinfecting water systems comprising either of the following mixtures: (a) approximately 50-99.99% by weight of trichloro-s-triazinetrione and 0.01-50% by weight of glycolurils of the following structure: ##STR2## wherein R and R1 are members selected from the group consisting of hydrogen, lower alkyl radicals of from 1-4 carbon atoms and phenyl, and X is selected from the group consisting of hydrogen, chlorine and bromine and a, b, c, d and e are integers of from 0-1;

and (b) approximately 50-99.99% by weight of trichloro-s-triazinetrione, 0.01-50% by weight of glycolurils of the above structure (a) and 0-20% by weight of an alkali bromide salt.

It is a further object of the present invention to provide a blue pigment for these oxidizer compounds so they can be identified as a disinfectant when it is in its dry form. It is a further object of this invention that the pigment not be stable in the water system so that it does not stain the walls of the swimming pools and spas. It has been found that the pigment lazurite is stable when mixed in dry form with these oxidizers used for disinfecting water systems. It has also been found that this pigment is not stable in the water system with certain oxidizers so that the water remains clear in color and does not stain the walls of pools and spas.

These compositions are blended together and formed or compressed into solid forms, such as tablets, sticks, pucks or other shapes. The disinfectant can then be placed in a release device through which water is circulated to disinfect a water system, such as a swimming pool or cooling tower. In the case of a swimming pool, the tablet, stick or puck can be placed into a skimmer basket.

The disinfectants of this invention dissolve at a slower rate in a release device than comparable compositions containing only T.C.C.A. or T.C.C.A./NaBr compositions. Consequently, the disinfectant of this invention adds hypochlorous or hypobromous acid to a water system at a controlled and uniform rate over a longer period of time.

DESCRIPTION OF THE INVENTION

This invention produces a solid disinfectant that dissolves at a slow and relatively uniform rate when used in a release device for water systems. The disinfectant can be any of the following mixtures: (a) approximately 50-99.99% by weight of trichloro-s-triazinetrione and 0.01-50% by weight of glycolurils of the following structure: ##STR3## wherein R and R1 are members selected from the group consisting of hydrogen, lower alkyl radicals of from 1-4 carbon atoms and phenyl, and X is selected from the group consisting of hydrogen, chlorine and bromine and a, b, c, d and e are integers of from 0-1; (X may be the same or different halogens or a combination of hydrogen and one or more halogens. R and R1 may be the same or different radicals. It is preferred that R and R1 be either hydrogen or methyl. Alkyl radicals with longer length render the glycolurils less soluble in water.);

and (b) approximately 50-99.99% by weight of trichloro-s-triazinetrione, 0.01-50% by weight of glycolurils of the above structure (a) and 0-20% by weight of an alkali bromide salt.

The disinfectant which contains the alkali metal bromide salt is used if it is desired to provide hypobromous acid. A preferred composition is from 80-98% trichloro-s-triazinetrione (T.C.C.A.) and 2-20% of a glycoluril or from 70-90% trichloro-s-triazinetrione (T.C.C.A.) and from 5-10% of sodium or potassium bromide salt and from 5-20% of a glycoluril. Another preferred mixture is from 75-90% trichloro-s-triazinetrione and from 5-10% potassium bromide and from 5-20% of a glycoluril. The glycoluril can be used with T.C.C.A. alone or in combination with a sodium or potassium bromide salt as indicated above. The preferred glycolurils are glycoluril and the chloroglycolurils, such as dichloroglycoluril and tetrachloroglycoluril. For most applications glycoluril is preferred. The T.C.C.A. is available from Monsanto Chemical Co. under the name ACL-90.

This invention also provides a blue pigment for these disinfectants, with the pigment being stable in the dry form. When certain disinfectants are added to a water system, the pigment decomposes so that the water is not colored which would result in staining the walls of swimming pools and spas.

