US5693170A - Tiled panel display assembly - Google Patents

Tiled panel display assembly Download PDF

Info

Publication number
US5693170A
US5693170A US08/727,227 US72722796A US5693170A US 5693170 A US5693170 A US 5693170A US 72722796 A US72722796 A US 72722796A US 5693170 A US5693170 A US 5693170A
Authority
US
United States
Prior art keywords
tiles
contacts
base
display tiles
display
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
US08/727,227
Inventor
Che-Yu Li
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cornell Research Foundation Inc
Original Assignee
Cornell Research Foundation Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cornell Research Foundation Inc filed Critical Cornell Research Foundation Inc
Priority to US08/727,227 priority Critical patent/US5693170A/en
Application granted granted Critical
Publication of US5693170A publication Critical patent/US5693170A/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/02Manufacture of electrodes or electrode systems
    • H01J9/18Assembling together the component parts of electrode systems
    • H01J9/185Assembling together the component parts of electrode systems of flat panel display devices, e.g. by using spacers
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/33Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements being semiconductor devices, e.g. diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/02Electrodes; Screens; Mounting, supporting, spacing or insulating thereof
    • H01J29/028Mounting or supporting arrangements for flat panel cathode ray tubes, e.g. spacers particularly relating to electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/92Means forming part of the tube for the purpose of providing electrical connection to it
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J31/00Cathode ray tubes; Electron beam tubes
    • H01J31/08Cathode ray tubes; Electron beam tubes having a screen on or from which an image or pattern is formed, picked up, converted, or stored
    • H01J31/10Image or pattern display tubes, i.e. having electrical input and optical output; Flying-spot tubes for scanning purposes
    • H01J31/12Image or pattern display tubes, i.e. having electrical input and optical output; Flying-spot tubes for scanning purposes with luminescent screen
    • H01J31/123Flat display tubes
    • H01J31/125Flat display tubes provided with control means permitting the electron beam to reach selected parts of the screen, e.g. digital selection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2201/00Electrodes common to discharge tubes
    • H01J2201/30Cold cathodes
    • H01J2201/304Field emission cathodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2329/00Electron emission display panels, e.g. field emission display panels
    • H01J2329/86Vessels
    • H01J2329/8625Spacing members
    • H01J2329/863Spacing members characterised by the form or structure
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/18Tiled displays
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/10Methods of surface bonding and/or assembly therefor
    • Y10T156/1089Methods of surface bonding and/or assembly therefor of discrete laminae to single face of additional lamina
    • Y10T156/1092All laminae planar and face to face
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making

