Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS5690675 A
Publication typeGrant
Application numberUS 08/481,712
Publication dateNov 25, 1997
Filing dateJun 7, 1995
Priority dateFeb 13, 1991
Fee statusLapsed
Also published asEP0901345A1, EP0901345A4, WO1996007356A1
Publication number08481712, 481712, US 5690675 A, US 5690675A, US-A-5690675, US5690675 A, US5690675A
InventorsPhilip N. Sawyer, Philip M. Sawyer, Cary J. Reich
Original AssigneeFusion Medical Technologies, Inc.
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Methods for sealing of staples and other fasteners in tissue
US 5690675 A
Abstract
Wounds in lung tissue are closed in a two step method consisting essentially of applying fasteners to a region adjacent to the wound, wherein the fasteners may cause penetrations. The fasteners are present in a preformed layer of collagen, fibrin, fibrinogen, elastin, albumin, or a combination thereof, and energy is applied to the region to fuse the material to the tissue and seal perforations in the tissue.
Images(4)
Previous page
Next page
Claims(14)
What is claimed is:
1. A method for closing a wound in tissue, said method consisting essentially of the following two steps performed sequentially:
applying fasteners selected from the group consisting of staples, clips, pins, hooks, and suture to a region adjacent to the wound to close the wound, wherein the fasteners cause penetrations in the tissue and the fasteners are present in a preformed layer of a material selected from the group consisting of collagen, fibrin, fibrinogen, elastin, albumin, and combinations, thereof, which fuses to the tissue upon the application of energy; and
applying energy selected from the heat, radiofrequency, laser, ultrasonic, and electrical energy to the region to fuse the material to the tissue and seal perforations in the tissue.
2. A method as in claim 1, wherein the layer comprises a solid or mesh layer.
3. A method as in claim 1, wherein the performed sheet has peripheral dimensions corresponding to the wound region.
4. A method as in claim 1, wherein the applied energy is selected from the group consisting of radio frequency energy, heat energy, laser energy, and ultrasonic energy.
5. A method as in claim 4 wherein the energy applying step comprises directing energy from a radio frequency inert gas coagulator applicator against the wound region.
6. A method as in claim 1, wherein the material comprises gelatin and the energy is applied at a level from 1 W/cm2 to 100 W/cm2 to fuse to the tissue without substantial loss of mechanical strength.
7. A method as in claim 1, wherein the fasteners are staples and applying the fasteners comprises simultaneously placing multiple staple lines with a stapler.
8. A method as in claim 1, wherein the material is a reinforced solid, wherein the reinforcement is composed of a non-bioabsorbable material.
9. A method for sealing a resection line in lung tissue, said method consisting essentially of the following two steps performed sequentially:
applying along the resection line fasteners selected from the group consisting of staples, clips, pins, hooks, and suture to close the lung tissue, wherein the fasteners are present in a preformed layer of a material selected from the group consisting of collagen, fibrin, fibrinogen, elastin, albumin, and combinations thereof, which fuses to the lung tissue upon the application of energy; and
applying energy selected from the heat, radiofrequency, laser, ultrasonic, and electrical enerqy to the region to fuse the material to the tissue and seal perforations in the tissue.
10. A method as in claim 9, wherein the fastener applying step is performed with an in-line stapler having a cutting blade disposed adjacent to a multiple staple line.
11. A method as in claim 9, wherein the applied energy is selected from the group consisting of radio frequency energy, heat energy, laser energy, and ultrasonic energy.
12. A method as in claim 1, wherein the energy applying step comprises directing energy from a radio frequency inert gas coagulator applicator against the material covering the wound region.
13. A method as in claim 9, wherein the material comprises gelatin and the energy is applied at a level from 1 W/ to 100 W/ to fuse to the tissue without substantial loss of mechanical strength.
14. A method as in claim 9, wherein the material is a reinforced solid, wherein the reinforcement is composed of a non-bioabsorbable material.
Description

The present invention is a continuatton-in-part of application Ser. No. 08/303,336, filed on Sep. 6, 1994, which was a continuation-in-part of application Ser. No. 08/007,691, filed on Jan. 22, 1993, now abandoned, which was a continuation-in-part of application Ser. No. 07/832,171; filed on Feb. 6, 1992, now abandoned, which was a continuation-in-part of application Ser. No. 07/654,860, filed on Feb. 13, 1991, now U.S. Pat. No. 5,156,613. The present application claims the benefit of the filing date of application Ser. No. 08/303,336 only. The full disclosure of application Ser. No. 08/303,336, is incorporated herein by reference.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates generally to devices, articles, and methods for effecting and enhancing wound closure in tissue. More particularly, the present invention relates to the use of a fusible material together with fasteners for closing wounds, wherein energy is applied to the fusible material to seal the closure.

Chronic obstructive pulmonary diseases, such as emphysema and small airway diseases, affect from five to ten million people in the United States alone. In about ten percent of such cases, chronic alveolar inflammation is so severe that large portions of the lung are destroyed, resulting in greatly reduced oxygen exchange and significant breathing difficulties. Such cases can result in partial or complete disability, and in the worst cases death.

One procedure for treating advanced chronic obstructive pulmonary disease, referred to as a bullectomy or lung tailoring, involves the surgical excision of diseased lung tissue and suturing to close the lung along the excision line. Surgical resection of lung tissue is also performed for volume reduction, blebectomies, segmentectomies, lobectomies, wedge resections, bronchial resections, pneumonectomies, and pneumoreductions. Unfortunately, lung tissue is extremely fragile (particularly when weakened by diseases such as emphysema) and does not hold sutures well. The needle holes resulting from suturing can result in lung perforations which leak large amounts of air. Such post-operative air leaks often require long hospital stays and result in a high morbidity rate for the procedures. For these reasons, bullectomies where the lung is closed by suturing are seldom performed at present.

The prognosis for bullectomy procedures has been significantly improved by the introduction of modern surgical stapling techniques. Multiple row linear staplers have been used to both cut and close diseased lung tissue in both wedge resection and lobectomy procedures. Further improvement in such staple bullectomy procedures has been reported with the use of bovine pericardial strips to buttress and reinforce the staple line used to close the lung along the resection edge.

Although a significant improvement over prior procedures, the use of pericardium-reinforced stapling techniques during lung resection procedures is still problematic. The staple holes in the pericardial strips can still present small lung perforations, particularly when the strip is under pressure. Even very small perforations can result in air leakage as high as 2-5 liters/min. Moreover, the pericardial strips are not uniformly secured to the underlying lung tissue, and the terminal and side edges of the strip can separate from and/or tear the adjoining tissue, further contributing to air leakage. In particular, since the pericardial strips are attached to the underlying tissue only by the staples, air can leak from the staple perforations or elsewhere outward past the edges of the strip, i.e., pericardial strips do not seal the tissue closure in any significant way. Additionally, the use of bovine pericardial strips does not appear to promote healing of the underlying lung tissue, and particularly does not appear to promote fibroblast ingrowth to seal lung perforations which may be present after the procedure. Finally, present procedures do not provide for sealing or patching diseased areas of the lung other than by excising the diseased tissue and sealing along the excision line with staples with or without a pericardium patch. It would thus be desirable to provide procedures where diseased lung tissue could be sealed to prevent air leakage without the need to excise tissue.