A chlorine stable pigment has been found which is stable in dry form with the above disinfectants. This pigment is ultramarine blue or lazurite, commonly sold under the trade name Pylam Pylaklor Dry Blue™* S-726 (Pigment Blue 29; CI 77007). It has the following composition [(Na, Ca)4 (AlSi O4)3 (SO4, S, Cl)] or [Ca2 Na6 (Al6 (SiO4)6 SO4 S] or [Na5 (Al3 (SiO4)3 S] or [Na5 (Al3 (SiO4)3 S) (Cl). This pigment is blue, blue-violet or greenish-blue in color. Lazurite is oxidizer stable so that the solid composition is blue in color. Lazurite is decomposed by the disinfectant in the water systems. Decomposition of the pigment in the water system is preferred because otherwise the pigment may result in a slight blue tint in the water. This is important for some applications as pigment might be objectionable to users of certain water systems such as swimming pools.

The lazurite is added to the disinfectant in an amount of from 0.01-0.5% by weight. It is preferred that it be present in an amount of 0.05-0.25% by weight. The preferred glycolurils include glycoluril and the chloroglycolurils, such as dichloroglycoluril and tetrachloroglycoluril, in combination with the lazurite. The lazurite is added to the oxidizer by simple mixing.

The lazurite pigment gives a distinctive blue color to the white disinfectants which is stable for a long period of time. However when the pigmented disinfectant is introduced into the water system, the pigment becomes unstable with certain disinfectants so the water is not colored blue. This is preferred to avoid staining the walls of swimming pools and spas.

It is also possible for the formulation to include a filler. The filler is an inert substance, such as sodium chloride or boric acid, that can be used to assist in the tabletting process. A filler can be used in any concentration provided the composition contains the required amount of the disinfectant. The filler is preferably present from 0.05-10% by weight.

In addition to the components of the disinfectant described above, the formulation may also contain other ingredients such as tabletting aids, e.g., mold release agents, binders, corrosion inhibitors, scale inhibitors and other components known to one skilled in the art. The tablets, sticks or pucks are formed or compressed into solid form. They can be compressed by a hydraulic or mechanical press.

It is preferred that the disinfectant of this invention be used in a release device so that the disinfectant is immersed or partially immersed in water within an enclosure in which the disinfectant is gradually eroded and either hypochlorous or hypobromous acid are released to disinfect that water system. It can also be used in in-line feeders, floaters, off-line chlorinators or skimmers. The preferred device is a skimmer.

As illustrated in the following examples, the disinfectants of this invention dissolve at a slower rate in a release device than comparable compositions containing only trichloro-s-triazinetrione (T.C.C.A.). Consequently the disinfectant of this invention adds hypochlorous or hypobromous acid to a water system at a controlled and uniform rate over a long period of time.

The solid disinfectants of this invention are useful in disinfecting water systems such as swimming pools, spas, hot tubs and cooling towers. These compositions are normally formed or pressed into tablets, sticks, pucks or other shapes and placed in a release device such as an erosion feeder, skimmer, in-line halogenator or floating release device in the system.

Structurally the compound glycoluril has the following formula: ##STR4##

EXAMPLE 1

A pilot batch of the solid disinfectant was prepared adding 270 pounds of T.C.C.A. and 30 pounds of glycoluril into a V-shaped tumble blender. The batch was blended for five minutes. Part of this composition was pressed into one inch tablets using a mechanical press applying approximately 15,000 pounds of pressure. The rest of the batch was pressed into 4.5 inch 227 gm sticks using a hydraulic press applying 35,000 pounds of pressure. Erosion studies were conducted on the one inch tablets using an erosion control device through which water is circulated at a controlled rate of flow (gallons per hour, gph). These one inch tablets were compared to one inch tablets containing 100% T.C.C.A. which were produced in the same manner.

The one inch tablets were placed in an erosion control device. The water temperature was maintained at 80° F., and the flow rate was 20 gallons per hour. After 48 hours the tablets containing T.C.C.A. and glycoluril retained 87% of its initial weight. The tablet that contained 100% T.C.C.A. only retained 58% of its initial weight. The addition of the glycoluril resulted in 3 fold reduction in the erosion rate.

