Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS5594366 A
Publication typeGrant
Application numberUS 08/492,390
Publication dateJan 14, 1997
Filing dateJun 19, 1995
Priority dateMay 4, 1994
Fee statusPaid
Also published asCN1086815C, CN1128070A, DE69525210D1, EP0707721A1, EP0707721A4, EP0707721B1, WO1995030952A1
Publication number08492390, 492390, US 5594366 A, US 5594366A, US-A-5594366, US5594366 A, US5594366A
InventorsJames C. K. Khong, Wendey E. Mueller, Joe Yu, Neal Berger, Keith H. Gudger, Geoffrey S. Gongwer
Original AssigneeAtmel Corporation
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Programmable logic device with regional and universal signal routing
US 5594366 A
Abstract
A programmable logic device having a plurality of logic cells arranged in groups defining separate logic regions, both regional and multi-regional bus lines, and a crosspoint switch matrix which serves only to route signals from bus lines to inputs of the logic cells without logically combining two or more of the bus signals, i.e. without forming product terms. Rather, all logic is carried out by the logic cells themselves. In particular, the switch matrix is constructed so that each bus line can connect to one or more logic cell inputs, but each logic cell input can meaningfully connect to only one bus line without shorting. In one embodiment, each logic cell feeds one logic signal back to a regional bus line and can potentially feed back another logic signal through its region's universal select matrix to a universal bus line. The select matrix connects a subset of the region's potential feedback signals to the universal bus.
Images(4)
Previous page
Next page
Claims(9)
We claim:
1. A programmable logic device (PLD), comprising
a plurality of logic cells receiving input signals through logic cell inputs, said logic cells arranged in groups defining separate logic regions of such cells,
a plurality of bus lines for conducting signals thereon, and
a crosspoint switch matrix programmably connecting bus lines to said logic cell inputs, each logic cell input being programmably connectable via a set of crosspoint switches of said matrix to at most one of any one of a plurality of said bus lines, each crosspoint switch being located at each intersection of said logic cell inputs and said bus lines and including a transmission gate connected from one of said bus lines to one of said logic cell inputs, said transmission gate being controlled by a programmable nonvolatile latch, each bus line being connectable to the logic cell inputs of the logic cells of at least one of said logic regions, at least one bus line being a regional bus line connectable only to logic cell inputs of the logic cells in only one of said logic regions and at least one bus line being a multi-regional bus line connectable to logic cell inputs of logic cells in multiple logic regions, each said regional bus line being directly connectable to logic cell inputs of all of the logic cells of a logic region.
2. The PLD of claim 1 wherein at least one multi-regional bus line is a universal bus line directly connectable to logic cell inputs of logic cells in every logic region.
3. A programmable logic device (PLD), comprising
a plurality of logic cells receiving input signals through logic cell inputs, said logic cells arranged in groups defining separate logic regions of such cells,
a plurality of bus lines for conducting signals thereon, and
a crosspoint switch matrix programmably connecting bus lines to said logic cell inputs, each logic cell input being programmably connectable via a set of crosspoint switches of said matrix to any one of a plurality of said bus lines but capable of being usefully connected without shorting to at most one of said bus lines, each crosspoint switch including a transmission gate connected from one of said bus lines to one of said logic cell inputs, said transmission gate being controlled by a programmable nonvolatile latch, each bus line being connectable to the logic cell inputs to the logic cells of at least one of said logic regions, at least one bus line being a regional bus line connectable only to logic cell inputs of the logic cells in only one of said logic regions and at least one bus line being a multi-regional bus line connectable to logic cell inputs of logic cells in multiple logic regions, each logic cell providing a regional feedback signal to a regional bus line.
4. A programmable logic device (PLD), comprising
a plurality of logic cells receiving input signals through logic cell inputs, said logic cells arranged in groups defining separate logic regions of such cells,
a plurality of bus lines for conducting signals thereon, and
a crosspoint switch matrix programmably connecting bus lines to said logic cell inputs, each logic cell input being programmably connectable via a set of crosspoint switches of said matrix to any one of a plurality of said bus lines but capable of being usefully connected without shorting to at most one of said bus lines, each crosspoint switch including a transmission gate connected from one of said bus lines to one of said logic cell inputs, said transmission gate being controlled by a programmable nonvolatile latch, each bus line being connectable to the logic cell inputs to the logic cells of at least one of said logic regions, at least one bus line being a regional bus line connectable only to logic cell inputs of the logic cells in only one of said logic regions and at least one bus line being a multi-regional bus line connectable to logic cell inputs of logic cells in multiple logic regions, each logic cell providing a multi-regional feedback signal to a multi-regional bus line.
5. The PLD of claim 4 further comprising a plurality of select means, each associated with a different logic region and receiving a potential multi-regional feedback signal from each logic cell of that logic region, for selecting a subset of said potential multi-regional feedback signals from their respective associated logic regions and connecting said selected subset of signals to corresponding multi-regional bus lines.
6. The PLD of claim 4 wherein each logic cell both provides a regional feedback signal to a regional bus line and programmably provides a multi-regional feedback signal to a multi-regional bus line, each logic cell further having programmable switch means therein receiving two feedback signals for selecting one signal as said regional feedback signal and the other signal as said multi-regional feedback signal.
7. A programmable logic device (PLD) comprising
a plurality of logic cells receiving input signals through logic cell inputs, said logic cells arranged in groups defining separate logic regions of such cells,
a plurality of bus lines for conducting signals therein,
a crosspoint switch matrix programmably connecting bus lines to said logic cell inputs, each bus line being connectable via a set of crosspoint switches of said matrix to the logic cell inputs of at least one logic region, a plurality of said bus lines being multi-regional bus lines connectable to logic cell inputs in multiple logic regions, some of said bus lines are regional bus lines, each connectable to logic cell inputs in only one logic region, and wherein each logic cell provides a regional feedback signal to one of said regional bus lines, and
a plurality of feedback select matrices, one for each logic region, each select matrix having inputs receiving potential multi-regional feedback signals from said logic regions of its corresponding logic region and having outputs providing a programmably selected subset of said potential multi-regional feedback signals to said multi-regional bus lines.
8. The PLD of claim 7 wherein at least one multi-regional bus line is a universal bus line connectable to logic cell inputs in every logic region.
9. The PLD of claim 7 wherein each logic cell has programmable switch means receiving two feedback signals at switch inputs for selecting one of said feedback signals as a regional feedback signal provided at a first switch output to one of said regional bus lines and selecting the other of said feedback signals as a potential multi-regional feedback signal provided at a second switch output to the feedback select matrix corresponding to the logic region of said logic cell.
Description