2. Description of the Background Art

The use of bovine pericardial strips to reinforce lung staple lines in performing bullectomies for treating emphysema is described in Cooper (1994) Ann. Thorac. Surg. 57:1038-1039. Bovine pericardial strips of the type utilized for staple line reinforcement are commercially available from Bio-Vascular, Inc., St. Paul, Minn., under the trade name Peri-Strips™. U S. Pat. No. 5,156,613, PCT Application WO 92/14513, and copending application Ser. No. 08/231,998, assigned to the assignee of the present invention, describe a method for joining or reconstructing tissue by applying energy to a tissue site in the presence of a collagen filler material. Copending application Ser. No. 08/370,552, describes the use of an inert gas beam energy source for fusing collagen and other materials to tissue for joining or reconstructing the tissue. U.S. Pat. No. 5,071,417, describes the application of laser energy to biological materials to seal anastomoses. U.S. Pat. No. 5,209,776, describes protein materials which may be activated with energy and bonded to tissue. PCT Application WO 93/01758 describes an argon beam coagulator for treating tissue.

SUMMARY OF THE INVENTION

The present invention provides improved methods and devices for closing wounds in tissue using fasteners, such as staples, pins, hooks, sutures, and the like. The fasteners are applied to tissue in a conventional manner to close the wound, and energy is applied thereafter to a material disposed in a region over an adjacent wound which (upon application of the energy) fuses to the tissue to enhance the wound closure and seal perforations which may be present in the region due to fastener placement or other causes.

The fusible material is a biologic or biocompatible synthetic substance which will bond to underlying tissue upon application of energy from a suitable source, as described in more detail hereinafter. Preferred is the use of biological materials, such as proteins and protein-containing mixtures, which will bond to tissue proteins (e.g. covalently, non-covalently, physically, and combinations thereof) upon application of suitable activating energy. Exemplary biological materials include collagen, gelatin, elastin, fibrinogen, fibrin, albumin, and composites and mixtures thereof.

The fusible material may be applied to the wound region as a solid phase or as a non-solid dispersible phase. By "solid phase," it is meant that the fusible material is formed as a sheet, layer, film, strip, patch, mesh, or the like, over the wound region. By "non-solid dispersible phase," it is meant that the fusible material is in the form of a liquid, gel, powder, or combinations thereof, which may be spread, sprayed, painted, or otherwise dispersed over the wound region. Regardless of its initial state, the fusible material will be in the form of a solid or gel layer after energy has been applied according to the method of the present invention. That is, solid sheets, layers, films, strips, patches, and the like, will remain as a solid (although the dimensions may alter slightly as the material is softened and fused to the underlying tissue) while meshes and non-solids will be converted into solid or gel layers.

The fusible material may be applied before, during, or after placement of the fasteners, and is preferably applied together with the fasteners as a backing or reinforcement layer, where the fusible material is initially held in place by the fasteners and subsequently fused to the underlying tissue upon the application of energy. Such procedures are particularly advantageous since they require only two steps, i.e., the simultaneous placement of fastener and fusible material followed by the application of energy to fuse the material to tissue and enhance the tissue closure by sealing any perforations which may have resulted from the prior placement of the fasteners (as described above).

Optionally, the solid phase forms of the fusible material, such as sheets, layers, films, strips, and patches, may be reinforced with non-fusible materials to increase their strength and enhance their use as backings during the initial placement of the fasteners, particularly staples. Usually, the non-fusible materials will also be non-bioabsorbable so that the reinforcement material can remain in place to support the staples or other fasteners indefinitely. Exemplary reinforcement materials include meshes or braids composed of polymeric materials.

The methods of the present invention can rely on the application of energy from a wide variety of sources, including radiofrequency (RF) energy, laser energy, ultraviolet energy, ultrasonic energy, and the like. Preferred is the use of RF energy which can be provided by conventional electrosurgical power supplies operating at frequencies in the range from 200 kHz to 1.2. MHz. Particularly preferred is the use of RF energy applicators which provide a uniform, dispersed energy flux over a defined area, such as inert gas beam RF energy sources, more particularly argon beam RF energy sources. Standard electrocautery devices could also find use.

In the exemplary embodiment, the methods and devices of the present invention are used to enhance sealing of lung tissue in lung resection procedures where lung tissue has been removed along an excision line. Typically, the lung tissue is excised and closed using a conventional multiple row, linear stapler. The fusible material is applied as a backing or reinforcement layer with the staples, preferably being placed on or over the stapler head and/or anvil prior to stapling. The solid layer of fusible material thus acts as a mechanical support for the staples as they are initially placed in the fragile lung tissue. In addition to such initial mechanical support, however, the present invention provides for subsequent sealing of the lung tissue along and around the staple line by application of energy to the wound region to initiate fusion of the material to the underlying lung tissue. Fusion of the material effects sealing of perforations in the wound region which may be due to the initial stapling or other causes. In particular, sealing of the fusible material to the underlying tissue over regions adjacent to all sides of the staple line will inhibit or prevent leakage past the edges of the solid layer of fusible material which is formed. Additionally, fusing of the backing layer will provide "stress relief" to permit realignment of the individual staples to reduce tearing and damage to the lung tissue as the lung expands and contracts during respiration.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a schematic illustration of a lung having diseased tissue regions.

FIGS. 2A-2E illustrate a method according to the principles of the present invention where a strip of fusible material is placed along an excision line prior to stapling and excision using a conventional stapling apparatus.

FIG. 3 illustrates a conventional stapling apparatus having a sleeve of fusible material disposed over the head and anvil.

FIGS. 4A and 4B illustrate an alternative method according to the present invention for excising and sealing diseased lung tissue, where the diseased tissue is first excised and stapled and a non-solid fusible material then applied over the stapled region prior to applying energy.

DESCRIPTION OF THE SPECIFIC EMBODIMENTS

Methods and devices according to the present invention may be used for closing wounds in virtually any body tissue, and are particularly useful for closing wounds in the tissue of fragile body organs, such as lungs, stomach, liver, spleen, intestines, colon, and the like. The wounds may result from accidental trauma, surgical intervention, or virtually any other cause, with the methods and devices being particularly useful for the closure of surgical resections made in the lungs (lung volume reductions, bullectomies, lobectomies, segmentectomies, bronchial resections, wedge resections, pneumonectomies, pneumoreductions, etc.), in the gastrointestinal tract, (gastrectomies, intestinal/colon resection), in the liver, and in the spleen. The present invention provides both secure mechanical closure of the wound and prevention or inhibition of fluid leakage, including both air leakage and liquid fluid leakage, such as blood and other bodily fluids. The present invention is particularly suitable for performing lung resections where the remaining portion of the lung is closed and sealed along the resection line.