Definitions

  • the present invention relates, in general, to a method for making large area panel displays from a plurality of smaller panel display tiles, and more particularly to a technique for aligning and assembling such small display tiles into a large area display and selectively electrically interconnecting the tiles.
  • a common problem in the manufacture of large area panel displays is that of a relatively low yield. If, for example, a small area display has a yield of 90%, a display having an area 15 times larger will have a yield of 0.9 15 , or about 20%, for the same type of display and using the same manufacturing techniques. Thus, the larger the display, the lower the yield, using conventional technology.
  • the manufacturing yield for large area panel displays is significantly improved by the utilization of a large number of small area displays mounted on a common substrate and electrically interconnected to replicate the function of a large area display.
  • area array solder joints are used to align and to assemble a multiplicity of small area display elements, or tiles, into a corresponding large display, with the solder joints also serving to provide electrical interconnections.
  • solder joints have been used to electrically connect a semiconductor chip to a substrate in a "flip-chip" configuration.
  • solder joints are in the liquid form during reflow, the surface tension of the solder will serve to align the chip to the substrate, and this effect has been used in the prior art for mounting two optical or optoelectronic components in side-by-side relationship when high precision alignment is required.
  • a passive alignment technique is used for mechanically and electrically coupling a display tile to a base plate which may incorporate circuitry for providing electrical interconnects between the tiles.
  • the alignment of tiles is accomplished by precisely and accurately positioning locator pads on the base plate to which the tiles are to be mounted, and positioning corresponding locator pads on the surface of the tile which will be adjacent the base plate.
  • Conventional lithographic techniques permit the location of such pads with an accuracy of less than a few microns, thus enabling the horizontal position of a tile to be precisely located on the base plate, or substrate.
  • the locator pads are of a material which will accept a flowable joint material which can be deposited on one set of pads. The tiles are then positioned over the base plate with the joint material aligned with the locator pads on the base plate, and the joint material is caused to flow to contact the corresponding pads so that the tiles are joined to the base plate.
  • the flowable joint material preferably is solder
  • the contact pads preferably are a metal which will be wetted by the solder for mechanically and electrically coupling the corresponding pads to each other to mechanically mount the tiles on the base plate and to provide electrical connections therebetween.
  • Selected pads and the connecting solder joints may be used to provide electrical connections between components within a tile or in adjacent tiles, while other pads may provide only mechanical support.
  • the pads will be referred to hereinafter as metal pads, but it will be understood that other materials wettable by the joint material and electrically conductive where required may also be used.
  • the vertical position of a tile i.e., the spacing between the surface of the base plate and the opposed surface of the adjacent tile, will depend on the volume of the solder joint and on the size and shape of the opposed metal pads on the tile and on the substrate. Once the pad shapes and sizes are determined, the volume of the solder must be carefully controlled in order to achieve a reproducible and uniform vertical position. As noted, the solder joints not only provide mechanical connections between the tile and the base plate, but some of them also provide electrical connections.
  • a common structure for pads that receive solder joints consists of three layers of metal in the sequence Cr/Cu/Au, with the Cr layer attached to the base plate. Other structures may also be used, as desired.
  • the composition of the solder is often that of a Pb/Sn alloy with the Sn content varying, depending on the reflow temperature desired.
  • a controlled volume of solder can be applied to the pads by screen printing using a paste, or evaporation, or plating through a mask. Alternatively, solder balls of controlled size can be positioned individually on each metal pad for subsequent reflow.
  • a sufficiently large array of solder joints; e.g., an array greater than 20 ⁇ 20, has been shown to achieve a uniform equilibrium solder joint height to within less than a few microns. When paste, evaporation, or plating through a mask is used to apply the solder, the height of the solder joint will depend on the distribution and the size of openings in the mask through which the solder is applied, and upon the amount of solder deposited
  • FIG. 1 is a schematic, perspective cross-sectional view of four tiles for a field emission type flat panel display
  • FIG. 2 is a diagrammatic cross-sectional view of two tiles in a thin film transistor active matrix type flat panel display.
  • each tile includes a pair of cathode strips, such as cathodes 16 and 18 on tile 12 and cathodes 20 and 22 on tile 14, each of the cathodes containing a row of micro-tips, such as the tips 24, 26, 28, and 30, respectively.
  • each illustrated tip represents a cluster of tips forming a pixel, so that, for example, the cathode strip 16 includes a multiplicity of micro-tip clusters, each cluster representing a pixel for a field emission display.
  • the cathode strips and their respective micro-tips are fabricated, for example, from refractory metals, and are deposited on electrically insulating substrates, such as substrates 32 or 34, to produce the generally rectangular tiles 12 and 14, respectively.
  • the substrates are fabricated from an electrically insulating material such as glass, or polymer, and may be transparent or optically opaque in the illustrated embodiment, where the micro-tips provide the required field emission. In cases where light is to be transmitted through the substrate, it is transparent.
  • Each of the substrates contains a plurality of vias such as those illustrated at 36 and 38 in substrate 32 and at 40 and 42 in substrate 34.
  • These vias are filled with metal during the fabrication process and connect respective cathode strips, such as strips 18 and 22, to corresponding metal locator pads, such as contact pads 44, 46 and pads 48, 50 on the under surfaces of the tiles 12 and 14.
  • These contact pads may be separate elements deposited on the tile, or may be a part of the metal which fills a corresponding via if desired, and are located on the bottom surfaces of substrates 32 and 34.
  • Additional contact pads such as the pads 52 and 54 may also be located on the undersurface of substrates 32 and 34 to form an array of contact pads either for electrical connection to other components carried by the substrates or for mechanical connection of the substrate to a base plate such as the plate 56, or for both, as will be described.
  • Each of the upper contact pads 44, 46, 48, 50, 52, and 54 on substrates 32 and 34 are connected mechanically or electrically, or both, through solder joints 60, 62, 64, 66, 68 and 70 to a corresponding array of opposed metal locator, or contact, pads on a top surface 71 of the underlying base plate 56.
  • surface 71 carries corresponding lower contact pads 72, 74, 75, 76, 78, 79, 80 and 81.
  • the metallization required to form the upper and lower contact pads is provided through conventional photolithographic techniques to accurately position the contact pads within very close tolerances so that the tiles 12, 13, 14 and 15 will be properly positioned when the solder balls are heated and caused to reflow to form solder joints.
  • solder joints and the contact pads are controlled to insure uniformity and reproducibility of the spacing, of gap, indicated by arrow 82 between the top surface 71 of the base plate and the bottom surfaces of the tiles.
  • the solder joints also provide electrical interconnection between the upper contact pads on the substrates 12-15 and the corresponding lower contact pads on the top surface of base plate 56.
  • the base plate includes metallization to interconnect selected contacts so that the solder joints not only provide mechanical and electrical interconnection between the substrates 12 and 14 and the base plate 56, but also provide electrical interconnections between adjacent tiles.
  • an interconnect metal strip 83 is provided between, base contact pads 74 and 75 to electrically connect these pads.
  • Solder joints 62 and 64 provide an interconnection between cathode strip 18 and cathode strip 22 through vias 38 and 40 and interconnect 83.
  • additional metallization can be provided on surface 71, as illustrated by interconnect 84 between contact pads 80 and 81, which electrically connects strip 20 on tile 14 to a parallel strip 86 on adjacent tile 15. It is noted that since the cathode strips 20 and 22 on tile 14 are about 10 mils or more apart, the same spacing between the adjacent, parallel strips 20 and 86 on adjacent tiles 14 and 15 is easily achieved.
  • any number of such tiles may be positioned in side-by-side relationship on the top surface of the base plate 56 so that a multiplicity of small array tiles may be mechanically secured on the base and electrically interconnected to produce a large field emission array.
  • a display face plate 88 having a suitable phosphorous coating and responsive to the emissions from the micro-tips is mounted to form a top surface for the tiles 12, 13, 14, 15, etc., and is spaced a suitable distance from the micro-tips.
  • the face plate 88 may be the same size as each corresponding substrate, such as substrate 32, with the face plates being sealed and evacuated to form plural enclosed small display tiles. Alternatively, a single face plate covering plural tiles may be used.
  • Each completed display tile can be tested before assembly to the base plate 56 so that the relatively low yield of large arrays is obviated, and a high yield is obtained. Even after assembly, a defective tile can be easily removed by reflowing the solder joints.
  • the upper contact pads on the bottom surfaces of the tiles and the lower contact pads on the top surface 71 of the base plate 56 are precisely and accurately located, as by conventional photolithographic techniques, and after metallization to form the pads and interconnects, the solder is applied to the upper contact pads (such as pad 44) or to the lower contact pads (such as pad 72) or to both, as by screen printing using a paste, or by evaporation, or by plating through a mask.
  • solder (such as ball 60) balls of controlled size can be mechanically positioned on each of the upper or lower contact pads. The tiles are then positioned on the base plate in or near the desired alignment.
  • the assembly is then heated to cause the solder to flow, with the surface tension of the solder located on the contact pads effectively aligning the tiles on the underlying base plate 56. Since the locations of the pads are defined to within a few microns, the tiles can be precisely located in the horizontal plane. The vertical position of the tile depends upon the volume of the solder in each joint as well as on the sizes and shapes of the connecting metal pads. These sizes and shapes are defined lithographically so that the tiles can be precisely and reproducibly positioned vertically to provide proper spacing between adjacent tiles and to mount the display faces of the tiles in a common plane.
  • the interconnects are constructed so that the deposited solder or solder balls will not flow onto them when the solder is heated to join the tiles to the base plate. This insures that adjacent solder balls, such as those shown at 62 and 64 for example, will not contact the interconnect 83 when the solder is reflowed, thus retaining the solder in place to insure proper electrical and mechanical connection between upper contact pads 46 and 48 and their corresponding lower contact pads 74 and 75.
  • solder joints formed from deposited solder or solder balls illustrated in FIG. 1 is not critical. If desired, the solder joints can be elongated, circular, or in rows or in any other shape; for example a joint can extend along the entire length of a cathode strip, if desired, as long as the soldered area is sufficient to produce the desired passive alignment due to surface tension effects. Again, the solder joints should be of adequate size and number to insure the uniformity and reproducibility of the equilibrium height of the solder joints and positioned to provide the desired electrical interconnections.
  • FIG. 2 depicts schematically a cross-section through two tiles 100 and 102 which are part of a large, tiled thin film transistor active matrix type panel display generally indicated at 104.
  • Each tile such as the tile 100, consists of a liquid crystal polymer 106 sandwiched between a front (or top) glass plate 108 and a rear (or bottom) glass plate 110, with the periphery of the tile being sealed, for example, by epoxy 112.
  • Attached to the under surface 113 of the top glass plate 108 are a plurality of transparent top electrodes 114 which are located photolithographically, for example, and which are activated by thin film transistors (not shown) in the conventional manner.
  • the electrodes 114 are interconnected, as may be required, by suitable metallization on the under surface of plate 108, such metallization being illustrated by conductive line 116, for example, leading from an electrode to the edge of the tile for connection to a suitable interconnect, to be described.
  • the upper, or inner, surface 117 of the bottom plate 110 is coated by a thin, transparent electrode 120, while the under surface 122 of the bottom glass plate 110 may carry a plurality of upper metal locator, or contact, pads such as those illustrated at 124, 126, and 128. These contact pads are similar to pads 44, 46, and 52 illustrated in FIG. 1 and discussed above, and thus are carefully and precisely located on the undersurface of the tile 100 to electrically connect and mechanically secure the tile to a suitable base plate, such as the electrically insulating base plate 56, also described with respect to FIG. 1.
  • the base plate may carry lower metal locator, or contact pads 72, 74 and 78, also as described with respect to FIG. 1, positioned to receive the tile 100 and to locate it with respect to adjacent tiles. Solder joints 60, 62, and 68 are provided between the upper contact pads on tile 100 and the corresponding lower contact pads on base plate 56 in the manner previously described to provide reproducible and uniform equilibrium heights of the joints as well as to provide mechanical and electrical interconnections.
  • Interconnects 130 and 132 may also be provided on the sides of the tiles and on the bottom surface 122 of the glass plate 110, as illustrated by interconnects 130 and 132 on tile 100.
  • Interconnect 130 extends along the outer peripheral surface 134 and along the bottom surface 122 of tile 100 to interconnect the electrode 120 with contact pad 124 and through that pad and solder joint 60 to the contact 72 on base plate 56.
  • interconnect line 132 extends along the outer peripheral surface 134 of tile 100 and along the bottom surface 122 to contact pad 128 for connection through solder joint 62 to contact pad 74.
  • This interconnect line 132 is electrically connected to metal line 116 to connect selected transparent internal electrode 114 to the exterior contact pad 74. As illustrated in FIG.
  • contact pad 74 is connected through the metallized interconnect 83 on the surface of base plate 56 to the adjacent contact pad 75 located beneath the next adjacent tile 102 for electrical connection to that tile through solder joint 64.
  • the solder joint 64 contacts a corresponding contact pad 136 on the bottom of tile 102 and, by way of interconnect line 138 and metallized line 140, the contact pad 136 is connected to a transparent electrode 114' which corresponds to the electrode 114 in tile 100.
  • adjacent tiles are electrically interconnected so that multiple tiles can be used to produce a large panel display.
  • the spacing between adjacent electrodes 114 on the same tile is typically about 10 mils or greater. The interconnection between adjacent tiles permits the same horizontal spacing between electrodes in adjacent tiles to be easily achieved.
  • Panel displays of the type illustrated in FIG. 2 are back lit, as illustrated by arrows 150.
  • a suitable mask 152 is provided between adjacent tiles to prevent backlight from passing between tiles.

