Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS5504607 A
Publication typeGrant
Application numberUS 08/037,581
Publication dateApr 2, 1996
Filing dateMar 26, 1993
Priority dateFeb 8, 1989
Fee statusPaid
Also published asCA2048597A1, CA2048597C, DE69022259D1, DE69022259T2, EP0382430A1, EP0382430B1, US5253094, WO1990009708A1
Publication number037581, 08037581, US 5504607 A, US 5504607A, US-A-5504607, US5504607 A, US5504607A
InventorsDavid W. Smith, Stephen A. Cassidy, Peter Healey
Original AssigneeBritish Telecommunications, Plc
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Optical interconnection network
US 5504607 A
Abstract
An optical network having a spatially-multiplexed plurality N of optical waveguides is employed in conjunction with another, non-spatial signal multiplexing technique (e.g., frequency multiplexing) defining a plurality M of further optical signal channels thereby providing an enhanced number NM of optical signal channels that can be selectively coupled to by optical signal processors.
Images(4)
Previous page
Next page
Claims(8)
We claim:
1. An optical network comprising:
an optical signal bus having plural optical waveguides defining
a plurality of spatially-multiplexed optical signal channels, each channel providing communication between respective pairs of transmitter and receiver modules optically coupled to the respective waveguide,
each receiver module further including a signal processor for processing optical signals on at least one of a plurality of independently multiplexed optical signal channels on the waveguide to which the processor is optically coupled, whereby the spatial multiplexing provides communication between a first plurality of transmitter and receiver modules connected to the bus and the independent multiplexing provides communication between a second plurality of transmitter and receiver modules connected to the bus,
the signal bus has a substrate supporting the plurality of waveguides, the waveguides each having a flat surface substantially coplanar with a surface of the substrate,
each processor is coupled to the bus by a connector module, the module comprises a substrate supporting at least one optical waveguide having a flat surface substantially co-planar with a surface of the connector module substrate over the length of the module, and
the module is coupled to the signal bus in a face-to-face relationship such that an evanescent coupling is formed between a waveguide of the module and a waveguide of the bus.
2. A network according to claim 1 in which the waveguides comprise D-fibers.
3. A network as in claim 1 in which the module has a plurality of waveguides, one positioned to couple to each of the waveguides in the signal bus.
4. A network as in claim 1 in which the module has a plurality of waveguides, one positioned to couple to each of the waveguides in the signal bus, and wherein the waveguides comprise D-fibers.
5. An optical network comprising:
an optical signal bus having plural optical waveguides defining
a plurality of spatially-multiplexed optical signal channels, each channel providing communication between respective pairs of transmitter and receiver modules optically coupled to the respective waveguide,
each receiver module further including a signal processor for processing optical signals on at least one of a plurality of independently multiplexed optical signal channels on the waveguide to which the processor is optically coupled, whereby the spatial multiplexing provides communication between a first plurality of transmitter and receiver modules connected to the bus and the independent multiplexing provides communication between a second plurality of transmitter and receiver modules connected to the bus,
each transmitter module comprises
an optical signal transmitting means and
first transmitter selection means whereby the transmitting means is couplable to a selected one of the waveguides on the signal bus, and
a reference optical bus which includes two or more reference optical waveguides each coupled to an optical source of a distinct wavelength, and in which the transmitting means is coupled to a predetermined one of the reference waveguides and includes means for modulating an optical signal coupled from said reference waveguides.
6. A network as in claim 5 in which the transmitting means is coupled to each of the reference waveguides and includes second transmitter selection means for selecting one of the reference waveguides.
7. An optical network comprising:
an optical signal bus having plural optical waveguides defining
a plurality of spatially-multiplexed optical signal channels, each channel providing communication between respective pairs of transmitter and receiver modules optically coupled to the respective waveguide,
each receiver module further including a signal processor capable of processing optical signals on at least one of a plurality of independently multiplexed optical signal channels on the waveguide to which the processor is optically coupled, whereby the spatial multiplexing provides communication between a first plurality of transmitter and receiver modules connected to the bus and the independent multiplexing provides communication between a second plurality of transmitter and receiver modules connected to the bus,
each receiver module comprises a receiving means, the processor being provided with a first receiver selection means whereby the receiving means is couplable to a selected one of the signal channels, and
a reference optical bus which includes two or more reference optical waveguides each coupled to an optical source of a distinct wavelength, and in which the receiving means comprises a coherent demodulator, and means for selectively coupling the demodulator to a predetermined one of the reference waveguides.
8. An optical network for connecting NM pairs of transmitter and receiver modules by wavelength multiplexing on spatially multiplexed waveguides of an optical signal bus comprising:
an optical signal bus having N, N>2, optical waveguides each capable of carrying a wavelength multiple of M carrier wavelengths,
NM transmitter modules optically coupled to said signal bus,
NM receiver modules optically coupled to said signal bus,
each transmitter module including selector means for selectively coupling a modulated signal to a selected one of the waveguides of said optical signal bus, wherein said modulated signal comprises any one of M carrier wavelengths,
each receiver module including wavelength selection means, a demodulator and selector means for selectively coupling one of said plurality of optical waveguides to said wavelength selection means and demodulator, and
means for time division multiplexing of P transmitted modulated signals and means in the receiver modules for time division demultiplexing received signals where the pairs of transmitter and receiver modules are increased to NMP.
Description
RELATED APPLICATIONS