Erosion studies were also conducted on the 227 gm stick using a device that simulates a swimming pool skimmer. In this device three sticks can be tested simultaneously under identical conditions. Water temperature was 80° F., and the flow rate was 600 gallons per hour. After 72 hours the stick containing the glycoluril retained 75% of its initial weight while the stick containing 100% T.C.C.A. only retained 9% of its weight.

The stick containing the glycoluril retained 83% of its weight after 48 hours while the stick containing 100% T.C.C.A. only retained 31% of its weight. After 24 hours the glycoluril containing stick retained 92% of its weight while the T.C.C.A. stick only retained 66% of its weight.

EXAMPLE 2

Tablets one inch in diameter and weighing 15 gm were prepared in the laboratory by mixing the ingredients and pressing using a 30 ton Carver hydraulic lab press, applying 15,000 pounds of pressure for 20 seconds. One set of tablets was prepared containing 90% T.C.C.A. and 10% glycoluril. The other set of tablets contained 95% T.C.C.A. and 5% glycoluril. The erosion rates of these tablets were compared to tablets containing 100% T.C.C.A. The erosion testing was conducted using the same erosion control device used in Example 1. Water temperature was maintained at 80° F. with a flow rate of 20 gallons per hour. The weights of the tablets were checked after 72 hours. The tablet containing 90% T.C.C.A. and 10% glycoluril retained 88% of its initial weight after 72 hours while the tablet containing 95% T.C.C.A. and 5% glycoluril retained 76% of its weight after 72 hours. The tablet with 100% T.C.C.A. only retained 52% of its initial weight after 72 hours.

EXAMPLE 3

To test the uniformity of the product from a pilot batch produced in Example 1, erosion studies were conducted on eight one inch tablets containing 90% T.C.C.A. and 10% glycoluril. The erosion rates were obtained using the same erosion testing device as was used in Example 1. Water temperature was maintained from 50°-55° F. with water circulating at a flow rate of 20 gallons per hour. After eight days the tablets retained the percentage of weight set forth in the Table below.

______________________________________Tablet #  % Weight Retention after 8 Days______________________________________1         82%2         83%3         82%4         79%5         81%6         81%7         83%8         82%______________________________________

As can be seen from the above table, the addition of 10% glycoluril results in very high weight retention over a period of eight days. All the tablets maintained their integrity. The average weight retention rate for the eight tablets was 82%. All eight tablets were within 3% of the average weight which indicates a consistently blended product from the pilot batch.

EXAMPLE 4

One inch tablets were prepared in the laboratory by mixing the ingredients and pressing using a thirty ton Carver hydraulic lab press. The tablets contained the materials set forth in the Table below. The erosion rates of the tablets were compared using the same erosion testing device as used in Example 1. The water temperature was maintained at 80° F., and the flow rate was 20 gallons per hour.

______________________________________               % Weight RetentionComposition Tested  after 48 Hours______________________________________1.    75% T.C.C.A., 5% potassium                   94% bromide, 20% glycoluril2.    100% T.C.C.A.     54%______________________________________
EXAMPLE 5

Tablets containing 75% T.C.C.A., 5% potassium bromide, 20% glycoluril were prepared in the laboratory by mixing the ingredients and pressing using a 30 ton Carver hydraulic lab press. The ingredients were pressed into one inch tablets weighing 15 gm. All tablets were pressed at 15,000 pounds pressure for twenty seconds. The erosion rates of these tablets were compared with one inch 15 gm tablets containing 96% T.C.C.A. and 4% sodium bromide which were prepared in the same way. The erosion rates of these tablets were compared by placing them in an erosion control device through which water was circulated at a controlled rate. Water was circulated at the same rate over all the tablets. Water temperature was maintained at 60°-70° F. Water was allowed to flow over the tablets for one hour at which time they were mopped dry and weighed. The tablets were then returned to the feeder and water was allowed to flow over the tablets for 48 hours after the initial wetting. The tablets were then removed, mopped dried and reweighed. The percent weight retention was calculated. The various formulations are set forth below. The abbreviation T.C.C.A. is used for the trichloro-s-triazinetrione.