Abstract

A panel display includes a common substrate on which a plurality of small display tiles are mounted in an array and electrically interconnected to replicate a large area panel. Each tile includes a plurality of contact pads which are aligned with corresponding contact pads on the substrate. Solder joints between corresponding contact pads mechanically align and secure the tiles on the substrate, and provide electrical connections therebetween. Selected substrate contact pads are electrically interconnected to provide electrical connections between adjacent tiles.

Description

This is a divisional of application Ser. No. 08/297,958, filed on Aug. 31, 1994, now U.S. Pat. No. 5,563,470.
BACKGROUND OF THE INVENTION
The present invention relates, in general, to a method for making large area panel displays from a plurality of smaller panel display tiles, and more particularly to a technique for aligning and assembling such small display tiles into a large area display and selectively electrically interconnecting the tiles.
A common problem in the manufacture of large area panel displays is that of a relatively low yield. If, for example, a small area display has a yield of 90%, a display having an area 15 times larger will have a yield of 0.915, or about 20%, for the same type of display and using the same manufacturing techniques. Thus, the larger the display, the lower the yield, using conventional technology.
SUMMARY OF THE INVENTION
In accordance with the present invention, the manufacturing yield for large area panel displays is significantly improved by the utilization of a large number of small area displays mounted on a common substrate and electrically interconnected to replicate the function of a large area display. In accordance with the invention, area array solder joints are used to align and to assemble a multiplicity of small area display elements, or tiles, into a corresponding large display, with the solder joints also serving to provide electrical interconnections.
Traditionally, area array solder joints have been used to electrically connect a semiconductor chip to a substrate in a "flip-chip" configuration. When such solder joints are in the liquid form during reflow, the surface tension of the solder will serve to align the chip to the substrate, and this effect has been used in the prior art for mounting two optical or optoelectronic components in side-by-side relationship when high precision alignment is required. In accordance with the present invention such a passive alignment technique is used for mechanically and electrically coupling a display tile to a base plate which may incorporate circuitry for providing electrical interconnects between the tiles.
The alignment of tiles is accomplished by precisely and accurately positioning locator pads on the base plate to which the tiles are to be mounted, and positioning corresponding locator pads on the surface of the tile which will be adjacent the base plate. Conventional lithographic techniques permit the location of such pads with an accuracy of less than a few microns, thus enabling the horizontal position of a tile to be precisely located on the base plate, or substrate. The locator pads are of a material which will accept a flowable joint material which can be deposited on one set of pads. The tiles are then positioned over the base plate with the joint material aligned with the locator pads on the base plate, and the joint material is caused to flow to contact the corresponding pads so that the tiles are joined to the base plate. The flowable joint material preferably is solder, and the contact pads preferably are a metal which will be wetted by the solder for mechanically and electrically coupling the corresponding pads to each other to mechanically mount the tiles on the base plate and to provide electrical connections therebetween. Selected pads and the connecting solder joints may be used to provide electrical connections between components within a tile or in adjacent tiles, while other pads may provide only mechanical support. The pads will be referred to hereinafter as metal pads, but it will be understood that other materials wettable by the joint material and electrically conductive where required may also be used.
The vertical position of a tile; i.e., the spacing between the surface of the base plate and the opposed surface of the adjacent tile, will depend on the volume of the solder joint and on the size and shape of the opposed metal pads on the tile and on the substrate. Once the pad shapes and sizes are determined, the volume of the solder must be carefully controlled in order to achieve a reproducible and uniform vertical position. As noted, the solder joints not only provide mechanical connections between the tile and the base plate, but some of them also provide electrical connections.
A common structure for pads that receive solder joints consists of three layers of metal in the sequence Cr/Cu/Au, with the Cr layer attached to the base plate. Other structures may also be used, as desired. The composition of the solder is often that of a Pb/Sn alloy with the Sn content varying, depending on the reflow temperature desired. A controlled volume of solder can be applied to the pads by screen printing using a paste, or evaporation, or plating through a mask. Alternatively, solder balls of controlled size can be positioned individually on each metal pad for subsequent reflow. A sufficiently large array of solder joints; e.g., an array greater than 20×20, has been shown to achieve a uniform equilibrium solder joint height to within less than a few microns. When paste, evaporation, or plating through a mask is used to apply the solder, the height of the solder joint will depend on the distribution and the size of openings in the mask through which the solder is applied, and upon the amount of solder deposited.
BRIEF DESCRIPTION OF THE DRAWINGS
The foregoing, and additional objects, features, and advantages of the present invention will become apparent to those of skill in the art from the following detailed consideration of preferred embodiments thereof, taken in conjunction with the accompanying drawings, in which:
FIG. 1 is a schematic, perspective cross-sectional view of four tiles for a field emission type flat panel display; and
FIG. 2 is a diagrammatic cross-sectional view of two tiles in a thin film transistor active matrix type flat panel display.
DESCRIPTION OF PREFERRED EMBODIMENTS
Turning now to a more detailed description of the invention, there is illustrated in FIG. 1 in schematic form a panel display 10 incorporating four display tiles 12, 13, 14, and 15. The display tiles may take many forms, and thus may incorporate, for example, active matrix thin film transistors or field emitters. The first illustrated embodiment incorporates a plurality of field emitters on each tile to form a panel display. Thus, for example, each tile includes a pair of cathode strips, such as cathodes 16 and 18 on tile 12 and cathodes 20 and 22 on tile 14, each of the cathodes containing a row of micro-tips, such as the tips 24, 26, 28, and 30, respectively. Although the micro-tips are shown in relatively large scale, it should be understood that each illustrated tip represents a cluster of tips forming a pixel, so that, for example, the cathode strip 16 includes a multiplicity of micro-tip clusters, each cluster representing a pixel for a field emission display.
The cathode strips and their respective micro-tips are fabricated, for example, from refractory metals, and are deposited on electrically insulating substrates, such as substrates 32 or 34, to produce the generally rectangular tiles 12 and 14, respectively. The substrates are fabricated from an electrically insulating material such as glass, or polymer, and may be transparent or optically opaque in the illustrated embodiment, where the micro-tips provide the required field emission. In cases where light is to be transmitted through the substrate, it is transparent. Each of the substrates contains a plurality of vias such as those illustrated at 36 and 38 in substrate 32 and at 40 and 42 in substrate 34. These vias are filled with metal during the fabrication process and connect respective cathode strips, such as strips 18 and 22, to corresponding metal locator pads, such as contact pads 44, 46 and pads 48, 50 on the under surfaces of the tiles 12 and 14. These contact pads may be separate elements deposited on the tile, or may be a part of the metal which fills a corresponding via if desired, and are located on the bottom surfaces of substrates 32 and 34. Additional contact pads such as the pads 52 and 54 may also be located on the undersurface of substrates 32 and 34 to form an array of contact pads either for electrical connection to other components carried by the substrates or for mechanical connection of the substrate to a base plate such as the plate 56, or for both, as will be described.
Each of the upper contact pads 44, 46, 48, 50, 52, and 54 on substrates 32 and 34 are connected mechanically or electrically, or both, through solder joints 60, 62, 64, 66, 68 and 70 to a corresponding array of opposed metal locator, or contact, pads on a top surface 71 of the underlying base plate 56. Thus, for example, surface 71 carries corresponding lower contact pads 72, 74, 75, 76, 78, 79, 80 and 81. The metallization required to form the upper and lower contact pads is provided through conventional photolithographic techniques to accurately position the contact pads within very close tolerances so that the tiles 12, 13, 14 and 15 will be properly positioned when the solder balls are heated and caused to reflow to form solder joints.