This is a continuation of application Ser. No. 08/238,156 filed on May 4, 1994, now abandoned.

TECHNICAL FIELD

The present invention relates to integrated circuits of the type known as programmable logic devices and in particular relates to interconnection layouts or architectures which improve overall functional flexibility of such devices.

BACKGROUND ART

In U.S. Pat. No. 5,079,451, Gudger et al. describe a programmable logic device (PLD) having global and local buses providing product terms to a plurality of logic cells. The global bus is capable of communicating with all of the logic cells, while each of the local buses is capable of communicating with only some of the logic cells in the device. Global and local product term signals are produced by AND matrices that are structurally integral with the buses. That is, programmable AND matrices appear as a set of programmable interconnections located where product term lines (logic cell inputs) cross bus lines in the global and local buses. The crosspoint matrices formed by the bus lines, logic cell inputs and programmable interconnections are thus a logic element, essentially a set of wide fan-in AND gates, where the bus lines form the gate inputs and the logic cell inputs form the gate outputs. The logic cells, with their OR gates receiving the resulting product term signals on the logic inputs, form a second level of logic producing sum-of-products terms.

Field programmable gate arrays (FPGAs) typically have a topology where logic blocks are arranged in a two-dimensional array consisting of rows and columns of logic blocks and where interconnect resources occupy the space between the rows and columns. These interconnects form a crosspoint switch matrix that acts to route signals from outputs of the blocks to inputs of the blocks. The interconnect matrix is usually constructed so that signals are potentially routable to all of the logic blocks in the device. However, each logic block input is only connected to one bus line in the interconnect structure.

In U.S. Pat. No. 5,208,491, Ebeling et al. describe a FPGA having a checkerboard array of intermeshed forwardly propagating and backwardly propagating routing and logic blocks (FPRLBs and BPRLBs). A plurality of forwardly propagating and back propagating vertical segmented routing channels (FPSRCs and BPSRCs) serve as signal bus lines between adjacent columns of RLBs. Each FPRLB (or BPRLB) receives an input signal from an immediately adjacent FPSRC (or BPSRC) in one vertical channel and transmits an output signal to another immediately adjacent FPSRC (or BPSRC) in the opposite vertical channel. The individual bus lines in the FPSRCs and BPSRCs are segmented into different lengths allowing short, medium and long range communication with the FPRLBs and BPRLBs.

An object of the present invention is to improve the functional flexibility of programmable logic devices (PLDs) by incorporating some of the interconnection features that presently are found only on FPGAs.

SUMMARY OF THE INVENTION

The object is met with a programmable logic device having a plurality of logic cells arranged in separate logic regions, a plurality of bus lines, including both regional and multi-regional bus lines, and a crosspoint switch matrix which only serves to route signals from bus lines to the inputs of the logic cells without logically combining the bus signals to form product terms at those inputs. In the PLD's switch matrix, each bus line can connect to more than one logic cell input, but each logic cell input can meaningfully connect to only one bus line without shorting. In a preferred embodiment, each logic cell can feed back one logic signal to a regional bus line and can potentially feedback another logic signal through a universal select matrix to a multi-regional or universal bus line. One universal select matrix is provided for each region of logic cells to select a subset of the potential feedback signals for connection to the universal bus.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram showing the chip-level architecture of an ultra programmable logic device (ultra PLD) of the present invention.

FIG. 2 is a block diagram showing details of one of the logic regions in the ultra PLD of FIG. 1.

FIGS. 3a and 3b are block diagrams showing the gate-level structure of one of the logic cells in the logic region of FIG. 2. FIG. 3b is the feedback select portion of this logic cell and is connected to the combinatorial signal line E, the register output Q and the I/O pin in FIG. 3a.

FIG. 4 is a simplified view of a portion of the crosspoint switch matrix of the ultra PLD of FIG. 1 connecting to the universal logic gates (ULGs) in the logic cell of FIG. 3.

FIG. 5 is a schematic circuit diagram of one of the crosspoint switches in the matrix of FIG. 4.