______________________________________                 % Weight RetentionComposition Tested    after 48 Hours______________________________________75% T.C.C.A., 5% KBr, 20% glycoluril                 94%96% T.C.C.A., 4% NaBr 21%______________________________________
EXAMPLE 6

Tablets one inch in diameter and weighing 15 gm were prepared in the laboratory by mixing the ingredients and pressing into tablets using a thirty ton Carver hydraulic laboratory press. The ingredients were pressed into tablets by applying 15,000 pounds of pressure for 20 seconds. One set of tablets was prepared containing 90% T.C.C.A. and 10% tetrachloroglycoluril (TCGU). A second set of tablets was prepared containing 95% T.C.C.A. and 5% tetrachloroglycoluril (TCGU). A third set of one inch 15 gm tablets were prepared containing 90% T.C.C.A. and 10% tetrabromoglycoluril (TBGU). The erosion rates of these tablets were compared to one inch tablets prepared in the same way containing 100% T.C.C.A. The erosion test was conducted using the same apparatus and methods used in Example 1. The water temperature was maintained at 80° F. with a flow rate of twenty gallons per hour. The weight of the tablets was determined after a twenty-four hour test period. The test results are summarized below:

______________________________________             % Weight RetentionBlends/Tested     After 24 Hours______________________________________TCCA 90%/TCGU 10% 93%TCCA 90%/TBGU 10% 83%TCCA 100%         66%TCCA 95%/TCGU 5%  89%______________________________________
EXAMPLE 7

Tablets one inch in diameter and weighing 15 grams were prepared in the laboratory by hand mixing the ingredients and then pressing using a 30 ton Carver hydraulic lab press applying 15,000 lbs of pressure for 20 seconds. The tablets contained glycoluril in amounts ranging from 0.25% to 10.0% and the balance of the formulation was T.C.C.A. The erosion rate of the tablets was determined using the erosion testing device from Example 1. The tablets were compared to tablets containing 100% TCCA. The water temperature was maintained at 80° F. with a flow rate of 20 gph. The percent weight retention (% WRT) was determined at 24, 48 and 72 hours.

__________________________________________________________________________RESULTS                       % WRTTABLETS #  % GLYCOLURIL            % TCCA                  24 HRS.                       48 HRS.                            72 HRS.__________________________________________________________________________1      0         100.00                  78.0 58.0 41.02      0.25      99.75 79.0 61.0 43.03      0.50      99.50 79.0 60.0 43.04      1.00      99.00 80.0 61.0 45.05      1.50      98.50 81.0 63.0 48.06      2.00      98.00 82.0 64.0 49.07      3.00      97.00 81.0 65.0 50.08      4.00      96.00 83.0 68.0 55.09      5.00      95.00 83.0 72.0 60.010     10.00     90.00 91.0 85.0 81.0__________________________________________________________________________

This example illustrates that as little as 0.25% glycoluril reduces the erosion rate of TCCA. As the amount of glycoluril is increased, the erosion rate is decreased.

EXAMPLE 8

This example illustrates the ability of other alkyl and phenyl derivatives to reduce the erosion rate of TCCA. Tablets one inch in diameter and weighing 15 grams were prepared in the laboratory by mixing the ingredients and pressing into tablets using a thirty ton Carver hydraulic laboratory press. The ingredients were pressed into tablets by applying 15,000 pounds of pressure for 20 seconds. The tablet compositions were

______________________________________1.  95.0%   TCCA/5.0% Diethymglycoluril                              (DEGU)2.  95.0%   TCCA/5.0% EthylMethylglycoluril                              (EMGU)3.  95.0%   TCCA/5.0% Dimethylglycoluril                              (DMGU)4.  95.0%   TCCA/5.0% Diphenylglycoluril                              (DPGU)______________________________________

The erosion rates of these tablets were compared to one inch 100% TCCA tablets prepared in the same manner. The erosion test was conducted using the same apparatus and methods used in Example 1. The water temperature was maintained at 80° F. with a flow rate of twenty gallons per hour.