The geometry and dimensions of the solder joints and the contact pads are controlled to insure uniformity and reproducibility of the spacing, of gap, indicated by arrow 82 between the top surface 71 of the base plate and the bottom surfaces of the tiles. The solder joints also provide electrical interconnection between the upper contact pads on the substrates 12-15 and the corresponding lower contact pads on the top surface of base plate 56.
In addition to the contact pads described above, the base plate includes metallization to interconnect selected contacts so that the solder joints not only provide mechanical and electrical interconnection between the substrates 12 and 14 and the base plate 56, but also provide electrical interconnections between adjacent tiles. For example an interconnect metal strip 83 is provided between, base contact pads 74 and 75 to electrically connect these pads. Solder joints 62 and 64 provide an interconnection between cathode strip 18 and cathode strip 22 through vias 38 and 40 and interconnect 83. In addition to the end-to-end connection illustrated by contact pads 74 and 75 and interconnect 83, additional metallization can be provided on surface 71, as illustrated by interconnect 84 between contact pads 80 and 81, which electrically connects strip 20 on tile 14 to a parallel strip 86 on adjacent tile 15. It is noted that since the cathode strips 20 and 22 on tile 14 are about 10 mils or more apart, the same spacing between the adjacent, parallel strips 20 and 86 on adjacent tiles 14 and 15 is easily achieved.
It will be understood that any number of such tiles may be positioned in side-by-side relationship on the top surface of the base plate 56 so that a multiplicity of small array tiles may be mechanically secured on the base and electrically interconnected to produce a large field emission array.
A display face plate 88 having a suitable phosphorous coating and responsive to the emissions from the micro-tips is mounted to form a top surface for the tiles 12, 13, 14, 15, etc., and is spaced a suitable distance from the micro-tips. The face plate 88 may be the same size as each corresponding substrate, such as substrate 32, with the face plates being sealed and evacuated to form plural enclosed small display tiles. Alternatively, a single face plate covering plural tiles may be used.
Each completed display tile can be tested before assembly to the base plate 56 so that the relatively low yield of large arrays is obviated, and a high yield is obtained. Even after assembly, a defective tile can be easily removed by reflowing the solder joints.
In fabricating the display assembly, the upper contact pads on the bottom surfaces of the tiles and the lower contact pads on the top surface 71 of the base plate 56 are precisely and accurately located, as by conventional photolithographic techniques, and after metallization to form the pads and interconnects, the solder is applied to the upper contact pads (such as pad 44) or to the lower contact pads (such as pad 72) or to both, as by screen printing using a paste, or by evaporation, or by plating through a mask. Alternatively, solder (such as ball 60) balls of controlled size can be mechanically positioned on each of the upper or lower contact pads. The tiles are then positioned on the base plate in or near the desired alignment. The assembly is then heated to cause the solder to flow, with the surface tension of the solder located on the contact pads effectively aligning the tiles on the underlying base plate 56. Since the locations of the pads are defined to within a few microns, the tiles can be precisely located in the horizontal plane. The vertical position of the tile depends upon the volume of the solder in each joint as well as on the sizes and shapes of the connecting metal pads. These sizes and shapes are defined lithographically so that the tiles can be precisely and reproducibly positioned vertically to provide proper spacing between adjacent tiles and to mount the display faces of the tiles in a common plane.
The interconnects, such as those shown at 83 and 84, are constructed so that the deposited solder or solder balls will not flow onto them when the solder is heated to join the tiles to the base plate. This insures that adjacent solder balls, such as those shown at 62 and 64 for example, will not contact the interconnect 83 when the solder is reflowed, thus retaining the solder in place to insure proper electrical and mechanical connection between upper contact pads 46 and 48 and their corresponding lower contact pads 74 and 75.
It should be understood that the shape of the individual solder joints formed from deposited solder or solder balls illustrated in FIG. 1, is not critical. If desired, the solder joints can be elongated, circular, or in rows or in any other shape; for example a joint can extend along the entire length of a cathode strip, if desired, as long as the soldered area is sufficient to produce the desired passive alignment due to surface tension effects. Again, the solder joints should be of adequate size and number to insure the uniformity and reproducibility of the equilibrium height of the solder joints and positioned to provide the desired electrical interconnections.
A second embodiment of the invention is illustrated in FIG. 2, which depicts schematically a cross-section through two tiles 100 and 102 which are part of a large, tiled thin film transistor active matrix type panel display generally indicated at 104. Each tile, such as the tile 100, consists of a liquid crystal polymer 106 sandwiched between a front (or top) glass plate 108 and a rear (or bottom) glass plate 110, with the periphery of the tile being sealed, for example, by epoxy 112. Attached to the under surface 113 of the top glass plate 108 are a plurality of transparent top electrodes 114 which are located photolithographically, for example, and which are activated by thin film transistors (not shown) in the conventional manner. The electrodes 114 are interconnected, as may be required, by suitable metallization on the under surface of plate 108, such metallization being illustrated by conductive line 116, for example, leading from an electrode to the edge of the tile for connection to a suitable interconnect, to be described.
The upper, or inner, surface 117 of the bottom plate 110 is coated by a thin, transparent electrode 120, while the under surface 122 of the bottom glass plate 110 may carry a plurality of upper metal locator, or contact, pads such as those illustrated at 124, 126, and 128. These contact pads are similar to pads 44, 46, and 52 illustrated in FIG. 1 and discussed above, and thus are carefully and precisely located on the undersurface of the tile 100 to electrically connect and mechanically secure the tile to a suitable base plate, such as the electrically insulating base plate 56, also described with respect to FIG. 1. The base plate may carry lower metal locator, or contact pads 72, 74 and 78, also as described with respect to FIG. 1, positioned to receive the tile 100 and to locate it with respect to adjacent tiles. Solder joints 60, 62, and 68 are provided between the upper contact pads on tile 100 and the corresponding lower contact pads on base plate 56 in the manner previously described to provide reproducible and uniform equilibrium heights of the joints as well as to provide mechanical and electrical interconnections.
Electrical interconnects may also be provided on the sides of the tiles and on the bottom surface 122 of the glass plate 110, as illustrated by interconnects 130 and 132 on tile 100. Interconnect 130 extends along the outer peripheral surface 134 and along the bottom surface 122 of tile 100 to interconnect the electrode 120 with contact pad 124 and through that pad and solder joint 60 to the contact 72 on base plate 56. In similar manner, interconnect line 132 extends along the outer peripheral surface 134 of tile 100 and along the bottom surface 122 to contact pad 128 for connection through solder joint 62 to contact pad 74. This interconnect line 132 is electrically connected to metal line 116 to connect selected transparent internal electrode 114 to the exterior contact pad 74. As illustrated in FIG. 2, contact pad 74 is connected through the metallized interconnect 83 on the surface of base plate 56 to the adjacent contact pad 75 located beneath the next adjacent tile 102 for electrical connection to that tile through solder joint 64. As illustrated, the solder joint 64 contacts a corresponding contact pad 136 on the bottom of tile 102 and, by way of interconnect line 138 and metallized line 140, the contact pad 136 is connected to a transparent electrode 114' which corresponds to the electrode 114 in tile 100. In this way, adjacent tiles are electrically interconnected so that multiple tiles can be used to produce a large panel display. As noted with respect to FIG. 1, the spacing between adjacent electrodes 114 on the same tile is typically about 10 mils or greater. The interconnection between adjacent tiles permits the same horizontal spacing between electrodes in adjacent tiles to be easily achieved.
Panel displays of the type illustrated in FIG. 2 are back lit, as illustrated by arrows 150. A suitable mask 152 is provided between adjacent tiles to prevent backlight from passing between tiles.
Thus, there has been disclosed a panel display tile assembly wherein solder joints are used in conjunction with connector pad arrays for aligning, assembling, and electrically interconnecting tiles with each other and with a common base plate, or substrate, to produce a single display unit incorporating a multiplicity of tiles. Although the present invention has been described in terms of preferred embodiments, it will be apparent to those of skill in the art that numerous variations and modifications may be made without departing from the true spirit and scope thereof as set forth in the following claims.