BEST MODE OF CARRYING OUT THE INVENTION

With reference to FIG. 1, an ultra programmable logic device (ultra PLD) of the present invention, seen in its topmost chip-level architecture, has plurality of N separate logic regions 111 -11N interconnected by a common universal signal bus 13. Typically, the ultra PLD has four to eight logic regions (4≦N≦8), but the number N of logic regions is not absolutely critical. In turn, each logic region has a group of logic cells 151 -15N, a circuit block 171 -17N for generating regional control signals, and a region signal bus 191 -19N. The number J, K, etc. of logic cells in each group 151 -15N of such cells, i.e., the number of logic cells in each logic region 111 -11N, is typically about 20, but this number is not critical and need not be the same for every logic region in a given device. For example, the number J of logic cells 151 in logic region 11, may be twenty (J=20), while the number K of logic cells 15N in logic region 11N may be twenty-four (K=24), while still other logic regions may contain groups of fifteen, sixteen, eighteen, or some other number of logic cells. In some devices, each logic cell in the device or each logic cell in a given region is an input/output (I/O) macrocell associated with a specific I/O pin 21, while in other devices, some logic cells in at least one region 111 -11N may be buried and have no associated I/O pin. In all cases, the number of I/O pins 21 for each logic region 111 -11N equals the number of I/O macrocells in that region and never exceeds the total number of all logic cells 151 -15N for that region. Thus, logic region 111 with its J logic cells has up to J associated I/O pins 21, equal to the number of I/O macrocells in the group of logic cells 151 for that region. Each regional control signal generating circuit block 171 -17N provides a number of control signals, such as output enable and asynchronous reset signals, on regional control lines 181 -18N to the logic cells 151 -15N for its particular region 111 -11N. Other control signals, such as regional clock signals, may be provided by dedicated clock pins 221 -22N.

The universal signal bus 13 receives a set of feedback signals on lines 23 from the logic cells 151 -15N of each logic region 111 -11N and provides common input signals on input lines 25 to the logic cells 151 -15N and control signal generating circuit blocks 171 -17N of all regions 111 -11N. Input-only pins 30 may also supply signals to the universal bus 13. The N separate regional signal buses 191 -19N receive regional feedback signals on regional feedback lines 271 -27N from the logic cells 151 -15N of the corresponding logic regions 111 -11N and provide separate sets of regional input signals on input lines 291 -29N to the logic cells 151 -15N and control signal generating circuit blocks 171 -17N within the corresponding logic regions 111 -11N. It should be noted that while the universal and regional feedback lines 23 and 271 -27N are generally entirely distinct from one another, the input lines 25 and 291 -29N may programmably connect to either the universal bus 13 or one of the regional buses 191 -19N. Thus, whether an input line carries a common input signal from the universal bus 13, and thus may be considered a universal input line 25, or carries a regional input signal from a regional bus 191 -19N, and thus may be considered a regional input line 291 -29N, can depend on the actual programmed connections within a particular device.

With reference to FIG. 2, a typical logic region, for example the logic regional 111 of FIG. 1 shown here, has a plurality J of logic cells 311 -31J arranged as a group 151, input/output pins 21 associated with at least some of the logic cells 311 -31J, a single control signal generating circuit block 171 providing regional control signals on lines 181 to the group 151 of logic cells 311 -31J of the region 111 and a regional signal bus 191. Typically, there are about 20 logic cells 311 -31J in a logic region. Some logic cells are input/output (I/O) macrocells with an associated I/O pin 21, while other logic cells may be buried. Other than this difference, the logic cells 311 -31J are typically substantially identical to one another in construction. Each logic cell 311 -31J has a number of inputs connected to input lines 331 -33J, typically about ten per logic cell, for receiving a corresponding number of input signals from the regional and universal buses 191 and 13. The control signal generating circuit block 171 also has a number of inputs connected to input lines 35, typically about six in number, for receiving a corresponding number of additional input signals from the regional and universal buses 191 and 13. A typical logic region of twenty logic cells would thus have about 206 input lines 331 -33J and 35.

A crosspoint switch matrix 37 selects which bus lines 391 -39J and 401 -40L (including line 40i) connect to which input lines 331 -33J and 35 for each logic region. The crosspoint switch matrix 37 allows any signal in either bus (both regional bus 191 and universal bus 13) to connect to any of the input lines 331 -33J and 35. However, while the same bus line may be connected to multiple input lines, each input line is allowed to connect to only one bus line. Connecting an input line to more than one bus line will short out the affected lines and lead to an indeterminate signal level. Further, while the signals within the universal bus 13 are available to input lines of all regions 111 -11N, the signals in the regional bus 191 are available only to the logic cells 311 -31J and control signal block 171 in that particular logic region 111. Signals in other regional buses 192 -19N are not available to the logic region 111 but only to their associated region.

Each logic cell 311 -31J in the logic region routes one feedback signal on a regional feedback line 411 -41J directly to the regional bus 191, with each feedback line 411 -41J fixedly connected to a designated regional bus line 391 -39J in one-to-one correspondence. Along with the J regional bus signals provided by the J logic cells 311 -31J, each region's group 151 of logic cells also generates a number of universal feedback signals, which are routed on universal feedback lines 43 to the universal bus 13. Each bundle of feedback lines 43 connects to a corresponding bundle of bus lines 40i in the universal bus 13 with one feedback line fixedly connected in one-to-one fashion to one bus line. To generate these universal bus signals, each of the region's logic cells 311 -31J feeds one signal on lines 451 -45J to a universal switch matrix (USM) 47. The region's USM then selects a subset of the signals received from the logic cells 311 -31J for connection to the universal bus 13. Typically, about 40% of the received signals are selected, so that for a region having 20 logic cells, a typical USM would place eight of the signals onto the universal bus 13. Six signals might be selected from a region of fifteen or sixteen logic cells, eight from one of eighteen or twenty logic cells and ten from twenty-four logic cells. However, the percentage of signals selected for connection to the universal bus 13 is not absolutely critical, except that not more than about 75% of the received signals would normally be selected by a particular USM, unless the total number of logic cells in a region is small (twelve or less).