The percent weight retention (%WRT) was obtained 24, 48 and 72 hours. The test results are summarized below:

______________________________________            % W.R.TTEST BLENDS        24 hrs.  48 hrs. 72 hrs______________________________________1.  TCCA 95%/DEGU 5%   82.0     68.0  56.02.  TCCA 95%/EMGU 5%   82.0     69.0  57.03.  TCCA 95%/DMGU 5%   83.0     70.0  58.0?4.  TCCA 95%/DPGU 5%   89.0     81.0  74.05.  TCCA 100%          77.0     58.0  40.06.  TCCA 95%/Glycoluril 5%                  83.0     72.0  60.0______________________________________
EXAMPLE 9

The example illustrates the stability of lazurite blue pigment with halogenated glycolurils. Samples containing 0.2% lazurite and 99.8% of either tetrachloroglycoluril or tetrabromoglycoluril and 10% tetrachloroglycoluril and 90% trichloro-s-triazinetrione were blended until a uniform blue color was obtained. These samples were stored at 50° F. for days. The stability of the blue pigment in the compositions was observed visually at the end of the storage period. The following results were obtained for each sample.

              TABLE I______________________________________                            STABILITY          DAY 1   DAY 30    OF PIGMENT______________________________________1.  Tetrachloroglycoluril              Blue    Blue    Stable2.  Tetrabromoglycoluril              Blue    Blue    Stable3.  A mixture of 10% by              Blue    Blue    Stable    weight of tetrachloro-    glycoluril and 90% by    weight of trichloro-s-    trione4.  A mixture of 5% by              Blue    Blue    Stable    weight of glycoluril    and 90% trichloro-s-    trione and 5%    potassium bromide______________________________________
Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US3165521 *Jun 21, 1962Jan 12, 1965Diamond Alkali CoHalogenated glycolurils
US4382799 *Nov 21, 1980May 10, 1983Glyco Chemicals, Inc.Brominated hydantoins, isocyanurates
US4997450 *Mar 10, 1989Mar 5, 1991Ecolab Inc.Decolorizing dyed fabric or garments
US5000869 *Feb 14, 1990Mar 19, 1991Safe Aid Products, Inc.Novel polymer coated bleaching composition
US5015643 *Nov 6, 1989May 14, 1991Bio-Lab, Inc.Disinfectant for the treatment of water systems
EP0403465A1 *Jun 15, 1990Dec 19, 1990University Of HoustonBiocidal methods for recirculating water systems
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US5614528 *Oct 17, 1994Mar 25, 1997Bio-Lab, Inc.Compositions and methods for inhibiting the formation of chloramines and trihalomethanes in aqueous media
US5648314 *May 15, 1995Jul 15, 1997Bio-Lab, Inc.Slow-dissolving multi-functional sanitizer and clarifier
US5674429 *May 15, 1995Oct 7, 1997Bio-Lab, Inc.Sanitizing and clarifying product also containing sodium tetraborate, aluminum sulfate
US5688515 *Dec 21, 1994Nov 18, 1997Occidental Chemical CorporationTablets for disinfecting recirculated water systems
US6068791 *Mar 30, 1999May 30, 2000Bio-Lab, Inc.Sanitizing and clarifying product