The present invention relies on the use of conventional surgical fasteners for initial closing of the wound. Exemplary fasteners include suture, staples, clips, pins, hooks, and the like. The present invention is particularly useful with surgical stapling devices, such as multiple row, in-line staplers of the type available from U.S. Surgical Corp., Norwalk, Conn., and Ethicon, Inc., Somerville, N.J., including both disposable and reusable devices, such as those devices intended for use in laparoscopic procedures.

The present invention particularly relies on applying a fusible material to the region on the outer tissue surface surrounding the wound, where the fusible material may penetrate at least to some extent to the inner wound surfaces that are being joined by the procedure. The fasteners used in the primary closure of the wound penetrations will usually cause perforations in the tissue surrounding the wound as the mechanical closure is effected. The presence of the fasteners in the penetrations will often impart some stress to the tissue, where the stress in turn can result in enlargement of the penetration(s). This is a particular problem with staple closures of the lung, where lung inflation during respiration can place significant stress on the lung tissue, especially at the edges of the resection line, causing the staples to enlarge the penetrations and permit significant air loss, as described previously. Stress can also concentrate at the edge of conventional pericardial patches, which in turn can tear lung tissue and cause air leakage. The fusible materials of the present invention (which upon application of energy bond and seal to the underlying tissue) can act to seal such perforations and enlarged penetrations and thus enhance the mechanical integrity of the wound closure. Moreover, solid sheets of fusible materials may be used as a backing or reinforcement layer to help anchor staples and other fasteners during initial placement of the fasteners prior to fusing.

The fusible material may be any natural, modified natural, or synthetic substance which has the ability to be applied over the wound region in a solid or non-solid state, and thereafter to be fused to the underlying tissue surrounding the closed wound upon the application of energy from a suitable energy source. Thus, the fusible material will be able to create and/or maintain a solid, continuous film over (and sometimes penetrating into) the wound region to act both to mechanically enhance the wound closure and/or seal any perforations which may be present in the region. Such fusible materials should also be biocompatible (e.g., should be non-immunogenic and non-inflammatory), and usually (but not necessarily) will be bioabsorbable overtime (e.g., being partially or completely resorbed into the underlying tissue over a period from 1 day to 90 days. Suitable synthetic materials include organic polymer films which contain or have been modified to contain side groups which will bond (covalently or hydrostatically) or otherwise adhere to the underlying tissue. Exemplary synthetic materials suitable for use in the present invention include organic polymers such as poly(lactic acid), poly(glycolic acid), poly(hydroxybutyrate), poly(phosphazine), polyester, and the like.

Generally, the use of natural biological polymers, and in particular biological proteins, is preferred. Suitable proteins include collagen, fibrin, fibrinogen, elastin, albumin, combinations thereof, and the like, and mixtures and derivatives thereof. Particularly preferred is the use of collagen and modified collagens, such as gelatin (which is a protein-containing material obtained by hydrolysis of collagen in a well known manner), as described in parent application Ser. No. 08/303,336, filed on Sep. 9, 1994, the full disclosure of which has been previously incorporated herein by reference. The fusible material will usually be applied to the wound region as a solid layer, e.g., in the form of a film, sheet, patch, strip, mesh, or the like. Use of a mesh allows tissue to form a coagulum within the interstices of the mesh as energy is applied, as described in patent application Ser. No. 08/303,336, the disclosure of which has been incorporated herein by reference.

The solid phase forms of the fusible material may optionally be reinforced with filaments, braids, meshes, and other woven and non-woven reinforcement materials. Preferably, the reinforcement materials will be non-bioabsorbable so that they will remain even after the fusible material has been resorbed. Thus, the reinforcement materials will remain to provide support for the fasteners over extended periods of time. Preferred reinforcement materials will be in the form of polymeric braids or meshes, particularly composed of polypropylene (Marlex®), fluoronated polymers (Gore-Tex®), and the like.

The solid phase forms of the fusible material may be formed by a variety of methods as described in copending application Ser. No. 08/303,336, the full disclosure of which has previously been incorporated herein by reference. Reinforcement materials can be added by various known techniques, such as impregnation, dipping, casting, co-extrusion, and the like.

Alternatively, the fusible material may be applied to the wound region in a non-solid dispersible state, e.g., as a liquid, gel, sol, paste, spray, or combination thereof. In the preferred solid layer form, the fusible material will be cut or trimmed into a desired shape prior to application to the wound region. Application to the wound region may occur before, during, or after application of the primary fasteners. In a particularly preferred embodiment, as described below, the fusible material will be applied to the tissue as a backing layer for the staples which are used as primary fasteners. Non-solid dispersible fusible materials may be applied using syringes, brushes, sprayers, spatulas, or other methods suitable for spreading or dispersing a thin layer of material over the wound region. In all cases, after application of the fusion energy, the fusible material will be in the form of a continuous solid film or gel over the wound region. That is, fusible materials which are originally in a solid, layer form will remain as a solid film, although the film will become bound to the underlying tissue and may alter in shape to some degree. In the case of non-solid and other discontinuous phases, the fusible material will be converted into a solid or gelatinous phase upon the application of energy. In the case of a fusible material which is applied in the form of a mesh, the application of energy will usually form a coagulum of tissue within the interstices of the mesh, resulting in a solid or gelatinous, continuous film comprising both the fusible material and the tissue coagulum after the energy has been applied.

In addition to the substances described above, the fusible material of the present invention may further include dyes, pigments, and the like, which affect the energy absorption of the material in some desired manner. For example, particular dyes may be added to enhance absorption of energy from the selected energy source. Additionally, dyes and pigments may be added simply to improve visualization of the material during use and/or permit materials having different characteristics to be distinguished from each other. Other substances and additives may be included with the fusible material for other purposes, as generally described in Parent application Ser. No. 08/303,336, filed on Sep. 9, 1994, the full disclosure of which has previously been incorporated herein by reference.

Other substances suitable for use as a component in the fusible material include glycosaminoglycans, such as hyaluronic acid, dermatan sulfate, chondroitin sulfate, and heparin. Use of the glycosaminoglycans is desirable since such materials, which are anti-thrombotics, can reduce adhesion to adjacent tissues and organs after the final solid or gelatinous layer has been formed by the application of energy.