This is a division of application Ser. No. 07/762,025, filed as PCT/GB90/00169, Feb. 05, 1990 now U.S. Pat. No. 5,253,094.

BACKGROUND OF THE INVENTION

1. Field of the Invention

This invention relates to optical interconnection networks (for optically interconnecting one or more transmitter stations with one or more receiver stations).

2. Related Art

Photonics technology could play a significant role in future telecommunications and computer switching systems within which areas there will then be a requirement for large non-blocking interconnect systems, for example, which each of say 10,000 transmitters will need to be independantly connectable to any one of 10,000 receivers. Such large systems are not presently commercially achievable by known optical switching systems. Further, small systems which can be achieved at the present time are not in general susceptible to ready expansion should new transmitters or receivers need to be added to the network.

BRIEF SUMMARY OF THE INVENTION

It is an object of the present invention to provide an optical interconnection network which largely overcomes these disadvantages. According to the present invention an optical interconnection network comprises an optical signal bus and at least one module optical waveguide; the network being characterised in that the optical bus comprises a plurality of signal optical waveguides the optical signal bus and module being provided with co-operable coupling means for releasably coupling each module to the optical signal bus such that there is evanescent coupling between a module optical waveguide and a signal optical waveguide of the optical signal bus the network.

The modules provide optical coupling to or from the optical bus waveguide as required. An optical interconnection network according to the present invention can be readily extended by locating additional modules such that they are coupled to the optical bus.

A method of using an interconnection network according to the present invention comprises transmitting from at least one optical module signals which form a hierarchy of at least two independent multiplexing methods. For example, the transmitters can combine wavelength and time division multiplexing each transmitter channel being identified by a unique combination of channels from the sets of available wavelength and time division channels. A receiver module can select the required transmitter signal by demultiplexing the hierarchy of multiplexes accordingly. Other combinations of multiplexing methods, and hierarchies greater than two may be employed.

Spatial multiplexing is readily included by providing the signal optical bus with additional waveguides, the receiver modules being provided with means for selecting a multiplex from the appropriate waveguide.

The allocation of the channels of the various multiplexes used in the hierarchy may be dedicated, i.e. fixed, for each modules, or assignable on a demand basis.

Preferably, the interconnection network will employ wavelength multiplexing as one of the hierarchy of multiplexes. This can be achieved by providing each transmitter module with a fixed or tunable source of optical radiation, for example a laser, or by providing a reference optical bus of at least two reference optical waveguides each couplable to an optical source of a distinct wavelength, each transmitter module being evanescently couplable to at least one of waveguides of the reference optical bus. The invention permits a hierarchy of wavelength, spatial and other multiplexing systems to be employed allowing a larger interconnect network to be formed than presently possible using any one of such multiplexing systems individually and the use of modules optically interfacing to the busses provides, in conjunction with the hierarchical multiplexing; a readily extendable network.

BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments of the invention will now be described by way of example only with reference to the accompanying drawings in which:

FIG. 1 is a schematic diagram of a network in which present invention can be incorporated;

FIG. 2 is a schematic diagram of a second network in which the present invention can be incorporated in which the receiver modules employ coherent homodyne optical demodulator;

FIG. 3 is a schematic diagram of a third network in which present invention can be incorporated in which the receiver modules employ coherent heterodyne optical demodulators;

FIG. 4 is a perspective schematic view of an optical bus and a module according to the present invention; and

FIG. 5 is an optical interconnection network showing a portion of an optical fibre bus 60 having one signal optical D-fibre 62.

DETAILED DESCRIPTION OF THE EXEMPLARY EMBODIMENTS

Referring to FIG. 1 an interconnect network 2 has a reference bus 4 of M optical waveguides Ri to Rm each coupled to a respective optical source of distinct wavelength λi to λm shown collectively as a reference generator 8, and a signal bus 10 of N optical waveguides S1 to SN. For clarity there is shown only one transmitter module Ti of upto NM possible transmitter modules and one receiver module 14 of up to NM possible receiver modules connectable to the network of this particular embodiment.

The transmitter module 12 in this example when fixed in position relative to the busses 4 and 10 has a first and second group of waveguides 16 and 18 evanescently coupled to the waveguides of the busses 4 and 10 respectively. Each waveguide of the group of waveguides 16 is coupled to one of the waveguides Ri and in turn is optically coupled to a reference selector switch 20 which is arranged to couple one of the waveguides Ri to an optical modulator 22. The modulator 22 modulates the carrier signal λi coupled from waveguide Ri with the information signal to be transmitted. The output of the modulator 22 is couplable via a connector switch 24 to a selected one waveguide of the group of waveguides 18 and hence to a selected one of the waveguides Si.

The receiver module 14 includes a group of waveguides 26 and an N to 1 selector switch 28 which in the same manner as the selector switch 20 and waveguides 16 of the transmitter module 12 can selectively couple one of the signal waveguides Si to a demodulator 29 via a frequency selective optical filter 30.

An example of a means for coupling the waveguides of the busses 4 and 10 to the module waveguides of groups 16, 18 and 26 in accordance with the present invention will be described in detail below.

The principle behind the bus architecture is that the signal bus forms a message bearer bus carrying optical signals from the transmitter modules in a manner that is accessible to the receiver modules and that the reference bus provides a range of optical frequencies of carrier signal which can be selected by a given transmitter module 12. An interconnection path is established by selecting one wavelength of carrier signal by means of the selector switch 20, modulating the carrier so obtained by the message information and then connecting the modulated carrier via the connector switch 24 to the selected signal waveguide Si.

Each waveguide Si can therefore carry a wavelength multiplex of M wavelengths, each transmitter being associated with a unique combination of wavelength λi and waveguide Si.

A receiver can select the information signal to be received by connecting the appropriate waveguide Sj via the signal selector switch 28 and passing only the required wavelength λi to the optical demodulator by means of the frequency selective filter 30.

The principle of using a hierarchy of multiplexing techniques can be extended by, for example, using time coding of transmission, coding of transmissions and so. Thus, for example a three layer hierarchy of space, frequency (as exemplified by the FIG. 1 arrangement) together with time domain multiplexing of the information signals to the modulators 22, each with a dimension of 100 channels would provide an interconnect power of 106. This multiplication of the multiplexing power of each multiplexing technique therefore allows a much greater interconnect power than available from any one technique alone.

The ability to removably couple transmitter and receiver modules onto the busses 4 and 10 permits ready growth of the network by the addition of modules until all the multiplex combinations are used--whereupon one additional multiplex may be added to the hierarchy to further increase the interconnect power of the network and for transmitter and receiver modules to be unplugged and moved to different locations on the optical bus as necessary. Thus, for example, once NM transmitters and receivers had been connected to the network, the introduction of P time slot channels would allow expansion of the network to NMP transmitters and receivers.

The transmitter modules 12 and receiver modules 14 can independently be installed with dedicated channels, i.e. the selection and connector means coupling the modulator/demodulators to a single predetermined waveguide of each bus, in which case the groups of waveguides 16, 18 and 26 need comprise only one waveguide without a requirement for selector or connector switches, or they may be as shown in FIG. 1 which allows the transmitters and receivers to select the wavelength and space channel combination for transmission and reception.