US6426317Oct 29, 1999Jul 30, 2002Great Lakes Chemical CorporationStable, high available halogen 1,3,5-triazine-2,4,6-trione compositions having rapid dissolution rates
US6447722Dec 4, 1998Sep 10, 2002Stellar Technology CompanySolid composition containing amine source, halogen source and calcium sulfate
US7045153Jun 27, 2003May 16, 2006Enviro Tech Chemical Services, Inc.Highly concentrated bromine compositions and methods of preparation
US7625496 *Oct 18, 2007Dec 1, 2009Chemtura CorporationComprises halogen-containing source (halogenated triazinetrione), boron-containing source (boric acid, boric oxide), and polyphosphate-containing source (sodium hexametaphosphate)
US7780857Oct 19, 2009Aug 24, 2010Chemtura Corporationfor reducing the halogen off-gassing rate (i.e. chlorine off-gassing) with specified amounts of isocyanuric chloride, boric acid and sodium hexametaphosphate in solid water treatment composition for pools, spas, hot tubs, toilets
US7803899Sep 27, 2006Sep 28, 2010Buckman Laboratories International, Inc.combining water-soluble ionene polymer, polyaminoamide, or acrylamide/diallyldimethyl-ammonium halide copolymer in water with dry polar solvent (acetone) to form mixture that separates into layers, then separating layers and drying to obtain solid comprising water-soluble polymer; wet strength powders
WO1996036566A1 *May 8, 1996Nov 21, 1996Bio Lab IncChloroisocyanuric acid composition having reduced gas evolution
WO2003076341A2 *Mar 5, 2003Sep 18, 2003Apyron Technologies IncMicrobial control system
WO2005009127A1 *Jun 27, 2003Feb 3, 2005Enviro Tech Chemical ServicesHighly concentrated bromine compositions and methods of preparation
Classifications
U.S. Classification424/409, 424/76.1, 424/661, 424/405, 424/723
International ClassificationC02F1/76, A01N59/00
Cooperative ClassificationA01N59/00, C02F1/76, C02F1/766
European ClassificationA01N59/00, C02F1/76, C02F1/76G
Legal Events
DateCodeEventDescription
May 28, 2014ASAssignment
Owner name: BIO-LAB, INC., DELAWARE
Free format text: MERGER;ASSIGNOR:BIOLAB SERVICES, INC.;REEL/FRAME:032971/0204
Effective date: 20051101
Mar 21, 2011ASAssignment
Owner name: CROMPTON HOLDING CORPORATION, CONNECTICUT
Free format text: INTELLECTUAL PROPERTY SECURITY RELEASE AGREEMENT;ASSIGNOR:CITIBANK, N.A.;REEL/FRAME:026039/0142
Effective date: 20101110
Free format text: INTELLECTUAL PROPERTY SECURITY RELEASE AGREEMENT;ASSIGNOR:CITIBANK, N.A.;REEL/FRAME:026039/0142
Owner name: BIOLAB, INC., CONNECTICUT
Effective date: 20101110
Free format text: INTELLECTUAL PROPERTY SECURITY RELEASE AGREEMENT;ASSIGNOR:CITIBANK, N.A.;REEL/FRAME:026039/0142
Owner name: LAUREL INDUSTRIES HOLDINGS, INC., CONNECTICUT
Effective date: 20101110
Free format text: INTELLECTUAL PROPERTY SECURITY RELEASE AGREEMENT;ASSIGNOR:CITIBANK, N.A.;REEL/FRAME:026039/0142
Owner name: UNIROYAL CHEMICAL COMPANY LIMITED (DELAWARE), CONN
Effective date: 20101110
Effective date: 20101110
Owner name: ISCI, INC, CONNECTICUT
Free format text: INTELLECTUAL PROPERTY SECURITY RELEASE AGREEMENT;ASSIGNOR:CITIBANK, N.A.;REEL/FRAME:026039/0142