The solid, forms of the fusible material will typically be provided as sheets, strips, films, or patches having a thickness sufficient to provide mechanical integrity both before and after application to the wound region. For most of the materials described above, and in particular for the collagen and gelatin materials, a thickness in the range from about 0.01 mm (0.5 mils) to 0.75 mm (30 mils), with a preferred thickness from 0.04 mm (1 mil) to 0.1 mm (4 mils) is suitable. Fusible materials having thicknesses generally greater than this range are less suitable since they have poor energy absorption characteristics and display increasing stiffness. Energy absorption and conduction within patches in the upper region of this range, from 0.1 mm to 0.75 mm, can be improved by the formation of holes partially or fully through the thickness of the material (referred to as "interlock vias" in Parent application Ser. No. 08/303,336, the full disclosure of which has previously been incorporated herein by reference). The peripheral dimensions of the continuous, solid sheets of fusible material are not critical. The sheets will typically be cut or trimmed to have a desired peripheral shape prior to use in the methods in the present invention. In a particularly preferred example, as described in more detail below, the sheets of fusible material may be formed into tubes, sleeves, or strips, which can be aligned along or over the heads and/or anvils of stapling devices, so that the materials will act as backing or reinforcement layers as the staples are applied to close the wound.

The method of the present invention will utilize energy of a type and in an amount sufficient to fuse the fusible material to underlying tissue. Suitable energy sources include electrical energy, particularly RF energy sources, heat energy, laser energy, ultrasonic energy, and the like. Preferred are the use of RF energy sources, such as those available as electrosurgical power supplies from companies such as Valleylab, Boulder, Colo., and Birtcher Medical Systems, Irvine, Calif., employing conventional RF-applying probes. Particularly preferred are modified radio frequency energy sources which provide for a dispersed or distributed current flow from a hand-held probe to the tissue. One such radio frequency energy source referred to as an inert gas beam coagulator which relies on flow of an inert ionizable gas, such as argon, for conducting current from the probe to the tissue.

Energy from the energy source will typically be manually directed to the tissue using a probe connected to an external power supply. The treating physician will manually direct the probe to apply energy over the surface of the fusible material and will visually confirm that fusion has been achieved. The probe may use conventional electrosurgical power supplies having an energy output from 2 W to 100 W, preferably from 20 W to 40 W. The fusible material will typically be exposed to the energy for a total time from about 5 seconds to 120 seconds, usually from 30 seconds to 40 seconds, for material having an area from 1 cm2 to 10 cm2. The precise timing will depend on the physician's visual assessment that fusion of the material to the underlying tissue has been achieved.

Referring now to FIG. 1, a lung L includes diseased regions R1 and R2. The diseased regions comprise giant bullae which are collapsing the adjoining gas-exchanging lung tissue. The methods and devices of the present invention may be advantageously used to resect such diseased regions R1 and R2 from the lung L and to further provide secure, generally air-tight seals along the resection lines.

Referring now to FIGS. 2A-2E, diseased region R1 can be removed by applying a strip of fusible material 10 along the desired resection line, as illustrated in FIG. 2A. Preferably, a second strip will be provided on the opposite side of the lung, where the two strips are aligned prior to stapling, as shown in FIG. 2B. A conventional multiple row, in-line stapling device having an axial cutting blade disposed between a pair of double staple lines is shown in FIG. 2B. The stapler is applied over the opposed pair of fusible material strips 10, and the strips stapled together to form a sandwich along the desired section line, as shown in FIG. 2C. It will be appreciated that the tissue (as well as the fusible strips 10) have been cut along line 12 after the stapling operation. A second pair of fusible strips are then placed along the remaining length of the desired recision line, and the stapling and recision step repeated using the same stapler having a new stapling cartridge. After the resected tissue is removed, energy is applied over the fusible material strips 10 and adjacent tissue area, typically using an inert gas beam coagulator 14 as shown in FIG. 2D.

Similar patching, stapling, and resecting steps are taken to remove the second diseased region R2, as shown in FIG. 2E. The method of the present invention is particularly useful since it also allows surface defects in the lung L to be corrected using patches 16, as also shown in FIG. 2E. The patch 16 can be cut to a desired size and geometry and placed over the lung defect. After placement, the inert gas beam coagulator 14 can be used to fuse the patch 16 to the lung tissue. At the end of the procedure, the diseased regions R1 and R2 have been removed, with the resulting resection lines sealed. Additionally, any surface defects in the lung L have been patched without tissue resection. Thus, the lung has been surgically repaired with the likelihood of perforations leading to air leaks being greatly reduced.

In order to enhance the integrity of the seal provided by tissue strips 10, it will generally be desirable to overlap the ends of multiple strips which are used in-line. Additionally, the strips 10 should extend beyond the resection line by a distance of at least 3 mm, preferably at least about 10 mm. In this way, a continuous sealing layer may be formed over all regions of the tissue which are at the greatest risk of air leakage.

In a preferred aspect of the present invention, the strips of fusible material may be initially placed over the head and/or anvil of a stapling device SD, as shown in FIG. 3. Preferably, sleeves 20 of the fusible material are wrapped around each of the anvil A and stapling head H, and secured by a strip of tape 22. The sleeves may be wrapped around the anvil head immediately prior to use, or preferably may be pre-formed and made available in a sterile package, where the physician may remove the sleeves immediately prior to use and place them over the stapling head. The sleeves may be provided in long, continuous lengths which may be cut into shorter segments having a desired length intended to fit over commercially available staplers, e.g., 50 mm, 55 mm, 65 mm, etc. The stapler may then be used to perform the method illustrated in FIGS. 2A-2E, except that there is no need to manually place strips of 10 of the fusible material prior to stapling. After stapling using the stapling device SD as shown in FIG. 3, the stapling head and anvil are separated from the cut sleeves 20, and the sleeve material may be trimmed to a desired width and geometry prior to the application of energy.

Liquid, gel, and other non-solid forms of the fusible material may be applied in a variety of manners. For example, a syringe SY may be used to apply a liquid fusible material over a wound region which has previously been stapled, as shown in FIG. 4A. The material may be applied, and optionally spread using a spatula or the like, and the fusion energy then applied using any of the sources described above, such as the inert gas beam coagulator 14 described previously. After application of energy, the fusible material will be in the form of a thin, continuous film of the material to protect and seal the wound region.

The following examples are offered by way of illustration, not by way of limitation.

EXPERIMENTAL Materials and Methods

1. Filtered Collagen Patch Preparation

Fibrous bovine corium collagen (Kensey-Nash Semed F collagen, Kensey-Nash Corporation, Exton, Pa.) was dispersed in distilled water at 10% solids (w/v). Polyethylene glycol 400 MW (PEG, U.S.P. or pharmaceutical grade) was also added to 1% solids (w/v). The dispersion was heated at 70° C. for 50 minutes with occasional agitation. The dispersion was then filtered through a 100 micron mesh. The filtrate was analyzed for percent solids and was adjusted to 4% solids (including PEG) by addition of distilled water. During the filtration and dilution steps, the filtrate was maintained at temperatures >35° C. to prevent gelling of the filtrate. The filtrate was poured into dishes to form gels. To achieve the desired final patch thickness, 13 ml was poured into polystyrene petri dishes (100×100×15 mm, Baxter Scientific Products, McGaw Park, Ill.) and allowed to gel at room temperature (20°-24° C.). To achieve a patch which is uniform in thickness, the poured filtrate and dish was maintained level. The poured filtrate gelled within 30 minutes, and the gel was allowed to dry at ambient conditions. Patches were dried until the moisture content reached 10-14%(w/w). Moisture levels below 10% were undesirable, since patches could become brittle. Dried films were freed from dishes and cross-linked with UV light; 254 nm at 4.4 watts/cm2 for 20-40 minutes (Model UVC-515 Ultraviolet Multi-linker, Ultra-Lum, Inc., Carson, Calif.). Patches were sterilized by placing in heat-sealed polyester barrier pouches, or equivalent moisture barrier enclosures, and irradiating with electron beam at 2.5-3.0 megarads (Nutek Corporation, Palo Alto, Calif.). The final dried, cross-linked patch was 0.04-0.06 mm thick, contained 8-20% PEG (w/w), with the remainder being cross-linked annealed gelatin. The melting temperature of the fully hydrated patch (hydrated in 0.1%aq. NaCl) by differential scanning calorimetry (DSC, Thermal Analyst 2100). TA Instruments, New Castle, Del.) was 34°-40° C. (heating rate 10° C./min). Native collagen, which has a fully helical structure, melts at 50°-70° C. under the same conditions.