With reference to FIGS. 3a and 3b, each logic cell is either an I/O macrocell, like the logic cell 311 of FIG. 3a shown here, or is a buried macrocell. Buried macrocells are similar to the I/O macrocell depicted in FIGS. 3a and 3b, except that they do not have an associated I/O pin 21. Circuit elements related to outputting signals on a pin or receiving input signals from an I/O pin are also absent in buried macrocells. In some ultra PLDs or some regions of such a device, all of the logic cells are I/O macrocells with an associated I/O pin, while other PLDs of the present invention have both I/O macrocells and buried macrocells.

As shown in FIG. 3a, each logic cell 311 of the preferred device contains four 4-input universal logic gates (ULGs) 51-54 and two 2-input ULGs 55 and 56. Two of the 4-input ULGs 51 and 53 share the same four input lines 331(1-4) from the crosspoint switch matrix 37 shown in FIG. 2, the other two of the 4-input ULGs 52 and 54 of FIG. 3a share four other input lines 331(5-8), and the two 2-input ULGs 55 and 56 share the final two input lines 331(9-10). Each of the 4-input ULGs 51-54 can be separately programmed to generate any one of the 216 Boolean logic functions of its four inputs. Likewise, each 2-input ULG 55 and 56 can be separately programmed to generate any one of the 16 possible Boolean logic functions of its two inputs.

The four 4-input ULG outputs 57-60 are used as inputs to two logic pairing gates 63 and 64. These pairing gates 63 and 64 can be programmably configured to act either as AND gates or as OR gates. A 4-input OR gate 65 follows the pairing gates 63 and 64. One input 68 of the OR gate 65 connects to the output of pairing gate 63. Another input 69 of the OR gate 65 is connectable, via a programmable switch 74, to the output 71 of the other pairing gate 64. Thus, OR gate 65 allows the two pairing gate outputs to be logically combined (`summed` or `ORed`) with each other. Pair gate outputs from adjacent logic cells may also be available to the OR gate 65 at its inputs 67 and 70. Likewise, the outputs of pairing gates 63 and 64 may be sent, through programmable switches 73 and 75 to adjacent logic cells. In this manner, adjacent logic cells may share or steal each others pairing gate outputs.

Each logic cell has one flip-flop 771 which may be configured by programmable configuration bits therein (not shown) to act as either a D-type register, a T-type register, or a latch. The data input 78 to the flip-flop 77 is connected to the output of a multiplexer 79 with four inputs. Using this multiplexer 79, the input 78 to the flip-flop 77 may be selected to be either the output node E of OR gate 65, the complement of E, the output node B of pairing gate 64, or, in the case of I/O macrocells, the complement of the signal received at the I/O pin 21. Each flip-flop 77 has two clocking options, selectable by a configurable multiplexer 81. In one option, the clock can be the logic cell's own clock signal CK, generated within the logic cell by the 2-input ULG 56 and transmitted to an input of multiplexer 81 on clock line 83. Alternatively, the clock can be selected to be the logical product (the output of AND gate 85) of the internally generated clock signal CK and the region's synchronous clock signal RCK received at an external clock pin (pin 221 in FIG. 2) assigned to that region, thereby allowing gated pin clocking. Also, by programming the clock generating ULG 56 to always output a logic 1 (one of the sixteen possible Boolean functions of a 2-input ULG), simple pin controlled clocking may be carried out. The flip-flop 77 uses either of two regional asynchronous reset control signals RAR1 and RAR2, selected by a programmably configurable multiplexer 87. The provision of two asynchronous reset signals RAR1 and RAR2 in each region allows a region's logic cells to be divided into two subgroups whose flip-flops are reset by distinct signals.

In the case of I/O macrocells, the logic cell can be configured by means of yet another multiplexer 89 to output either the combinatorial signal on node E, the register output Q from flip-flop 77, or the complements of either of these two signals. Each I/O macrocell also has a tri-statable output buffer 91 controlled by an output enable signal on line 93. The logic cell may select its own internal output enable signal OE generated by the 2-input ULG 55, using the same two inputs 331(9-10) as the clock generator 56, or the signal OE may be logically combined by an OR gate 95 with a regional output enable signal ROE generated by the control signal block 171 in FIG. 2 and common to all of the I/O macrocells within the region. Selection of signal OE or the combined (OE+ROE) signal may be made by a configurable multiplexer 97.

The control signal generating circuit block 171 in FIG. 2 generates the control signals RAR1 and RAR2 (asynchronous resets) and ROE (output enable) shown in FIG. 3a using three separate 2-input ULGs, not shown, each receiving two different inputs on input lines 35 from the crosspoint matrix 37 shown in FIG. 2.