Claims (12)

What is claimed is:
1. A method for making a large area panel display from a plurality of small area display tiles comprising the steps of:
providing a plurality of small area display tiles, each of said display tiles having a plurality of locator contacts on a bottom surface thereof;
placing a plurality of locator contacts on a large area top surface of a base; and
bonding said contacts on each of said plurality of small area display tiles to corresponding ones of said contacts on said base by forming connector joints for mechanically interconnecting said contacts on said display tiles to said corresponding ones of said contacts on said base, said joints being selected to provide a predetermined, uniform vertical spacing between each said tile and said base, and to mechanically secure said tiles on said base, with selected joints providing electrical connections between selected ones of said contacts on said display tiles and said base to thereby electrically interconnect said tiles.
2. The method of claim 1, further including aligning said plurality of small area display tiles by said bonding.
3. The method of claim 1, wherein said bonding is by reflowing to passively align said plurality of small area display tiles with corresponding ones of said contacts on said base.
4. The method of claim 1, wherein said bonding includes applying solder balls to selected ones of said contacts on said display tiles and said base.
5. The method of claim 1, wherein said bonding includes applying solder paste to selected ones of said contacts on said display tiles and said base.
6. The method of claim 5, wherein said step of applying solder paste includes screen printing said paste on said selected contacts.
7. The method of claim 1, wherein said bonding includes applying solder by evaporation to selected ones of said contacts on said display tiles and said base.
8. The method of claim 1, wherein said bonding includes applying solder to selected ones of said contacts on said display tiles and said base by plating through a mask.
9. The method of claim 1, wherein said bonding includes applying conductive adhesive to selected ones of said contacts on said display tiles and said base.
10. The method of claim 1, wherein the step of providing a plurality of small area display tiles further comprises:
testing for desired display characteristics, a group of small area display tiles; and
selecting from said tested group of tiles, a plurality of small area tiles having desired display characteristics.
11. The method of claim 1, further comprising the step of providing electrical connections to less than all of said contacts on said base.
12. The method of claim 1, further comprising the steps of:
providing at least one tile side locator contact on a side surface of at least one of said plurality of display tiles; and
electrically connecting said at least one tile side locator contact with a selected one of said contacts on said base.
US08/727,227 1994-08-31 1996-10-08 Tiled panel display assembly Expired - Fee Related US5693170A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US08/727,227 US5693170A (en) 1994-08-31 1996-10-08 Tiled panel display assembly

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/297,958 US5563470A (en) 1994-08-31 1994-08-31 Tiled panel display assembly
US08/727,227 US5693170A (en) 1994-08-31 1996-10-08 Tiled panel display assembly

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US08/297,958 Division US5563470A (en) 1994-08-31 1994-08-31 Tiled panel display assembly

Publications (1)

Publication Number Publication Date
US5693170A true US5693170A (en) 1997-12-02

Family

ID=23148424

Family Applications (2)

Application Number Title Priority Date Filing Date
US08/297,958 Expired - Fee Related US5563470A (en) 1994-08-31 1994-08-31 Tiled panel display assembly
US08/727,227 Expired - Fee Related US5693170A (en) 1994-08-31 1996-10-08 Tiled panel display assembly

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US08/297,958 Expired - Fee Related US5563470A (en) 1994-08-31 1994-08-31 Tiled panel display assembly

Country Status (5)