2. Granular Collagen Patch Preparation

Fibrous bovine collagen was dispersed in distilled water at 3.3-3.8%(w/v), with 0.3%(w/v) PEG 400 MW, and heated as in the filtered formulation. After 50 min at 70° C., the dispersion was circulated through a homogenizer (Virtis Cyclone IQ2, fitted with 20 mm diameter rotor-stator with flow-through head, containing slotted orifices with approximately 1 mm gap, operated at 20,000 rpm; net fluid flow through the head :150 ml/min, controlled by a pump external to the homogenizer; two complete passes through the homogenizer). Microscopic inspection of the collagen after heating and homogenization showed that all fibrous clumps were broken up. The homogenized dispersion was then poured into dishes (total protein solids 3.3-3.8%, w/v), gelled, dried, cross-linked, and sterilized as in the filtered patch formulation. These patches were 0.07-0.10 mm thick, due to the size of the fibers which are dried into the film. They were more opaque than the filtered formulation. DSC melting temperatures were 35° to 40° C.

3. Gelatin Patch Formulation

Pharmaceutical grade gelatin, from bovine or porcine source (300 Bloom, Dynagel, Inc., Calumet City, Ill., or Hormel Foods Corp., Austin, Minn.) was dissolved at 3.3 to 3.8% (w/v) in distilled water, along with 0.3% PEG 400 MW (w/v), by heating 3-5 minutes at 50°-60° C. with stirring. The dissolved gelatin was cast into gels, dried, cross-linked, and sterilized as in the filtered patch formulation. These patches were 0.04 to 0.06 mm thick and almost transparent; DSC melting temperatures were 33°-38° C.

4. RF Energy Source

Radio frequency current was supplied by a Birtcher 6400 Argon Beam Coagulator equipped with a triple control hand piece (3:1 probe). Energy was applied at 40 W with an Argon flow of 4 liters/min.

5. Procedure

A pig (60 kg) was anesthetized, intubated, and prepared for a thoracotomy. A right thoracotomy was made through the fourth interspace, and a substantial portion of both the upper and lower lobes of the lung was exposed.

A 55 mm Ethicon Proximate Linear Cutter (Ethicon, Inc., Sommerville, N.J.) stapler was used to staple several locations in the lung, including (1) the lingula of the upper lobe, (2) the apex of the lower lobe, (3) the inferior aspect of the lower lobe which provided a relatively long 10 cm stapling site, and (4) a wedged-out segment of the lung. The filtered collagen patch, the granular patch, and the gelatin patch were each used for reinforcing the staple line applied to the lung.

Sheets of the filtered collagen patch, the granular patch, and the gelatin patch were placed over the stapler head and anvil prior to use. In both cases, the patch material was wrapped around the stapler head or anvil and secured as a tubular sleeve thereover by adhesive steri strips. The staples and the reinforcement patches were then applied to the lung tissue simultaneously in a single stapling and resection operation. After stapling was complete, the reinforcement patches were cut from the stapler head and anvil, trimmed and welded to the underlying lung tissue using the RF argon beam coagulator.

Results

The filtered collagen patch material the granular patch material, and the gelatin patch material were used successfully in the staple line reinforcement procedures. Each of the patch materials readily formed a tube which was easily wrapped around the stapler head/anvil. It appears that each of the filtered collagen, granular collagen, and gelatin welding patch materials can be formed as a cylindrical tube without the need to utilize external tapes or other closing devices. When initially stapled in place, prior to application of the RF energy, each of the reinforcement materials provided a strong buttress without cracking.

After fusion to the underlying tissue, no leaks were observed in the region surrounding the staples and/or fused patch material. Welding of the collagen and gelatin materials was particularly useful in preventing leakage at the axial ends of the patches. These patches further acted to prevent bleeding.

