Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS5707567 A
Publication typeGrant
Application numberUS 08/459,270
Publication dateJan 13, 1998
Filing dateJun 2, 1995
Priority dateFeb 10, 1993
Fee statusPaid
Also published asCA2161227A1, EP0746533A1, EP0746533A4, US5580834, WO1995023122A1
Publication number08459270, 459270, US 5707567 A, US 5707567A, US-A-5707567, US5707567 A, US5707567A
InventorsMark E. Pfaff
Original AssigneeThe Morgan Crucible Company Plc
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Process for producing a self-sintered silicon carbide/carbon graphite composite material having interconnected pores which maybe impregnated
US 5707567 A
Abstract
A self-sintered silicon carbide/carbon-graphite composite material having interconnected pores which may be impregnated, and a raw batch and process for producing the composite material, is provided. The composite material comprises a densified, self-sintered matrix of silicon carbide, carbon-graphite inclusions and small amounts of any residual sintering aids, such as boron and free carbon, and has interconnected pores which may be impregnated with resin, carbon, TEFLON, (polyetrafluoroethylene) metal or other compounds or materials selected for their particular properties to achieve desired tribological characteristics for a specific application. The composite material is produced from a raw batch which includes silicon carbide, sintering aids, a temporary filler and coated graphite particles. The raw batch is then molded/shaped into a green body and heated to carbonize any carbonizable materials and to decompose and volatilize the organic filler to form a matrix of interconnected pores. The green body is pressureless sintered to densify the matrix. The interconnected pores may then be impregnated with a resin, carbon, metal, TEFLON, (polytetrafluoroethylene) compound or other material selected for desired tribological characteristics.
Images(9)
Previous page
Next page
Claims(43)
I claim:
1. A process for producing a self-sintered silicon carbide composite material, comprising the steps of:
(a) mixing in an inert solvent a raw batch, comprising:
(i) about 50 to about 90% by weight silicon carbide;
(ii) about 5.0 to about 50% graphite particles coated with a carbon precursor;
(iii) about 2 to about 20% sintering aids; and
(iv) about 0.75 to about 15.0% by weight temporary filler;
(b) drying the raw batch to evaporate the inert solvent;
(c) shaping the raw batch into a shaped body;
(d) heating the shaped body at a temperature sufficient to carbonize the carbon precursor and volatilize the temporary filler to form a matrix having interconnected pores; and
(e) sintering the shaped body to densify the matrix.
2. The process of claim 1, wherein the silicon carbide comprises alpha silicon carbide or beta silicon carbide, or a mixture thereof.
3. The process of claim 1, wherein the carbon precursor comprises phenolic resin, furfuryl alcohol, polyester, petroleum pitch or coal tar pitch, or fixtures thereof.
4. The process of claim 1, wherein the sintering aids comprise aluminum, beryllium oxide, a boron source or a carbon source, or mixtures thereof.
5. The process of claim 4, wherein the boron source comprises elemental boron or boron carbide, or a mixture thereof.
6. The process of claim 4, wherein the carbon source comprises elemental carbon or a carbonizable organic material, or a mixture thereof.
7. The process of claim 6, wherein the carbonizable organic material comprises phenolic resin, petroleum pitch, coal tar pitch, furfuryl alcohol or a sugar, or mixtures thereof.
8. The process of claim 1, wherein the temporary filler comprises an organic material.
9. The process of claim 8, wherein the organic material comprises, ground nutshells, wax particles or polypropylene beads, or mixtures thereof.
10. The process of claim 1, wherein the temporary filler comprises an inorganic material.
11. The process of claim 10, wherein the inorganic material comprises ceramic beads.
12. The process of claim 1, wherein the raw batch further includes about 0.3 to about 1.0% by weight of a suspension agent.
13. The process of claim 12, wherein the suspension agent includes xanthan gum.
14. The process of claim 1, wherein the raw batch further includes 2.0 to about 8.0% by weight of a temporary binder.
15. The process of claim 14, wherein the temporary binder comprises phenolic resin, polyethylene glycol or oleic acid, or a mixture thereof.
16. The process of claim 1, wherein the shaping step includes pressing the raw batch at pressures of about 3 to about 9 tons/in2 to obtain a green density of about 1.60 to about 1.90 gm/cc.
17. The process of claim 1, wherein the heating step includes heating the shaped body at a temperature above 800° F.
18. The process of claim 1, wherein the sintering step includes heating the shaped body at a temperature of about 1900° to about 2500° C. in a substantially inert atmosphere at or below atmospheric pressure.
19. The process of claim 1, including the further step of impregnating the pores of the matrix with an additional material.
20. The process of claim 19, wherein the additional material comprises carbon, resin, metal or polytetrafluoroethylene, or mixtures thereof.
21. The process of claim 19, wherein the impregnation step comprises the steps of:
(a) impregnating the pores of the matrix with a carbonaceous resin; and
(b) carbonizing the carbonaceous resin.
22. The process of claim 21, wherein the carbonaceous resin comprises phenolic resin, petroleum pitch or coal tar pitch, or mixtures thereof.
23. The process of claim 20, wherein the metal comprises nickel, silver or antimony, or mixtures thereof.
24. The process of claim 1, wherein the raw batch comprises:
(i) about 60 to about 80% by weight silicon carbide;
(ii) about 10 to about 20% by weight graphite particles coated with a carbon precursor;
(iii) about 5.0 to about 15.0% by weight temporary filler;
(iv) about 2.0 to about 8.0% by weight temporary binder;
(v) about 1.0 to about 5.0% by weight carbonizable organic material; and
(vi) about 0.3 to about 1.5% by weight of a boron source.
25. The process of claim 24, wherein the silicon carbide is alpha silicon carbide or beta silicon carbide, or a mixture thereof.
26. The process of claim 24, wherein the carbon precursor comprises phenolic resin, furfuryl alcohol, polyester, petroleum pitch or coal tar pitch, or mixtures thereof.
27. The process of claim 24, wherein the temporary filler comprises, ground nutshells, wax particles or polypropylene beads, or mixtures thereof.
28. The process of claim 24, wherein the temporary binder comprises phenolic resin, polyethylene glycol or oleic acid, or a mixture thereof.
29. The process of claim 24, wherein the carbonizable organic material is phenolic resin, petroleum pitch, coal tar pitch, furfuryl alcohol or a sugar, or mixtures thereof.
30. The process of claim 24, wherein the boron source comprises elemental boron or boron carbide, or a mixture thereof.
31. The process of claim 24, wherein the raw batch further includes about 0.3 to about 1.0% by weight of a suspension agent.
32. The process of claim 31, wherein the suspension agent includes xanthan gum.
33. The process of claim 24, wherein the shaping step includes pressing the raw batch a green density of about 1.60 to about 1.90 gm/cc.
34. The process of claim 24, wherein the heating step includes heating the shaped body at a temperature above 800° F.
35. The process of claim 24, wherein the sintering step includes heating the shaped body at a temperature ranging from about 1900° to 2500° C. in a substantially inert atmosphere at or below atmospheric pressure.
36. The process of claim 24, including the further step of impregnating the pores of the matrix with an additional material.
37. The process of claim 36, wherein the additional material comprises carbon, resin, metal or polytetrafluoroethylene, or mixtures thereof.
38. The process of claim 36, wherein the impregnation step comprises the steps of:
(a) impregnating the pores of the matrix with a carbonaceous resin; and
(b) carbonizing the carbonaceous resin.
39. The process of claim 38, wherein the carbonaceous resin comprises phenolic resin, petroleum pitch or coal tar pitch, or mixtures thereof.
40. The process of claim 37, wherein the metal comprises nickel, silver or antimony, or mixtures thereof.
41. The process of claim 1, comprising the steps:
(a) mixing in an inert solvent a raw batch, comprising:
(i) about 60 to about 80% by weight silicon carbide;
(ii) about 10 to about 20% by weight graphite particles coated with phenolic resin;
(iii) about 5.0 to about 15.0% by weight polypropylene beads;
(iv) about 2.0 to about 8.0% by weight polyethylene glycol;
(v) about 1.0 to about 5.0% by weight additional phenolic resin; and
(vi) about 0.3 to about 1.5% by weight boron carbide;
(vii) about 0.3 to about 1.0%, by weight xanthan gum; and
(b) drying the raw batch to evaporate the inert solvent;
(c) pressing the raw batch to a green density of about 1.60 to about 1.90 gm/cc;
(d) heating the shaped body at a temperature above 800° F. to carbonize the carbon precursor and volatilize the temporary filler to form a matrix having interconnected pores; and
(e) sintering the shaped body at a temperature of about 1900° to about 2500° C. in a substantially inert atmosphere at or below atmospheric pressure to densify the matrix to a density of about 2.10 to about 2.60 gm/cc.
42. The process of claim 41, wherein the silicon carbide comprises alpha silicon carbide or beta silicon carbide, or a mixture thereof.
43. The process of claim 41, including the further step of impregnating the pores of the matrix with phenolic resin and carbonizing the impregnated resin.
Description