Country Link
US (2) US5563470A (en)
AU (1) AU3496495A (en)
CA (1) CA2198871A1 (en)
TW (1) TW309664B (en)
WO (1) WO1996007196A1 (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5963281A (en) * 1997-10-14 1999-10-05 Rainbow Displays, Inc. Method for fabricating AMLCD tiled displays with controlled inner seal perimeters
US6129804A (en) * 1998-05-01 2000-10-10 International Business Machines Corporation TFT panel alignment and attachment method and apparatus
US6193576B1 (en) * 1998-05-19 2001-02-27 International Business Machines Corporation TFT panel alignment and attachment method and apparatus
EP1120838A2 (en) * 2000-01-27 2001-08-01 General Electric Company Organic light emitting device and method for mounting
US6491560B1 (en) 2000-05-25 2002-12-10 Motorola, Inc. Array tile system and method of making same
US20030011724A1 (en) * 2001-07-16 2003-01-16 Sundahl Robert C. Repairable tiled displays
EP1332487A2 (en) * 2000-11-10 2003-08-06 Sarnoff Corporation Display tile structure using organic light emitting materials
US6626680B2 (en) 2001-08-24 2003-09-30 Wilson Greatbatch Ltd. Wire bonding surface
US20040251045A1 (en) * 2002-02-08 2004-12-16 Chin-Long Wu [package structure of organic electroluminescence panel]
US20040251826A1 (en) * 2001-10-18 2004-12-16 Schlenker Tilman Ulrich Electroluminescent device
US20050215166A1 (en) * 2001-09-27 2005-09-29 Lothar Hitzschke Discharge lamp with stabilized discharge vessel plate
KR100529559B1 (en) * 1998-04-24 2006-02-08 삼성전자주식회사 Manufacturing method of edge electrode of tile type liquid crystal display
US20060273718A1 (en) * 2005-06-03 2006-12-07 Jian Wang Electronic device including workpieces and a conductive member therebetween
US7592970B2 (en) 1998-02-17 2009-09-22 Dennis Lee Matthies Tiled electronic display structure
US8824125B1 (en) 2013-03-16 2014-09-02 ADTI Media, LLC Modular installation and conversion kit for electronic sign structure and method of using same
US8929083B2 (en) 2013-03-16 2015-01-06 ADIT Media, LLC Compound structural frame and method of using same for efficient retrofitting
US9047791B2 (en) 2013-03-16 2015-06-02 Adti Media, Llc. Sign construction with sectional sign assemblies and installation kit and method of using same
US9666105B2 (en) 2013-03-16 2017-05-30 ADTI Media, LLC Sign construction with modular wire harness arrangements and methods of using same for backside to frontside power and data distribution schemes
US9761157B2 (en) 2013-03-16 2017-09-12 Adti Media Llc Customized sectional sign assembly kit and method of using kit for construction and installation of same
US9852666B2 (en) 2013-03-16 2017-12-26 Adti Media Llc Full height sectional sign assembly and installation kit and method of using same
US10879195B2 (en) * 2018-02-15 2020-12-29 Micron Technology, Inc. Method for substrate moisture NCF voiding elimination

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3156896B2 (en) * 1994-01-28 2001-04-16 富士通株式会社 Semiconductor device manufacturing method and semiconductor device manufactured by such manufacturing method
US5771039A (en) * 1994-06-06 1998-06-23 Ditzik; Richard J. Direct view display device integration techniques
US5889568A (en) 1995-12-12 1999-03-30 Rainbow Displays Inc. Tiled flat panel displays
US20010045794A1 (en) * 1996-01-19 2001-11-29 Alwan James J. Cap layer on glass panels for improving tip uniformity in cold cathode field emission technology
JPH09311344A (en) * 1996-03-18 1997-12-02 Toshiba Corp Picture display device
US5827102A (en) * 1996-05-13 1998-10-27 Micron Technology, Inc. Low temperature method for evacuating and sealing field emission displays
US5796452A (en) * 1997-03-21 1998-08-18 International Business Machines Corporation Simplified wiring escape technique for tiled display
US5808710A (en) * 1997-04-07 1998-09-15 International Business Machines Corporation Liquid crystal display tile interconnect structure
US5777705A (en) * 1997-05-30 1998-07-07 International Business Machines Corporation Wire bond attachment of a liquid crystal display tile to a tile carrier
US5998922A (en) * 1997-09-26 1999-12-07 Industrial Technology Research Institute Mosaic field emission display with internal auxiliary pads
US6255769B1 (en) 1997-12-29 2001-07-03 Micron Technology, Inc. Field emission displays with raised conductive features at bonding locations and methods of forming the raised conductive features
KR100319200B1 (en) * 1998-12-02 2002-10-25 삼성전자 주식회사 Liquid crystal display having a plurality of lcd module
US20020163294A1 (en) * 1999-02-17 2002-11-07 Ammar Derraa Methods of forming a base plate for a field emission display (fed) device, methods of forming a field emission display (fed) device,base plates for field emission display (fed) devices, and field emission display (fed) devices
US6822386B2 (en) * 1999-03-01 2004-11-23 Micron Technology, Inc. Field emitter display assembly having resistor layer
US6639638B1 (en) 1999-08-27 2003-10-28 International Business Machines Corporation LCD cover optical structure and method
US20020163301A1 (en) * 2001-05-02 2002-11-07 Morley Roland M. Large format emissive display
JP3768937B2 (en) * 2001-09-10 2006-04-19 キヤノン株式会社 Electron emitting device, electron source, and manufacturing method of image display device
US6459462B1 (en) * 2002-01-28 2002-10-01 Rainbow Displays, Inc. Process and tool for maintaining three-dimensional tolerances for manufacturing tiled AMLCD displays
US20040085478A1 (en) * 2002-11-06 2004-05-06 Vandruff Dean Radio controlled tiled video display apparatus and method
US7008316B1 (en) 2003-10-01 2006-03-07 Pugh Kwyne A Electronic game board assembly
US7719480B2 (en) * 2003-10-31 2010-05-18 Hewlett-Packard Development Company, L.P. Display with interlockable display modules
US7334901B2 (en) * 2005-04-22 2008-02-26 Ostendo Technologies, Inc. Low profile, large screen display using a rear projection array system
US9899329B2 (en) 2010-11-23 2018-02-20 X-Celeprint Limited Interconnection structures and methods for transfer-printed integrated circuit elements with improved interconnection alignment tolerance
US8934259B2 (en) 2011-06-08 2015-01-13 Semprius, Inc. Substrates with transferable chiplets
US8974077B2 (en) 2012-07-30 2015-03-10 Ultravision Technologies, Llc Heat sink for LED light source
WO2014070684A1 (en) * 2012-11-01 2014-05-08 Lellan, Inc Seamless illuminated modular panel
US9582237B2 (en) 2013-12-31 2017-02-28 Ultravision Technologies, Llc Modular display panels with different pitches
US20150187237A1 (en) 2013-12-31 2015-07-02 Ultravision Holdings, Llc System and Method for a Modular Multi-Panel Display
US9195281B2 (en) 2013-12-31 2015-11-24 Ultravision Technologies, Llc System and method for a modular multi-panel display
US10706770B2 (en) 2014-07-16 2020-07-07 Ultravision Technologies, Llc Display system having module display panel with circuitry for bidirectional communication
US9799719B2 (en) 2014-09-25 2017-10-24 X-Celeprint Limited Active-matrix touchscreen
TWI681508B (en) 2016-02-25 2020-01-01 愛爾蘭商艾克斯瑟樂普林特有限公司 Efficiently micro-transfer printing micro-scale devices onto large-format substrates
US10395966B2 (en) 2016-11-15 2019-08-27 X-Celeprint Limited Micro-transfer-printable flip-chip structures and methods
US10600671B2 (en) 2016-11-15 2020-03-24 X-Celeprint Limited Micro-transfer-printable flip-chip structures and methods
US10224231B2 (en) 2016-11-15 2019-03-05 X-Celeprint Limited Micro-transfer-printable flip-chip structures and methods
US11024608B2 (en) 2017-03-28 2021-06-01 X Display Company Technology Limited Structures and methods for electrical connection of micro-devices and substrates
US10468397B2 (en) 2017-05-05 2019-11-05 X-Celeprint Limited Matrix addressed tiles and arrays
US11164934B2 (en) 2019-03-12 2021-11-02 X Display Company Technology Limited Tiled displays with black-matrix support screens