Although the foregoing invention has been described in detail for purposes of clarity of understanding, it will be obvious that certain modifications may be practiced within the scope of the appended claims.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US4854320 *Jun 16, 1987Aug 8, 1989Laser Surgery Software, Inc.Laser healing method and apparatus
US5071417 *Jun 15, 1990Dec 10, 1991Rare Earth Medical Lasers, Inc.Laser fusion of biological materials
US5156613 *Feb 13, 1991Oct 20, 1992Interface Biomedical Laboratories Corp.Applying optical or RF energy to melt collagen filler and adjacent biological tissue causing mixing; thus joining, repairing or rebuilding
US5209776 *Jul 27, 1990May 11, 1993The Trustees Of Columbia University In The City Of New YorkSurgical adhesives, a peptide in a matrix, sol or gel, laser activation
US5503638 *Feb 10, 1994Apr 2, 1996Bio-Vascular, Inc.Soft tissue stapling buttress
WO1992014513A1 *Feb 12, 1992Aug 14, 1992Interface Biomedical Lab CorpFiller material for use in tissue welding
WO1993001758A1 *Jul 14, 1992Feb 4, 1993Jerome CanadySurgical coagulation device
Non-Patent Citations
Reference
1Joel D. Cooper, MD "Technique to Reduce Air Leaks After Resection of Emphysematous Lung," Ann Thorac Surg, 57:1038-1039. (1994).
2 *Joel D. Cooper, MD Technique to Reduce Air Leaks After Resection of Emphysematous Lung, Ann Thorac Surg, 57:1038 1039. (1994).
3 *Oz, M. C. et al. SPIE vol. 1200, pp.55 59 (1990).
4Oz, M. C. et al. SPIE vol. 1200, pp.55-59 (1990).
5 *Product Brochure, Peri Guard Processed Bovine Pericardium, Bio Vascular, six pages, 98501 Rev. A (1992).
6 *Product Brochure, Peri Strips for Staple Line Reinforcement, Bio Vascular, Inc., two pages, Rev. 97003A (1994).
7Product Brochure, Peri-Guard® Processed Bovine Pericardium, Bio-Vascular, six pages, 98501 Rev. A (1992).
8Product Brochure, Peri-Strips™ for Staple Line Reinforcement, Bio-Vascular, Inc., two pages, Rev. 97003A (1994).
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US5931165 *Feb 6, 1997Aug 3, 1999Fusion Medical Technologies, Inc.Films having improved characteristics and methods for their preparation and use
US6110212 *Feb 7, 1997Aug 29, 2000Kenton W. GregoryElastin and elastin-based materials
US6162241 *Aug 5, 1998Dec 19, 2000Focal, Inc.Hemostatic tissue sealants
US6183498Sep 20, 1999Feb 6, 2001Devore Dale P.Methods and products for sealing a fluid leak in a tissue
US6217585Aug 15, 1997Apr 17, 2001Converge Medical, Inc.Mechanical stent and graft delivery system
US6293955Oct 8, 1999Sep 25, 2001Converge Medical, Inc.Percutaneous bypass graft and securing system
US6310036Jan 9, 1999Oct 30, 2001Last Chance Tissue Adhesives CorporationComprising at least one fibrous protein, at least one globular protein, and at least one cross-linking agent, wherein proteins are ultrasonically treated prior to application to a mammal tissue
US6338731 *Mar 17, 1999Jan 15, 2002Ntero Surgical, Inc.Method and systems for reducing surgical complications
US6358269Nov 2, 1999Mar 19, 2002Ralph AyeMethod of treating peripheral bronchopleural fistulas
US6361559Jun 10, 1999Mar 26, 2002Converge Medical, Inc.Thermal securing anastomosis systems
US6372228 *Dec 30, 1997Apr 16, 2002Kenton W. GregoryMethod of producing elastin, elastin-based biomaterials and tropoelastin materials
US6428561 *May 30, 1997Aug 6, 2002Astra AktiebolagBiocompatible glue
US6494889Sep 1, 2000Dec 17, 2002Converge Medical, Inc.Additional sutureless anastomosis embodiments
US6599302Jun 10, 1999Jul 29, 2003Converge Medical, Inc.Aortic aneurysm treatment systems
US6626920Jul 5, 2001Sep 30, 2003Converge Medical, Inc.Distal anastomosis system
US6645198Sep 20, 2000Nov 11, 2003Ntero Surgical, Inc.Systems and methods for reducing post-surgical complications
US6648900Nov 28, 2001Nov 18, 2003Converge Medical, Inc.Anastomosis systems
US6648901Dec 5, 2000Nov 18, 2003Converge Medical, Inc.Anastomosis systems
US6652544Nov 21, 2001Nov 25, 2003Converge Medical, Inc.Percutaneous bypass graft and securing system
US6682520 *Apr 20, 2001Jan 27, 2004Bistech, Inc.Tissue volume reduction
US6704210 *Dec 18, 1997Mar 9, 2004Medtronic, Inc.Bioprothesis film strip for surgical stapler and method of attaching the same
US6740101Jun 10, 1999May 25, 2004Converge Medical, Inc.Sutureless anastomosis systems
US6773699 *Oct 9, 2001Aug 10, 2004Tissue Adhesive Technologies, Inc.Nonirritating; reliable sutureless closures; employing high cohesion and adhesion collagen having thiol and carboxylic functionality
US6775575Feb 26, 2002Aug 10, 2004D. Bommi BommannanSystem and method for reducing post-surgical complications
US6780840Oct 9, 2001Aug 24, 2004Tissue Adhesive Technologies, Inc.Method for making a light energized tissue adhesive
US6843795Nov 21, 2000Jan 18, 2005Converge Medical, Inc.Anastomotic connector for sutureless anastomosis systems
US6858035Nov 21, 2001Feb 22, 2005Converge Medical, Inc.Distal anastomosis system
US6875427Oct 9, 2001Apr 5, 2005Tissue Adhesive Technologies, Inc.Bonding, sealing using lasers; using water soluble collagen
US6887249Nov 21, 2000May 3, 2005Converge Medical Inc.Positioning systems for sutureless anastomosis systems
US6939364Oct 9, 2001Sep 6, 2005Tissue Adhesive Technologies, Inc.placing tissues in proximity, providing an adhesive with collagen content of 300-800 mg/ml that is gelatinized with thermal energy and derivatized with a carbox group, and exposing to electromagnetic radiation
US6972023Apr 11, 2002Dec 6, 2005Converge Medical, Inc.Distal anastomosis system
US7083631Sep 12, 2002Aug 1, 2006Converge Medical, Inc.Percutaneous bypass graft and securing system
US7300428Dec 11, 2004Nov 27, 2007Aeris Therapeutics, Inc.Tissue volume reduction
US7377928Apr 15, 2003May 27, 2008Cook Biotech IncorporatedApparatus and method for producing a reinforced surgical staple line
US7431730May 9, 2003Oct 7, 2008Tyco Healthcare Group LpSurgical stapling apparatus having a wound closure material applicator assembly
US7654998Aug 23, 2000Feb 2, 2010Aeris Therapeutics, Inc.Tissue volume reduction
US7665646Jun 18, 2007Feb 23, 2010Tyco Healthcare Group LpInterlocking buttress material retention system
US7717313Sep 30, 2005May 18, 2010Tyco Healthcare Group LpSurgical apparatus and structure for applying sprayable wound treatment material
US7744624Oct 14, 2005Jun 29, 2010Tyco Healthcare Group LpExtraluminal sealant applicator and method