As seen in FIG. 3b, the feedback select portion of the logic cell includes a multiplexer 101 which has an input connected to the node E at the output of OR gate 65 of FIG. 3a to receive a combinatorial signal and another input connected to the output Q of the flip-flop 77 to receive a registered signal. The multiplexer 101 of FIG. 3b selects either the combinatorial signal or the registered signal and provides this initial selection on its output 103 for possible feedback to the universal and regional buses. A second multiplexer 105 has an input connected to the I/O pin 21 to receive a pin signal and a second input which is connected to the output 103 of the first multiplexer 101 to receive the selected combinatorial or registered feedback signal. This second multiplexer 105 provides one of the two signals to the regional feedback line 411 connected to a regional bus line and provides the other of the two signals on line 451 to the universal select matrix (USM) 47 in FIG. 2 for possible connection to a universal bus line. Thus, the logic cells provide both regional and universal feedback options. As shown in FIG. 3b, the regional feedback on line 411 may be programmed to be either the combinatorial signal on node E, the stored signal in flip-flop output Q or, in the case of I/O macrocells, the pin signal. One signal is also selected from each logic cell as a potential universal feedback on line 451. Like the regional feedback, this potential universal feedback signal is selected from either the I/O pin signal or the combinatorial or registered signal initially selected by multiplexer 101. However, in this preferred implementation, the combinatorial and stored signals cannot both be used as feedbacks from a given logic cell. The selected potential universal feedback signal goes to the region's USM 47, seen in FIG. 2, which as previously described, maps a subset (e.g., eight out of twenty) of its input signals to its universal bus lines.

With reference to FIG. 4, the crosspoint switch matrix 37 connects regional and universal bus lines 391 -39J and 401 -40L, represented here by horizontal lines, to input lines, represented here by vertical lines corresponding to eight of the input lines 311(1-8). Two of the universal logic gates 51 and 52 of a logic cell are seen at the top of the Figure, each connected to four input lines 331(1-4) and 331(5-8). At the intersection of each bus line and logic cell input line is a crosspoint switch 111 that can be programmed to connect the two lines, and thereby allows a bus signal to be placed onto that input line. Each bus line 391 -39J and 401 -40L can be connected to one or more input lines 331. However, only one bus line may be connected to any one input line. Any unused input lines may be programmed to a fixed state, either high or low as required by the particular function implemented by the ULG 51, 52, etc.

As seen in FIG. 5, each crosspoint switch 111 is a transmission gate 113 controlled by an electrically erasable, nonvolatile latch 115. The line WL is a bus line, while the lines labeled COL1 and COL2 are two input lines. The transmission gate 113, here an n-channel field-effect transistor, has its source and drain terminals connected to the bus line WL at node 117 and to one of the input lines COL1 or COL2 at node 1181 or 1182. A mask programmed connection 119 determines which of the two logic cell input lines COL1 and COL2 is connected to the transmission gate 113. An adjacent crosspoint switch 111, not shown, has its transmission gate connected to the other input line via a similar mask programmed connection. The transmission gate 113 is controlled by an SRAM latch 115 with a nonvolatile programmable storage element 121, such as a floating-gate-type EEPROM, on one side. VREF is the sense line for the nonvolatile storage element 121. XSEL1 and XSEL2 are two select lines corresponding to the two logic cell input lines COL1 and COL2 connected to the select transistor 123 via the mask programmable connection 125. When input line COL1 is connected to the transmission gate 113, select line XSEL1 is connected to the select transistor 123. In an adjacent cell, COL2 and XSEL2 are connected. The select lines pulse to Vcc at power-up, then get held at a reference value (about 2 volts). The value stored in nonvolatile element 121 is read at node A, the drain of the select transistor 123. The control gate of transmission gate 113 is connected to the SRAM latch at node B.

In a write mode, VREF is first charged to a program voltage Vpp, with all other lines VC, VB, VS and XSEL held at ground, to charge up the floating gates of all nonvolatile storage elements 121. Then with VREF at ground, VC at program voltage Vpp, VB at ground and VS allowed to float, the floating gates are selectively discharged by holding XSEL at program voltage Vpp. Unselected storage elements 121 have XSEL at ground. In a read mode, VREF and VS are at ground, VC and VB are at a normal operating voltage Vcc, and XSEL is at Vcc for sense or 2 volts for holding the sensed value in the latch 115.