Alternatively, the transmitter modules may be provided with fixed or tunable optical sources, for example lasers, which eliminates the need for the reference bus 4. If two or more non-spatial hierarchies are employed then the signal bus need have only one waveguide, each transmitter and receiver module being evanescently coupled to it exclusively. In the case of spatial multiplexing, i.e. two or more waveguides in the signal optical bus, the modules can, analogously to the wavelength multiplexing example above, be dedicated or assignable. If the modules are dedicated then the signal connector or signal selector switch may be eliminated, the optical waveguide of the modules being located so that it couples to the required waveguide of the signal optical bus when co-located with the bus.

Referring now to FIG. 2, an interconnection network 32 is shown which is as the network 2 except that the wavelength selection in the receiver module 14 is not by way of a tunable filter 30 but by means of coherent, homodyne detection. This is achieved by means of an additional selector switch 34 which selectively couples one of the reference waveguides Ri to the coherent demodulator 36 corresponding to the wavelength channel to be demultiplexed.

Heterodyne detection can be achieved in a similar manner as by the incorporation of frequency shifters 38 between the reference generator and the receiver modules 14 of the network of FIG. 2 as shown in FIG. 3.

A possible structure of the busses 4, 10, of the groups of waveguides 16, 18, 26 and a method of inter-coupling them will now be described with reference to FIGS. 4 and 5. The busses were fabricated using optical fibres having a D-shaped cross-section, "D-fibres". This fibre is formed by cutting away one side of a preform of a normal optical fibre so that one side is close to the core. When drawn this produces a long, continuous length of fibre with a lateral flat surface 46 close to the core 48 (as shown on FIG. 4 with respect to only one of the fibres 40, 42 and 44). In this particular embodiment the core was about 0.5 μm from the flat surface.

The three D-fibres 40, 42 and 44 were placed with their centres 250 μm apart and press-moulded into a polymer substrate 50 that is of length 30 mm. The moulding was performed against a heated optical flat which ensured that the flat surfaces of the D-fibres align accurately in a common plane. The fibres 40, 42 and 44 were then cleaved and fusion spliced to standard single mode optical fibre in turn spliced to the tails of semiconductor lasers of wavelength 1.3 μm (not shown). A second substrate was fabricated (not shown), the D-fibres being spliced at one end of single mode tails to couple them to optical power meters.

Two of the waveguides in substrate 50 coupled to the lasers (not shown) performed the function of the optical bus 4 carrying the power. The third acted as a single signal bus waveguide but was coupled to a laser also to measure the coupling performance. A second substrate, acting as one of the module couplers, was positioned so it overlapped the first by 0.5 mm. The close proximity of the cores provided evanescent coupling between them allowing a small fraction of the optical power to be tapped out of the fibre bus into the corresponding waveguide of the second substrate.

A photomicrograph of the substrate 50 showed that the D-fibres appear as ridges 0.5 μm high and 85 μm wide, the remainder of the fibre diameter being concealed by polymer `ears` which grip the fibres and slope away to the general substrate level. The top points of the flat surfaces of the fibre occupy a plane to well within an accuracy of 100 nm with a spacing of 250 μm20 μm.

The power splitting ratios between fibres are displayed in the table below, where the primed numerals indicate the equivalent fibres on the second substrate.

______________________________________fibre    40          42          44______________________________________40'      -37dB       <-78dB      <-78dB42'      <-78dB      -39dB       <-78dB44'      <-78dB      <-78dB      -35dB______________________________________

The cross talk between unwanted pairs of fibres was below the measurement limit of -78 dB. The ratio of wanted to unwanted signal was therefore at least 43 dB at each tapping point.

A detailed treatment of the tolerancing of the bus and connector substrates shows that with the present design, a lateral and angular misalignment 250 μm, and 1 respectively, a fibre height variation of 0.75 μm, or a wavelength change from 1.3 to 1.5 μm, each give smaller variation in output power than 3 dB. All these parameters are well within achievable engineering limits and have been achieved here. A more critical parameter is the "rocking" of the connector in the two available dimensions. However, by taking advantage of the close tolerance of the planes formed by the D-fibre flats (<100 nm), the natural contact of these planes as the connector contacts the bus is well within the tolerance needed. It is obvious that the position of contact along the bus will be immaterial. Many connectors could therefore be connected to the bus along its length.

Each connector substrate in principle only takes up a few mm of space on the D-fibre bus. The optical loss of D-fibre is below 1 dB/m. It can therefore be envisaged that by expanding the present geometries and maintaining the physical tolerances already achieved an optical distribution bus capable of interconnecting large numbers of communicating terminals could be built using present optical technologies.