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4039890A (en) * 1974-08-16 1977-08-02 Monsanto Company Integrated semiconductor light-emitting display array
US4283118A (en) * 1977-02-22 1981-08-11 Sharp Kabushiki Kaisha Liquid crystal display with a substrate carrying display electrodes and integrated circuit chip connected thereto
US4305767A (en) * 1979-03-07 1981-12-15 Corey Jan M Label system for making integrated circuit diagrams and printed circuit boards
US4369975A (en) * 1980-01-28 1983-01-25 Andrew Tarc Display tile for electronic chess game
US4439813A (en) * 1981-07-21 1984-03-27 Ibm Corporation Thin film discrete decoupling capacitor
US4703559A (en) * 1984-11-02 1987-11-03 Kernforschungszentrum Karlsruhe Gmbh Method for producing connecting elements for electrically joining microelectronic components
US4733127A (en) * 1984-06-12 1988-03-22 Sanyo Electric Co., Ltd. Unit of arrayed light emitting diodes
US4833542A (en) * 1986-07-15 1989-05-23 Mitsubishi Denki Kabushiki Kaisha Large screen display apparatus having modular structure
US4853296A (en) * 1986-10-22 1989-08-01 Toppan Printing Co., Ltd. Electrode plate for color display device
US4862153A (en) * 1986-05-30 1989-08-29 Sharp Kabushiki Kaisha Flat display panel with framing for flexible substrate folding
US4864470A (en) * 1987-08-31 1989-09-05 Pioneer Electronic Corporation Mounting device for an electronic component
US4932883A (en) * 1988-03-11 1990-06-12 International Business Machines Corporation Elastomeric connectors for electronic packaging and testing
US4980774A (en) * 1988-07-21 1990-12-25 Magnascreen Corporation Modular flat-screen television displays and modules and circuit drives therefor
US5061663A (en) * 1986-09-04 1991-10-29 E. I. Du Pont De Nemours And Company AlN and AlN-containing composites
US5067021A (en) * 1988-07-21 1991-11-19 Brody Thomas P Modular flat-screen television displays and modules and circuit drives therefor
US5068740A (en) * 1988-07-21 1991-11-26 Magnascreen Corporation Modular flat-screen television displays and modules and circuit drives therefor
US5079636A (en) * 1988-07-21 1992-01-07 Magnascreen Corporation Modular flat-screen television displays and modules and circuit drives therefor
US5164263A (en) * 1986-09-04 1992-11-17 E. I. Du Pont De Nemours & Co. Aluminum nitride flakes and spheres
US5194934A (en) * 1988-07-27 1993-03-16 Semiconductor Energy Laboratory Co., Ltd. Mounting structure for a semiconductor chip having a buffer layer

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4039890A (en) * 1974-08-16 1977-08-02 Monsanto Company Integrated semiconductor light-emitting display array
US4283118A (en) * 1977-02-22 1981-08-11 Sharp Kabushiki Kaisha Liquid crystal display with a substrate carrying display electrodes and integrated circuit chip connected thereto
US4305767A (en) * 1979-03-07 1981-12-15 Corey Jan M Label system for making integrated circuit diagrams and printed circuit boards
US4369975A (en) * 1980-01-28 1983-01-25 Andrew Tarc Display tile for electronic chess game
US4439813A (en) * 1981-07-21 1984-03-27 Ibm Corporation Thin film discrete decoupling capacitor
US4733127A (en) * 1984-06-12 1988-03-22 Sanyo Electric Co., Ltd. Unit of arrayed light emitting diodes
US4703559A (en) * 1984-11-02 1987-11-03 Kernforschungszentrum Karlsruhe Gmbh Method for producing connecting elements for electrically joining microelectronic components
US4862153A (en) * 1986-05-30 1989-08-29 Sharp Kabushiki Kaisha Flat display panel with framing for flexible substrate folding
US4833542A (en) * 1986-07-15 1989-05-23 Mitsubishi Denki Kabushiki Kaisha Large screen display apparatus having modular structure
US5061663A (en) * 1986-09-04 1991-10-29 E. I. Du Pont De Nemours And Company AlN and AlN-containing composites
US5164263A (en) * 1986-09-04 1992-11-17 E. I. Du Pont De Nemours & Co. Aluminum nitride flakes and spheres
US4853296A (en) * 1986-10-22 1989-08-01 Toppan Printing Co., Ltd. Electrode plate for color display device
US4864470A (en) * 1987-08-31 1989-09-05 Pioneer Electronic Corporation Mounting device for an electronic component
US4932883A (en) * 1988-03-11 1990-06-12 International Business Machines Corporation Elastomeric connectors for electronic packaging and testing
US4980774A (en) * 1988-07-21 1990-12-25 Magnascreen Corporation Modular flat-screen television displays and modules and circuit drives therefor
US5067021A (en) * 1988-07-21 1991-11-19 Brody Thomas P Modular flat-screen television displays and modules and circuit drives therefor
US5068740A (en) * 1988-07-21 1991-11-26 Magnascreen Corporation Modular flat-screen television displays and modules and circuit drives therefor
US5079636A (en) * 1988-07-21 1992-01-07 Magnascreen Corporation Modular flat-screen television displays and modules and circuit drives therefor
US5194934A (en) * 1988-07-27 1993-03-16 Semiconductor Energy Laboratory Co., Ltd. Mounting structure for a semiconductor chip having a buffer layer

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Bolt et al., "Aluminum Nitride Fibers From a Thermoplastic Organoaluminum Precursor", Material Research Socity, vol. 108, pp. 337-344, 1988.
Bolt et al., Aluminum Nitride Fibers From a Thermoplastic Organoaluminum Precursor , Material Research Socity, vol. 108, pp. 337 344, 1988. *
Hansen et al., "Heat Concution in Metal-Filled Polymers: The Role Of Particle Size, Shape & Orientation", Polymer Engineering & Science, vol. 15, No. 5, pp. 353-356, May 1975.
Hansen et al., Heat Concution in Metal Filled Polymers: The Role Of Particle Size, Shape & Orientation , Polymer Engineering & Science, vol. 15, No. 5, pp. 353 356, May 1975. *