US7744627Jun 17, 2003Jun 29, 2010Tyco Healthcare Group LpAnnular support structures
US7789889Jan 28, 2008Sep 7, 2010Cook Biotech IncorporatedApparatus and method for producing a reinforced surgical staple line
US7793813Feb 28, 2006Sep 14, 2010Tyco Healthcare Group LpHub for positioning annular structure on a surgical device
US7797056Sep 6, 2006Sep 14, 2010Nmt Medical, Inc.Removable intracardiac RF device
US7823592Oct 12, 2005Nov 2, 2010Tyco Healthcare Group LpAnnular adhesive structure
US7833234 *Sep 30, 2005Nov 16, 2010Sofradim ProductionAppliance for storing, distributing and placing surgical fasteners
US7845533Jun 22, 2007Dec 7, 2010Tyco Healthcare Group LpDetachable buttress material retention systems for use with a surgical stapling device
US7845536Mar 24, 2006Dec 7, 2010Tyco Healthcare Group LpAnnular adhesive structure
US7886951Nov 24, 2008Feb 15, 2011Tyco Healthcare Group LpPouch used to deliver medication when ruptured
US7909224Jan 14, 2010Mar 22, 2011Tyco Healthcare Group LpInterlocking buttress material retention system
US7922743Oct 14, 2005Apr 12, 2011Tyco Healthcare Group LpStructure for applying sprayable wound treatment material
US7923031Jan 28, 2005Apr 12, 2011Ferrosan Medical Devices A/SHaemostatic sprays and compositions
US7923431Dec 23, 2002Apr 12, 2011Ferrosan Medical Devices A/SHaemostatic kit, a method of preparing a haemostatic agent and a method of promoting haemostatis
US7938307Sep 30, 2005May 10, 2011Tyco Healthcare Group LpSupport structures and methods of using the same
US7950561Apr 6, 2009May 31, 2011Tyco Healthcare Group LpStructure for attachment of buttress material to anvils and cartridges of surgical staplers
US7951166Oct 16, 2007May 31, 2011Tyco Healthcare Group LpAnnular support structures
US7955288Dec 11, 2003Jun 7, 2011Ferrosan Medical Devices A/SGelatine-based materials as swabs
US7967179Mar 31, 2009Jun 28, 2011Tyco Healthcare Group LpCenter cinch and release of buttress material
US7972357Dec 11, 2007Jul 5, 2011Tyco Healthcare Group LpExtraluminal sealant applicator and method
US7988027Aug 13, 2009Aug 2, 2011Tyco Healthcare Group LpCrimp and release of suture holding buttress material
US7988690Jan 27, 2005Aug 2, 2011W.L. Gore & Associates, Inc.Welding systems useful for closure of cardiac openings
US8011550Mar 31, 2009Sep 6, 2011Tyco Healthcare Group LpSurgical stapling apparatus
US8011555Dec 23, 2008Sep 6, 2011Tyco Healthcare Group LpSurgical stapling apparatus
US8016177Jan 5, 2011Sep 13, 2011Tyco Healthcare Group LpStaple buttress retention system
US8016178Mar 31, 2009Sep 13, 2011Tyco Healthcare Group LpSurgical stapling apparatus
US8016849Oct 14, 2005Sep 13, 2011Tyco Healthcare Group LpApparatus for applying wound treatment material using tissue-penetrating needles
US8021684Jul 7, 2005Sep 20, 2011Ferrosan Medical Devices A/SHaemostatic composition comprising hyaluronic acid
US8028883Oct 25, 2007Oct 4, 2011Tyco Healthcare Group LpMethods of using shape memory alloys for buttress attachment
US8038045May 25, 2007Oct 18, 2011Tyco Healthcare Group LpStaple buttress retention system
US8062330Jun 27, 2007Nov 22, 2011Tyco Healthcare Group LpButtress and surgical stapling apparatus
US8066169Mar 2, 2010Nov 29, 2011Tyco Healthcare Group LpStructure containing wound treatment material
US8083119Mar 18, 2011Dec 27, 2011Tyco Healthcare Group LpInterlocking buttress material retention system
US8092820May 19, 2009Jan 10, 2012Baxter International Inc.Dry hemostatic compositions and methods for their preparation
US8096458Jan 13, 2011Jan 17, 2012Tyco Healthcare Group LpPouch used to deliver medication when ruptured
US8146791Jul 22, 2010Apr 3, 2012Tyco Healthcare Group LpAnnular adhesive structure
US8157149Jul 11, 2011Apr 17, 2012Tyco Healthcare Group LpCrimp and release of suture holding buttress material
US8157151Oct 15, 2009Apr 17, 2012Tyco Healthcare Group LpStaple line reinforcement for anvil and cartridge
US8157830Mar 31, 2010Apr 17, 2012Tyco Healthcare Group LpApparatus for applying wound treatment material using tissue-penetrating needles
US8167895Apr 6, 2011May 1, 2012Tyco Healthcare Group LpAnastomosis composite gasket
US8192460Nov 24, 2009Jun 5, 2012Tyco Healthcare Group LpAnnular support structures
US8201720Dec 23, 2010Jun 19, 2012Tyco Healthcare Group LpPouch used to deliver medication when ruptured
US8210414Aug 9, 2011Jul 3, 2012Tyco Healthcare Group LpStaple buttress retention system
US8225799Nov 4, 2010Jul 24, 2012Tyco Healthcare Group LpSupport structures and methods of using the same
US8225981Mar 31, 2010Jul 24, 2012Tyco Healthcare Group LpSurgical apparatus and structure for applying sprayable wound treatment material
US8231043Aug 3, 2011Jul 31, 2012Tyco Healthcare Group LpSurgical stapling apparatus
US8235273May 19, 2011Aug 7, 2012Tyco Healthcare Group LpCenter cinch and release of buttress material
US8236015Jul 22, 2010Aug 7, 2012Tyco Healthcare Group LpSeal element for anastomosis
US8245901Sep 8, 2011Aug 21, 2012Tyco Healthcare Group LpMethods of using shape memory alloys for buttress attachment
US8256654Sep 19, 2011Sep 4, 2012Tyco Healthcare Group LpStaple buttress retention system
US8257391Feb 7, 2011Sep 4, 2012Tyco Healthcare Group LpAnnular support structures
US8276800Nov 4, 2010Oct 2, 2012Tyco Healthcare Group LpSupport structures and methods of using the same
US8281975Mar 31, 2010Oct 9, 2012Tyco Healthcare Group LpSurgical apparatus and structure for applying sprayable wound treatment material
US8283320Apr 7, 2011Oct 9, 2012Ferrosan Medical Devices A/SHaemostatic kit, a method of preparing a haemostatic agent and a method of promoting haemostasis
US8286849Dec 16, 2008Oct 16, 2012Tyco Healthcare Group LpHub for positioning annular structure on a surgical device
US8303981Jul 1, 2011Nov 6, 2012Baxter International Inc.Fragmented polymeric compositions and methods for their use
US8308042May 16, 2011Nov 13, 2012Tyco Healthcare Group LpStructure for attachment of buttress material to anvils and cartridges of surgical stapler
US8308045Oct 6, 2010Nov 13, 2012Tyco Healthcare Group LpAnnular adhesive structure
US8308046Nov 30, 2011Nov 13, 2012Tyco Healthcare Group LpInterlocking buttress material retention system
US8312885Oct 6, 2010Nov 20, 2012Tyco Healthcare Group LpAnnular adhesive structure
US8313014Oct 19, 2010Nov 20, 2012Covidien LpSupport structures and methods of using the same
US8322588Oct 31, 2011Dec 4, 2012Covidien LpStructure containing wound treatment material