In a programmed logic pattern, each logic cell input has only one of its crosspoint latches 115 set. Connecting two bus lines WL simultaneously to a single logic cell input COL1 or COL2 shorts out the two bus lines because of the direct connection through the transmission gates 113, and thus leads to an indeterminate signal level and no useful connection. Accordingly, the crosspoint switch matrix 37 seen in FIGS. 2 and 4 should not be regarded as a logic element, since product terms cannot be formed by multiple bus connections to a single input line. Rather, the switch matrix 37 merely acts to route a bus signal to one or more logic cell inputs.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US3925684 *Mar 11, 1974Dec 9, 1975Hughes Aircraft CoUniversal logic gate
US4422072 *Jul 30, 1981Dec 20, 1983Signetics CorporationField programmable logic array circuit
US4642487 *Sep 26, 1984Feb 10, 1987Xilinx, Inc.Special interconnect for configurable logic array
US4670749 *Apr 13, 1984Jun 2, 1987Zilog, Inc.Integrated circuit programmable cross-point connection technique
US4758745 *Sep 19, 1986Jul 19, 1988Actel CorporationUser programmable integrated circuit interconnect architecture and test method
US4855619 *Nov 17, 1987Aug 8, 1989Xilinx, Inc.Buffered routing element for a user programmable logic device
US4871930 *May 5, 1988Oct 3, 1989Altera CorporationProgrammable logic device with array blocks connected via programmable interconnect
US4873459 *May 18, 1988Oct 10, 1989Actel CorporationProgrammable interconnect architecture
US4903223 *May 5, 1988Feb 20, 1990Altera CorporationProgrammable logic device with programmable word line connections
US4910417 *Jan 5, 1989Mar 20, 1990Actel CorporationUniversal logic module comprising multiplexers
US4912342 *Sep 14, 1989Mar 27, 1990Altera CorporationProgrammable logic device with array blocks with programmable clocking
US4945267 *Jan 10, 1989Jul 31, 1990Actel CorporationIntegrated circuit bus switching circuit
US4967107 *May 12, 1989Oct 30, 1990Plus Logic, Inc.Programmable logic expander
US4969121 *Mar 2, 1987Nov 6, 1990Altera CorporationProgrammable integrated circuit logic array device having improved microprocessor connectability
US5015885 *Feb 10, 1989May 14, 1991Actel CorporationReconfigurable programmable interconnect architecture
US5055718 *May 11, 1990Oct 8, 1991Actel CorporationLogic module with configurable combinational and sequential blocks
US5075576 *Dec 3, 1990Dec 24, 1991North American Philips CorporationField-programmable logic device with programmable foldback to control number of logic levels
US5079451 *Dec 13, 1990Jan 7, 1992Atmel CorporationProgrammable logic device with global and local product terms
US5122685 *Mar 6, 1991Jun 16, 1992Quicklogic CorporationProgrammable application specific integrated circuit and logic cell therefor
US5140193 *Mar 27, 1990Aug 18, 1992Xilinx, Inc.Programmable connector for programmable logic device
US5144166 *Nov 2, 1990Sep 1, 1992Concurrent Logic, Inc.Programmable logic cell and array
US5172014 *Jan 15, 1991Dec 15, 1992Actel CorporationProgrammable interconnect architecture
US5187393 *Apr 15, 1992Feb 16, 1993Actel CorporationReconfigurable programmable interconnect architecture
US5189320 *Sep 23, 1991Feb 23, 1993Atmel CorporationProgrammable logic device with multiple shared logic arrays
US5198705 *Oct 7, 1991Mar 30, 1993Actel CorporationLogic module with configurable combinational and sequential blocks
US5208491 *Jan 7, 1992May 4, 1993Washington Research FoundationField programmable gate array
US5220213 *Mar 6, 1992Jun 15, 1993Quicklogic CorporationProgrammable application specific integrated circuit and logic cell therefor
US5220214 *May 8, 1992Jun 15, 1993Altera CorporationRegistered logic macrocell with product term allocation and adjacent product term stealing
US5231312 *Mar 12, 1992Jul 27, 1993Atmel CorporationIntegrated logic circuit with functionally flexible input/output macrocells
US5255203 *Jun 14, 1990Oct 19, 1993Advanced Micro Devices, Inc.Interconnect structure for programmable logic device
US5258668 *May 8, 1992Nov 2, 1993Altera CorporationProgrammable logic array integrated circuits with cascade connections between logic modules
US5260610 *Sep 3, 1991Nov 9, 1993Altera CorporationProgrammable logic element interconnections for programmable logic array integrated circuits
US5260611 *May 8, 1992Nov 9, 1993Altera CorporationProgrammable logic array having local and long distance conductors
US5296759 *Jun 18, 1993Mar 22, 1994National Semiconductor CorporationDiagonal wiring between abutting logic cells in a configurable logic array
US5329181 *Mar 5, 1993Jul 12, 1994Xilinx, Inc.Complementary macrocell feedback circuit
US5331227 *Dec 13, 1993Jul 19, 1994Micron Semiconductor, Inc.Programmable logic device macrocell with an exclusive feedback line and an exclusive external input line
USRE34363 *Jun 24, 1991Aug 31, 1993Xilinx, Inc.Configurable electrical circuit having configurable logic elements and configurable interconnects
Non-Patent Citations
Reference
1Chen, X. et al. "Algebraic means" IEEE Proc., vol. 128, Pt. E, No. 5, Sep. 1981, pp. 205-209.
2 *Chen, X. et al. Algebraic means IEEE Proc. , vol. 128, Pt. E, No. 5, Sep. 1981, pp. 205 209.
3Chen, X. et al., "A Comparison of Universal-Logic-Module Realizations and Thier Application in the Synthesis of Combinatorial and Sequential Logic Networks", IEEE Transactions of Computers, vol. C-31, No. 2, Feb. 1982, pp. 140-147.
4 *Chen, X. et al., A Comparison of Universal Logic Module Realizations and Thier Application in the Synthesis of Combinatorial and Sequential Logic Networks , IEEE Transactions of Computers , vol. C 31, No. 2, Feb. 1982, pp. 140 147.