Owner name: A & M CLEANING PRODUCTS, LLC, CONNECTICUT
Effective date: 20101110
Free format text: INTELLECTUAL PROPERTY SECURITY RELEASE AGREEMENT;ASSIGNOR:CITIBANK, N.A.;REEL/FRAME:026039/0142
Free format text: INTELLECTUAL PROPERTY SECURITY RELEASE AGREEMENT;ASSIGNOR:CITIBANK, N.A.;REEL/FRAME:026039/0142
Effective date: 20101110
Owner name: BIOLAB FRANCHISE COMPANY, LLC, CONNECTICUT
Free format text: INTELLECTUAL PROPERTY SECURITY RELEASE AGREEMENT;ASSIGNOR:CITIBANK, N.A.;REEL/FRAME:026039/0142
Effective date: 20101110
Owner name: CHEMTURA CORPORATION, CONNECTICUT
Owner name: ASEPSIS, INC., CONNECTICUT
Free format text: INTELLECTUAL PROPERTY SECURITY RELEASE AGREEMENT;ASSIGNOR:CITIBANK, N.A.;REEL/FRAME:026039/0142
Effective date: 20101110
Owner name: WRL OF INDIANA, INC., CONNECTICUT
Effective date: 20101110
Free format text: INTELLECTUAL PROPERTY SECURITY RELEASE AGREEMENT;ASSIGNOR:CITIBANK, N.A.;REEL/FRAME:026039/0142
Free format text: FIRST LIEN INTELLECTUAL PROPERTY SECURITY AGREEMENT;ASSIGNORS:CHEMTURA CORPORATION;BIOLAB FRANCHISECOMPANY, LLC;BIO-LAB, INC.;AND OTHERS;REEL/FRAME:026028/0622
Effective date: 20101110
Owner name: BANK OF AMERICA, N.A., CONNECTICUT
Free format text: INTELLECTUAL PROPERTY SECURITY RELEASE AGREEMENT;ASSIGNOR:CITIBANK, N.A.;REEL/FRAME:026039/0142
Effective date: 20101110
Owner name: GREAT LAKES CHEMICAL CORPORATION, CONNECTICUT
Free format text: INTELLECTUAL PROPERTY SECURITY RELEASE AGREEMENT;ASSIGNOR:CITIBANK, N.A.;REEL/FRAME:026039/0142
Owner name: GLCC LAUREL, LLC, CONNECTICUT
Effective date: 20101110
Free format text: INTELLECTUAL PROPERTY SECURITY RELEASE AGREEMENT;ASSIGNOR:CITIBANK, N.A.;REEL/FRAME:026039/0142
Effective date: 20101110
Owner name: CNK CHEMICAL REALTY CORPORATION, CONNECTICUT
Owner name: CROMPTON COLORS INCORPORATED, CONNECTICUT
Effective date: 20101110
Free format text: INTELLECTUAL PROPERTY SECURITY RELEASE AGREEMENT;ASSIGNOR:CITIBANK, N.A.;REEL/FRAME:026039/0142
Owner name: MONOCHEM, INC., CONNECTICUT
Free format text: INTELLECTUAL PROPERTY SECURITY RELEASE AGREEMENT;ASSIGNOR:CITIBANK, N.A.;REEL/FRAME:026039/0142
Effective date: 20101110
Free format text: INTELLECTUAL PROPERTY SECURITY RELEASE AGREEMENT;ASSIGNOR:CITIBANK, N.A.;REEL/FRAME:026039/0142
Owner name: BIOLAB COMPANY STORE, LLC, CONNECTICUT
Effective date: 20101110
Effective date: 20101110
Owner name: NAUGATUCK TREATMENT COMPANY, CONNECTICUT
Free format text: INTELLECTUAL PROPERTY SECURITY RELEASE AGREEMENT;ASSIGNOR:CITIBANK, N.A.;REEL/FRAME:026039/0142
Effective date: 20101110
Owner name: HOMECARE LABS, INC., CONNECTICUT
Free format text: INTELLECTUAL PROPERTY SECURITY RELEASE AGREEMENT;ASSIGNOR:CITIBANK, N.A.;REEL/FRAME:026039/0142
Effective date: 20101110
Owner name: GREAT LAKES CHEMICAL GLOBAL, INC., CONNECTICUT
Free format text: INTELLECTUAL PROPERTY SECURITY RELEASE AGREEMENT;ASSIGNOR:CITIBANK, N.A.;REEL/FRAME:026039/0142
Effective date: 20101110
Free format text: INTELLECTUAL PROPERTY SECURITY RELEASE AGREEMENT;ASSIGNOR:CITIBANK, N.A.;REEL/FRAME:026039/0142