US8348126Dec 1, 2011Jan 8, 2013Covidien LpCrimp and release of suture holding buttress material
US8348130Dec 10, 2010Jan 8, 2013Covidien LpSurgical apparatus including surgical buttress
US8353930Oct 21, 2010Jan 15, 2013Covidien LpStructure for applying sprayable wound treatment material
US8357378May 24, 2011Jan 22, 2013Baxter International Inc.Fragmented polymeric compositions and methods for their use
US8365972Apr 29, 2011Feb 5, 2013Covidien LpSurgical stapling apparatus
US8371492Dec 1, 2009Feb 12, 2013Covidien LpSurgical stapling apparatus
US8371493Aug 22, 2011Feb 12, 2013Covidien LpSurgical stapling apparatus
US8372094Sep 28, 2005Feb 12, 2013Covidien LpSeal element for anastomosis
US8383141Jul 21, 2008Feb 26, 2013Baxter International Inc.Dry hemostatic compositions and methods for their preparation
US8388652Jun 22, 2010Mar 5, 2013Covidien LpSurgical stapling apparatus having a wound closure material applicator assembly
US8408440Sep 1, 2011Apr 2, 2013Covidien LpSurgical stapling apparatus
US8413871Mar 5, 2008Apr 9, 2013Covidien LpSurgical stapling apparatus
US8424742Mar 31, 2011Apr 23, 2013Covidien LpSupport structures and methods of using the same
US8430291Mar 3, 2011Apr 30, 2013Covidien LpStructure for applying sprayable wound treatment material
US8449571Apr 22, 2010May 28, 2013Covidien LpExtraluminal sealant applicator and method
US8453652Aug 13, 2012Jun 4, 2013Covidien LpMethods of using shape memory alloys for buttress attachment
US8453909Jul 10, 2012Jun 4, 2013Covidien LpCenter cinch and release of buttress material
US8453910Aug 3, 2012Jun 4, 2013Covidien LpStaple buttress retention system
US8479968Mar 10, 2011Jul 9, 2013Covidien LpSurgical instrument buttress attachment
US8480705Jun 3, 2011Jul 9, 2013Covidien LpExtraluminal sealant applicator and method
US8485414Jun 26, 2012Jul 16, 2013Covidien LpSurgical apparatus and structure for applying sprayable wound treatment material
US8490853Sep 10, 2012Jul 23, 2013Covidien LpSurgical apparatus and structure for applying sprayable wound treatment material
US8496683Oct 17, 2011Jul 30, 2013Covidien LpButtress and surgical stapling apparatus
US8511533Oct 28, 2010Aug 20, 2013Covidien LpAnnular adhesive structure
US8512402Oct 29, 2010Aug 20, 2013Covidien LpDetachable buttress material retention systems for use with a surgical stapling device
US8512729Oct 31, 2012Aug 20, 2013Baxter International Inc.Fragmented polymeric compositions and methods for their use
US8551138Aug 14, 2012Oct 8, 2013Covidien LpAnnular support structures
US8561873Mar 14, 2012Oct 22, 2013Covidien LpStaple line reinforcement for anvil and cartridge
US8584920Nov 4, 2011Nov 19, 2013Covidien LpSurgical stapling apparatus including releasable buttress
US8603511Jan 18, 2013Dec 10, 2013Baxter International, Inc.Fragmented polymeric compositions and methods for their use
US8616429Nov 14, 2012Dec 31, 2013Covidien LpStructure containing wound treatment material
US8616430Oct 16, 2012Dec 31, 2013Covidien LpInterlocking buttress material retention system
US8631989Dec 28, 2012Jan 21, 2014Covidien LpSurgical stapling apparatus
US8642831Feb 27, 2009Feb 4, 2014Ferrosan Medical Devices A/SDevice for promotion of hemostasis and/or wound healing
US8663258Jan 10, 2013Mar 4, 2014Covidien LpSeal element for anastomosis
US8668129Jun 2, 2011Mar 11, 2014Covidien LpSurgical apparatus including surgical buttress
US8684250Oct 3, 2011Apr 1, 2014Covidien LpAnnular adhesive structure
US8703122May 30, 2007Apr 22, 2014Baxter International Inc.Method for directed cell in-growth and controlled tissue regeneration in spinal surgery
US8703170Apr 7, 2011Apr 22, 2014Baxter International Inc.Hemostatic sponge
US8757466Mar 7, 2013Jun 24, 2014Covidien LpSurgical stapling apparatus
US8771258Dec 16, 2010Jul 8, 2014Baxter International Inc.Hemostatic sponge
US8789737Apr 27, 2011Jul 29, 2014Covidien LpCircular stapler and staple line reinforcement material
US8790698Oct 29, 2008Jul 29, 2014Baxter International Inc.Use of a regenerative biofunctional collagen biomatrix for treating visceral or parietal defects
US8795329Aug 15, 2010Aug 5, 2014W.L. Gore & Associates, Inc.Removable intracardiac RF device
EP1791473A2 *Aug 16, 2005Jun 6, 2007Tyco Healthcare Group LpStapling support structures
WO1998016165A1 *Oct 15, 1997Apr 23, 1998Fusion Medical Technologies InFilms having improved characteristics and methods for their preparation and use
WO1998036707A1 *Feb 6, 1998Aug 27, 1998Sisters Of Providence In OregoMethod of producing biomaterials
WO2003094746A1 *May 9, 2003Nov 20, 2003Tyco HealthcareSurgical stapling apparatus having a wound closure material applicator assembly
WO2006023578A2Aug 16, 2005Mar 2, 2006Tyco HealthcareStapling support structures
WO2011092694A2Jan 27, 2011Aug 4, 2011Omrix Biopharmaceuticals Ltd.Method for improved fibrin sealing
WO2014039995A1Sep 9, 2013Mar 13, 2014Fibrocell Technologies, Inc.Fibroblast compositions for treating cardial damage after an infarct
Classifications
U.S. Classification606/229, 606/228, 606/27, 606/230, 606/214, 128/898, 606/32, 606/213
International ClassificationA61F2/00, A61L27/24, A61B18/00, A61L15/32, A61B17/00, A61B18/22, A61B17/11, A61B17/072
Cooperative ClassificationA61B17/07292, A61B17/11, A61B18/042, A61B17/00491, A61L15/325, A61F2310/00365, A61B18/22, A61L15/32, A61L27/24, A61B2017/00504
European ClassificationA61B18/04B, A61B18/22, A61L15/32, A61B17/00L, A61L27/24, A61L15/32A, A61B17/11
Legal Events
DateCodeEventDescription
May 13, 2010ASAssignment
Owner name: BAXTER HEALTHCARE S.A.,SWITZERLAND
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BAXTER HEALTHCARE CORPORATION;REEL/FRAME:024383/0257
Owner name: BAXTER INTERNATIONAL INC.,ILLINOIS
Effective date: 20100422
Effective date: 20020627
Owner name: BAXTER HEALTHCARE CORPORATION,ILLINOIS
Free format text: MERGER;ASSIGNOR:FUSION MEDICAL TECHNOLOGIES, INC.;REEL/FRAME:024381/0522
Jan 24, 2006FPExpired due to failure to pay maintenance fee
Effective date: 20051125
Nov 25, 2005LAPSLapse for failure to pay maintenance fees
Jun 15, 2005REMIMaintenance fee reminder mailed
Jan 9, 2001FPAYFee payment
Year of fee payment: 4
Jun 7, 1995ASAssignment
Owner name: FUSION MEDICAL TECHNOLOGIES, INC., CALIFORNIA
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SAWYER, PHILIP N.;SAWYER, PHILIP M.;REICH, CARY J.;REEL/FRAME:007586/0008;SIGNING DATES FROM 19950602 TO 19950603