Referring now to FIG. 5 an optical interconnection network shows a portion an optical fibre bus 60 having one signal optical D-fibre 62 embedded in a thermoplastic substrate 64. A portion of the fibre 62 lies within a wall structure 65 having a slot 66 and a channel 68 to avoid contact with the flat of the D-fibre 62.

A module 70 comprising an optical D-fibre 72 embedded in a thermoplastic substrate 74 is dimensioned to be a push fit in the wall structure 68. When pushed into structure 68 the fibres 72 and 62 are held in position to permit evanescent coupling. The fibre 72 extends through the slot 65 to a receiver or transmitter as required.

The module 70 may be provided with a handle to ease removal of the module 70 from the wall structure 64.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US4611884 *Nov 24, 1982Sep 16, 1986Magnetic Controls CompanyBi-directional optical fiber coupler
US4641376 *Aug 27, 1985Feb 3, 1987Boris RozenwaigMulti-channel multi-cell optoelectronic switching networks for multi-service telecommunications systems
US4742576 *Dec 23, 1985May 3, 1988Polaroid CorporationOptical communication system employing coherent detection and method
US4759011 *Mar 3, 1986Jul 19, 1988Polaroid CorporationIntranetwork and internetwork optical communications system and method
US4845703 *Nov 24, 1986Jul 4, 1989Nec CorporationWavelength division optical switching system having wavelength switching light modulators
US4846540 *Jan 25, 1988Jul 11, 1989Bell Communications Research, Inc.Optical wavegide junction
US5005166 *Sep 30, 1988Apr 2, 1991Nec CorporationTime and wavelength division switching system
US5241409 *Feb 5, 1990Aug 31, 1993British Telecommunications Public Limited CompanyCommunications network with switching distributed among a central switching node and optical input and output sub-networks
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US5675676 *Aug 7, 1996Oct 7, 1997Nec CorporationOptical branching apparatus and transmission line switching method
US6661949Mar 1, 2001Dec 9, 2003Kenneth A. JamesTotally photonic evanescent switch for optical fibers
US6782210Aug 23, 2000Aug 24, 2004Nippon Telegraph And Telephone CorporationOptical packet routing network system based on optical label switching technique
US7113701Jan 13, 2004Sep 26, 2006Nippon Telegraph And Telephone CorporationOptical packet routing network system based on optical label switching technique
US7120358Jan 13, 2004Oct 10, 2006Nippon Telegraph And Telephone CorporationOptical packet routing network system based on optical label switching technique
US7366368 *Jun 15, 2004Apr 29, 2008Intel CorporationOptical add/drop interconnect bus for multiprocessor architecture
EP1079571A2 *Aug 25, 2000Feb 28, 2001Nippon Telegraph and Telephone CorporationOptical packet routing network system based on optical label switching technique
EP1499077A1 *Aug 25, 2000Jan 19, 2005Nippon Telegraph and Telephone CorporationOptical packet routing network system based on optical label switching technique
WO1998032255A2 *Dec 30, 1997Jul 23, 1998Eg & G Instr IncOptical power transmission monitoring system
Classifications
U.S. Classification398/79, 398/60, 385/24
International ClassificationH04B10/20, H04B10/02, G02B6/36, G02B6/30, H04B10/28, H04Q3/52, H04J14/00, G02B6/28, H04B10/213, H04Q11/00
Cooperative ClassificationH04Q2011/0018, H04J14/00, G02B6/2826, H04Q2011/0011, H04Q2011/0024, H04Q11/0005
European ClassificationG02B6/28B6B, H04J14/00, H04Q11/00P2
Legal Events
DateCodeEventDescription
Feb 29, 2008ASAssignment
Owner name: IPG PHOTONICS CORPORATION, MASSACHUSETTS
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BRITISH TELECOMMUNICATIONS PLC;REEL/FRAME:020582/0143
Effective date: 20080221
Sep 13, 2007FPAYFee payment
Year of fee payment: 12
Oct 22, 2003REMIMaintenance fee reminder mailed
Sep 23, 2003FPAYFee payment
Year of fee payment: 8
Sep 23, 1999FPAYFee payment
Year of fee payment: 4