Owner name: GT SEED TREATMENT, INC., CONNECTICUT
Free format text: INTELLECTUAL PROPERTY SECURITY RELEASE AGREEMENT;ASSIGNOR:CITIBANK, N.A.;REEL/FRAME:026039/0142
Effective date: 20101110
Owner name: WEBER CITY ROAD LLC, CONNECTICUT
Effective date: 20101110
Free format text: INTELLECTUAL PROPERTY SECURITY RELEASE AGREEMENT;ASSIGNOR:CITIBANK, N.A.;REEL/FRAME:026039/0142
Owner name: ASCK, INC, CONNECTICUT
Owner name: RECREATIONAL WATER PRODUCTS, INC., CONNECTICUT
Effective date: 20101110
Free format text: INTELLECTUAL PROPERTY SECURITY RELEASE AGREEMENT;ASSIGNOR:CITIBANK, N.A.;REEL/FRAME:026039/0142
Free format text: INTELLECTUAL PROPERTY SECURITY RELEASE AGREEMENT;ASSIGNOR:CITIBANK, N.A.;REEL/FRAME:026039/0142
Effective date: 20101110
Owner name: BIOLAB TEXTILES ADDITIVES, LLC, CONNECTICUT
Effective date: 20101110
Owner name: KEM MANUFACTURING CORPORATION, CONNECTICUT
Free format text: INTELLECTUAL PROPERTY SECURITY RELEASE AGREEMENT;ASSIGNOR:CITIBANK, N.A.;REEL/FRAME:026039/0142
Effective date: 20101110
Owner name: AQUA CLEAR INDUSTRIES, LLC, CONNECTICUT
Free format text: INTELLECTUAL PROPERTY SECURITY RELEASE AGREEMENT;ASSIGNOR:CITIBANK, N.A.;REEL/FRAME:026039/0142
Owner name: CROMPTON MONOCHEM, INC., CONNECTICUT
Free format text: INTELLECTUAL PROPERTY SECURITY RELEASE AGREEMENT;ASSIGNOR:CITIBANK, N.A.;REEL/FRAME:026039/0142
Effective date: 20101110
Owner name: BANK OF AMERICA, N. A., CONNECTICUT
Free format text: SECDOND LIEN INTELLECTUAL PROPERTY SECURITY AGREEMENT;ASSIGNORS:CHEMTURA CORPORATION;BIOLAB FRANCHISE COMPANY, LLC;BIO-LAB, INC.;AND OTHERS;REEL/FRAME:027881/0347
Feb 22, 2010ASAssignment
Owner name: CITIBANK, N.A.,DELAWARE
Free format text: AMENDED AND RESTATED INTELLECTUAL PROPERTY SECURITY AGREEMENT;ASSIGNORS:CHEMTURA CORPORATION;A & M CLEANING PRODUCTS, LLC;AQUA CLEAR INDUSTRIES, LLC AND OTHERS;US-ASSIGNMENT DATABASE UPDATED:20100525;REEL/FRAME:23998/1
Effective date: 20100212
Free format text: AMENDED AND RESTATED INTELLECTUAL PROPERTY SECURITY AGREEMENT;ASSIGNORS:CHEMTURA CORPORATION;A & M CLEANING PRODUCTS, LLC;AQUA CLEAR INDUSTRIES, LLC AND OTHERS;REEL/FRAME:23998/1
Free format text: AMENDED AND RESTATED INTELLECTUAL PROPERTY SECURITY AGREEMENT;ASSIGNORS:CHEMTURA CORPORATION;A & M CLEANING PRODUCTS, LLC;AQUA CLEAR INDUSTRIES, LLC;AND OTHERS;REEL/FRAME:023998/0001
Owner name: CITIBANK, N.A., DELAWARE
May 12, 2009ASAssignment
Owner name: CITIBANK, N.A., DELAWARE
Free format text: SECURITY AGREEMENT;ASSIGNORS:CHEMTURA CORPORATION;A & M CLEANING PRODUCTS, LLC;AQUA CLEAR INDUSTRIES, LLC;AND OTHERS;REEL/FRAME:022668/0658
Effective date: 20090318
Sep 17, 2007REMIMaintenance fee reminder mailed
Sep 12, 2007FPAYFee payment
Year of fee payment: 12
Aug 14, 2003FPAYFee payment
Year of fee payment: 8
Jul 20, 2000ASAssignment
Owner name: BIOLAB SERVICES, INC., DELAWARE
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BIO-LAB INC.;REEL/FRAME:011044/0529
Effective date: 20000706
Owner name: BIOLAB SERVICES, INC. 300 DELAWARE AVENUE, 9TH FLO
Sep 10, 1999FPAYFee payment
Year of fee payment: 4