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5963281A (en) * 1997-10-14 1999-10-05 Rainbow Displays, Inc. Method for fabricating AMLCD tiled displays with controlled inner seal perimeters
US7592970B2 (en) 1998-02-17 2009-09-22 Dennis Lee Matthies Tiled electronic display structure
US7864136B2 (en) 1998-02-17 2011-01-04 Dennis Lee Matthies Tiled electronic display structure
KR100529559B1 (en) * 1998-04-24 2006-02-08 삼성전자주식회사 Manufacturing method of edge electrode of tile type liquid crystal display
US6129804A (en) * 1998-05-01 2000-10-10 International Business Machines Corporation TFT panel alignment and attachment method and apparatus
US6193576B1 (en) * 1998-05-19 2001-02-27 International Business Machines Corporation TFT panel alignment and attachment method and apparatus
EP1120838A2 (en) * 2000-01-27 2001-08-01 General Electric Company Organic light emitting device and method for mounting
EP1120838A3 (en) * 2000-01-27 2007-01-24 General Electric Company Organic light emitting device and method for mounting
US6491560B1 (en) 2000-05-25 2002-12-10 Motorola, Inc. Array tile system and method of making same
EP1332487A2 (en) * 2000-11-10 2003-08-06 Sarnoff Corporation Display tile structure using organic light emitting materials
EP1332487A4 (en) * 2000-11-10 2006-09-06 Transpacific Ip Ltd Display tile structure using organic light emitting materials
US20030011724A1 (en) * 2001-07-16 2003-01-16 Sundahl Robert C. Repairable tiled displays
US7277066B2 (en) * 2001-07-16 2007-10-02 Intel Corporation Repairable tiled displays
US6857915B2 (en) 2001-08-24 2005-02-22 Wilson Greatbatch Technologies, Inc. Wire bonding surface for connecting an electrical energy storage device to an implantable medical device
US20040040735A1 (en) * 2001-08-24 2004-03-04 Ciurzynski David R. Wire bonding surface for connecting an electrical energy storage device to an implantable medical device
US6626680B2 (en) 2001-08-24 2003-09-30 Wilson Greatbatch Ltd. Wire bonding surface
US20050215166A1 (en) * 2001-09-27 2005-09-29 Lothar Hitzschke Discharge lamp with stabilized discharge vessel plate
US7144290B2 (en) * 2001-09-27 2006-12-05 Patent-Treuhand-Gesellschaft Fuer Elektrische Gluehlampen Mbh Discharge lamp with stabilized discharge vessel plate
US20040251826A1 (en) * 2001-10-18 2004-12-16 Schlenker Tilman Ulrich Electroluminescent device
US7557502B2 (en) * 2001-10-18 2009-07-07 Tpo Displays Corp. Electroluminescent display with gas-tight enclosure
US6858874B2 (en) 2002-02-08 2005-02-22 Ritdisplay Corporation Package structure of organic electroluminescence panel
US20040251045A1 (en) * 2002-02-08 2004-12-16 Chin-Long Wu [package structure of organic electroluminescence panel]
US20060275947A1 (en) * 2005-06-03 2006-12-07 Jian Wang Process for forming an electronic device including reflowing a conductive member
US20060276024A1 (en) * 2005-06-03 2006-12-07 Jian Wang Process for forming an electronic device including workpieces and a conductive member therebetween
US20060276096A1 (en) * 2005-06-03 2006-12-07 Jian Wang Process for fabricating and repairing an electronic device
US20060273308A1 (en) * 2005-06-03 2006-12-07 Jian Wang Electronic device including conductive members between a first workpiece and second workpiece
US20060273717A1 (en) * 2005-06-03 2006-12-07 Jian Wang Electronic device including workpieces and a conductive member therebetween
US20060273309A1 (en) * 2005-06-03 2006-12-07 Jian Wang Workpiece including electronic components and conductive members
US7667229B2 (en) 2005-06-03 2010-02-23 E. I. Du Pont De Nemours And Company Electronic device including conductive members between a first workpiece and second workpiece
US20060273718A1 (en) * 2005-06-03 2006-12-07 Jian Wang Electronic device including workpieces and a conductive member therebetween
US8563331B2 (en) 2005-06-03 2013-10-22 E. I. Du Pont De Nemours And Company Process for fabricating and repairing an electronic device
US8824125B1 (en) 2013-03-16 2014-09-02 ADTI Media, LLC Modular installation and conversion kit for electronic sign structure and method of using same
US8929083B2 (en) 2013-03-16 2015-01-06 ADIT Media, LLC Compound structural frame and method of using same for efficient retrofitting
US9047791B2 (en) 2013-03-16 2015-06-02 Adti Media, Llc. Sign construction with sectional sign assemblies and installation kit and method of using same
US9536457B2 (en) 2013-03-16 2017-01-03 Adti Media Llc Installation kit and method of using same for sign construction with sectional sign assemblies
US9666105B2 (en) 2013-03-16 2017-05-30 ADTI Media, LLC Sign construction with modular wire harness arrangements and methods of using same for backside to frontside power and data distribution schemes
US9761157B2 (en) 2013-03-16 2017-09-12 Adti Media Llc Customized sectional sign assembly kit and method of using kit for construction and installation of same
US9852666B2 (en) 2013-03-16 2017-12-26 Adti Media Llc Full height sectional sign assembly and installation kit and method of using same
US10192468B2 (en) 2013-03-16 2019-01-29 ADTI Media, LLC Sign construction with modular installation and conversion kit for electronic sign structure and method of using same
US10210778B2 (en) 2013-03-16 2019-02-19 Adti Media Llc Sign construction with sectional sign assemblies and installation kit and method of using same
US10879195B2 (en) * 2018-02-15 2020-12-29 Micron Technology, Inc. Method for substrate moisture NCF voiding elimination

Also Published As

Publication number Publication date
US5563470A (en) 1996-10-08
WO1996007196A1 (en) 1996-03-07
AU3496495A (en) 1996-03-22
TW309664B (en) 1997-07-01
CA2198871A1 (en) 1996-03-07

Similar Documents

Publication Publication Date Title
US5693170A (en) Tiled panel display assembly
US6956635B2 (en) Liquid crystal device and manufacturing method therefor
US4549200A (en) Repairable multi-level overlay system for semiconductor device
US4850919A (en) Monolithic flat panel display apparatus and methods for fabrication thereof
US5801446A (en) Microelectronic connections with solid core joining units
US4867371A (en) Fabrication of optical devices
JPH10256315A (en) Semiconductor chip bonding pad and its formation
KR970012964A (en) A system interconnected by bond material bumps
GB2062963A (en) Semiconductor chip mountings
US5028841A (en) Chip mounting techniques for display apparatus
CA2219166A1 (en) Composite unit of optical semiconductor device and supporting substrate and method for mounting optical semiconductor device on supporting substrate
US5995188A (en) Liquid crystal display device using stacked layers
JP2879773B2 (en) IMAGE DEVICE AND ITS MANUFACTURING METHOD
US5791552A (en) Assembly including fine-pitch solder bumping and method of forming
US6552563B1 (en) Display panel test device
EP0645807B1 (en) Semiconductor device
JP3460330B2 (en) Imaging device
US6310299B1 (en) Glass connector and fabricating method thereof
JPH06268098A (en) Manufacture of semiconductor integrated circuit device
US5860212A (en) Method of coating a conductive substance on a transparent electrode formed on a substrate and method of mounting a semiconductor device or film substrate on the substrate
US4959590A (en) Lead connection structure
JPH0776131A (en) Image device
JP2838181B2 (en) Imaging device
JP2000012733A (en) Package-type semiconductor device
JPS609273B2 (en) display device

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20091202