5Edwards, C. R. et al., "Research note, an analysis of universal logic modules", Int. J. Electronics, vol. 41, No. 6, 1976, pp. 625-628.
6 *Edwards, C. R. et al., Research note, an analysis of universal logic modules , Int. J. Electronics , vol. 41, No. 6, 1976, pp. 625 628.
7 *M. Morris Mano, Computer Engineering Hardware Design , 1988, p. 68.
8M. Morris Mano, Computer Engineering --Hardware Design, 1988, p. 68.
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US5848285 *Dec 26, 1995Dec 8, 1998Cypress Semiconductor CorporationMacrocell having a dual purpose input register for use in a logic device
US5850152 *Apr 7, 1997Dec 15, 1998Altera CorporationProgrammable logic array integrated circuit devices
US6064083 *Feb 24, 1997May 16, 2000Johnson; Mark B.Hybrid hall effect memory device and method of operation
US6118299 *Jun 2, 1999Sep 12, 2000Cypress Semiconductor Corp.Method and apparatus to generate mask programmable device
US6140838 *May 7, 1998Oct 31, 2000Johnson; Mark B.High density and high speed magneto-electronic logic family
US6288565Aug 3, 2000Sep 11, 2001Mark B. JohnsonHigh density and high speed magneto-electronic logic family
US6307774Mar 22, 2000Oct 23, 2001Mark B. JohnsonMagnetoelectronic memory array
US6342713Mar 22, 2000Jan 29, 2002Mark B. JohnsonMethod of operating a magnetoelectronic device
US6388916Mar 22, 2000May 14, 2002Mark B. JohnsonMagnetoelectronic memory element with isolation element
US6423553Mar 22, 2000Jul 23, 2002Mark B. JohnsonMethod of making a magnetoelectronic device
US6741494Mar 18, 2002May 25, 2004Mark B. JohnsonMagnetoelectronic memory element with inductively coupled write wires
US6815981Feb 6, 2003Nov 9, 2004Altera CorporationProgrammable logic array integrated circuit devices
US6870761Feb 10, 2004Mar 22, 2005Mark B. JohnsonStacked hybrid semiconductor-magnetic spin based memory
US6873545May 24, 2004Mar 29, 2005Mark B. JohnsonHybrid semiconductor-magnetic device and method of operation
US6888746May 24, 2004May 3, 2005Mark B. JohnsonMagnetoelectronic memory element with inductively coupled write wires
US6958930May 24, 2004Oct 25, 2005Johnson Mark BMagnetoelectronic device with variable magnetic write field
US6975533Oct 25, 2004Dec 13, 2005Johnson Mark BHybrid semiconductor—magnetic spin based memory with low transmission barrier
US7009875May 19, 2005Mar 7, 2006Johnson Mark BMagnetic memory device structure
US7016223May 2, 2005Mar 21, 2006Johnson Mark BMagnetoelectronic memory element with inductively coupled write wires
US7020013Mar 28, 2005Mar 28, 2006Johnson Mark BMagnetic field sensor using spin polarized current
US7050329Oct 8, 2004May 23, 2006Johnson Mark BMagnetic spin based memory with inductive write lines
US7064976Mar 21, 2005Jun 20, 2006Spin Op CorporationMethod of operating a stacked spin based memory
US7068535Oct 8, 2004Jun 27, 2006Johnson Mark BMagnetic spin based memory with semiconductor selector
US7119576Jun 18, 2004Oct 10, 2006Altera CorporationDevices and methods with programmable logic and digital signal processing regions
US7193891Mar 6, 2006Mar 20, 2007Spinop CorporationSpin based sensor device
US7209381May 26, 2005Apr 24, 2007Spinop CorporationDigital processing device with disparate magnetoelectronic gates
US7212433Oct 8, 2004May 1, 2007Spinop CorporationFerromagnetic layer compositions and structures for spin polarized memory devices, including memory devices
US7213061Apr 28, 2000May 1, 2007Amx LlcInternet control system and method
US7215570Mar 9, 2006May 8, 2007Spinop CorporationSpin based device with low transmission barrier
US7224366Aug 28, 2003May 29, 2007Amx, LlcMethod and system for control system software
US7309888Mar 14, 2006Dec 18, 2007Seagate Technology LlcSpin based electronic device
US7339819May 7, 2007Mar 4, 2008Seagate Technology LlcSpin based memory coupled to CMOS amplifier
US7345915Oct 31, 2005Mar 18, 2008Hewlett-Packard Development Company, L.P.Modified-layer EPROM cell
US7346644Aug 17, 2006Mar 18, 2008Altera CorporationDevices and methods with programmable logic and digital signal processing regions
US7365387 *Feb 23, 2006Apr 29, 2008Hewlett-Packard Development Company, L.P.Gate-coupled EPROM cell for printhead
US7389452 *Jun 29, 2004Jun 17, 2008Electronics For Imaging, Inc.Methods and apparatus for monitoring internal signals in an integrated circuit
US7392499 *Aug 2, 2005Jun 24, 2008Xilinx, Inc.Placement of input/output blocks of an electronic design in an integrated circuit
US7426702Oct 9, 2003Sep 16, 2008Amx LlcSystem and method for multimedia display
US7669096Jun 17, 2008Feb 23, 2010Electronics For Imaging, Inc.Methods and apparatus for monitoring internal signals in an integrated circuit
US7673030Nov 17, 2006Mar 2, 2010Amx LlcInternet control system communication protocol, method and computer program
US7796464Jun 7, 2004Sep 14, 2010Cypress Semiconductor CorporationSynchronous memory with a shadow-cycle counter
US7814137Jan 9, 2007Oct 12, 2010Altera CorporationCombined interpolation and decimation filter for programmable logic device
US7822799Jun 26, 2006Oct 26, 2010Altera CorporationAdder-rounder circuitry for specialized processing block in programmable logic device
US7836117Jul 18, 2006Nov 16, 2010Altera CorporationSpecialized processing block for programmable logic device
US7865541Jan 22, 2007Jan 4, 2011Altera CorporationConfiguring floating point operations in a programmable logic device
US7893772Dec 3, 2008Feb 22, 2011Cypress Semiconductor CorporationSystem and method of loading a programmable counter
US7930336Dec 5, 2006Apr 19, 2011Altera CorporationLarge multiplier for programmable logic device
US7948267Feb 9, 2010May 24, 2011Altera CorporationEfficient rounding circuits and methods in configurable integrated circuit devices
US7949699Aug 30, 2007May 24, 2011Altera CorporationImplementation of decimation filter in integrated circuit device using ram-based data storage
US8041759Jun 5, 2006Oct 18, 2011Altera CorporationSpecialized processing block for programmable logic device
US8244789Mar 14, 2008Aug 14, 2012Altera CorporationNormalization of floating point operations in a programmable integrated circuit device
US8255448Oct 2, 2008Aug 28, 2012Altera CorporationImplementing division in a programmable integrated circuit device
US8266198Jun 5, 2006Sep 11, 2012Altera CorporationSpecialized processing block for programmable logic device
US8266199Jun 5, 2006Sep 11, 2012Altera CorporationSpecialized processing block for programmable logic device
US8301681Jun 5, 2006Oct 30, 2012Altera CorporationSpecialized processing block for programmable logic device
US8307023Oct 10, 2008Nov 6, 2012Altera CorporationDSP block for implementing large multiplier on a programmable integrated circuit device
US8386550Sep 20, 2006Feb 26, 2013Altera CorporationMethod for configuring a finite impulse response filter in a programmable logic device
US8386553Mar 6, 2007Feb 26, 2013Altera CorporationLarge multiplier for programmable logic device
US8396914Sep 11, 2009Mar 12, 2013Altera CorporationMatrix decomposition in an integrated circuit device
US8412756Sep 11, 2009Apr 2, 2013Altera CorporationMulti-operand floating point operations in a programmable integrated circuit device
US8458243Mar 3, 2010Jun 4, 2013Altera CorporationDigital signal processing circuit blocks with support for systolic finite-impulse-response digital filtering
US8468192Mar 3, 2009Jun 18, 2013Altera CorporationImplementing multipliers in a programmable integrated circuit device
US8484265Mar 4, 2010Jul 9, 2013Altera CorporationAngular range reduction in an integrated circuit device
US8510354Mar 12, 2010Aug 13, 2013Altera CorporationCalculation of trigonometric functions in an integrated circuit device
US8539014Mar 25, 2010Sep 17, 2013Altera CorporationSolving linear matrices in an integrated circuit device
US8539016Feb 9, 2010Sep 17, 2013Altera CorporationQR decomposition in an integrated circuit device
US8543634Mar 30, 2012Sep 24, 2013Altera CorporationSpecialized processing block for programmable integrated circuit device
US8549055Mar 3, 2010Oct 1, 2013Altera CorporationModular digital signal processing circuitry with optionally usable, dedicated connections between modules of the circuitry
US8572224Dec 14, 2006Oct 29, 2013Thomas D. HiteInternet control system communication protocol, method and computer program
US8577951Aug 19, 2010Nov 5, 2013Altera CorporationMatrix operations in an integrated circuit device
US8589463Jun 25, 2010Nov 19, 2013Altera CorporationCalculation of trigonometric functions in an integrated circuit device
US8589465May 8, 2013Nov 19, 2013Altera CorporationDigital signal processing circuit blocks with support for systolic finite-impulse-response digital filtering
US8601044Mar 2, 2010Dec 3, 2013Altera CorporationDiscrete Fourier Transform in an integrated circuit device
US8620977Aug 7, 2013Dec 31, 2013Altera CorporationModular digital signal processing circuitry with optionally usable, dedicated connections between modules of the circuitry
US8620980Jan 26, 2010Dec 31, 2013Altera CorporationProgrammable device with specialized multiplier blocks
US8626815Mar 3, 2009Jan 7, 2014Altera CorporationConfiguring a programmable integrated circuit device to perform matrix multiplication
US8645449Mar 3, 2009Feb 4, 2014Altera CorporationCombined floating point adder and subtractor
US8645450Mar 2, 2007Feb 4, 2014Altera CorporationMultiplier-accumulator circuitry and methods
US8645451Mar 10, 2011Feb 4, 2014Altera CorporationDouble-clocked specialized processing block in an integrated circuit device
US8650231Nov 25, 2009Feb 11, 2014Altera CorporationConfiguring floating point operations in a programmable device
US8650236Aug 4, 2009Feb 11, 2014Altera CorporationHigh-rate interpolation or decimation filter in integrated circuit device
US8706790Mar 3, 2009Apr 22, 2014Altera CorporationImplementing mixed-precision floating-point operations in a programmable integrated circuit device
US8732225Oct 11, 2013May 20, 2014Altera CorporationDigital signal processing circuit blocks with support for systolic finite-impulse-response digital filtering
CN101371434BJan 24, 2007Apr 20, 2011D2音频有限公司Systems and methods for improving performance in a digital amplifier by adding an ultrasonic signal to an input audio signal
Classifications
U.S. Classification326/41, 326/39
International ClassificationH03K19/177, G06F7/575, G06F7/00, G06F7/57, H03K19/173
Cooperative ClassificationH03K19/1737, H03K19/1736
European ClassificationH03K19/173C1A, H03K19/173C2
Legal Events
DateCodeEventDescription
Jan 3, 2014ASAssignment
Owner name: MORGAN STANLEY SENIOR FUNDING, INC. AS ADMINISTRAT
Effective date: 20131206
Free format text: PATENT SECURITY AGREEMENT;ASSIGNOR:ATMEL CORPORATION;REEL/FRAME:031912/0173
Jul 21, 2008REMIMaintenance fee reminder mailed
Jul 14, 2008FPAYFee payment
Year of fee payment: 12
May 13, 2004FPAYFee payment
Year of fee payment: 8
Jun 12, 2000FPAYFee payment
Year of fee payment: 4
Sep 22, 1999ASAssignment
Owner name: ATMEL CORPORATION, CALIFORNIA
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ATMEL CORPORATION;REEL/FRAME:010231/0283
Effective date: 19990913