This application is a division of U.S. patent application Ser. No. 08/201,686, now U.S. Pat. No. 5,580,834 filed Feb. 25, 1994, which is a continuation-in-part of U.S. patent application Ser. No. 08/017,735 Feb. 10, 1993, now U.S. Pat. No. 5,422,322.

FIELD OF THE INVENTION

This invention relates to the field of self-sintered silicon carbide/graphite composite materials and more particularly to self-sintered silicon carbide/carbon-graphite composite materials having interconnected pores which may be impregnated.

BACKGROUND OF THE INVENTION

Silicon carbide densified by self-sintering, also called pressureless sintering, is very hard, has good corrosion and abrasion resistance and high thermal conductivity. Self-sintered silicon carbide is used for sliding face applications, such as pump seals and bearings, in environments where such seals and bearings are exposed to acidic, caustic, corrosive or abrasive substances. However, self-sintered silicon carbide is not self-lubricating. Thus, if self-sintered silicon carbide is used in a seal or bearing face which runs against a face of another hard, non-self-lubricating material, such as self-sintered or reaction-bonded silicon carbide, the seal or bearing faces must be exposed to a lubricating fluid or used in fluid applications, such as in liquid pumps. The fluid provides a film between the sliding faces which lubricates the surfaces, reduces friction and prevents failure.

Self-sintered silicon carbide, when run against other hard, non-self-lubricating materials, is vulnerable to catastrophic failure when exposed to rapid temperature changes or if an insufficient amount of lubricating fluid is present, such as under upset conditions in pump applications when a pump accidently runs dry or if the pump is energized prior to connection of the fluid stream. Insufficient lubrication can cause the self-sintered silicon carbide to explode in the most severe conditions. Further, self-sintered silicon carbide used in sliding face applications against other non-self-lubricating materials exhibits high wear rates when under demanding conditions such as high speed and contact pressure.

Porous self-sintered silicon carbide also is not self lubricating, and has the disadvantages of self-sintered silicon carbide discussed above. Although, the surface pores of porous self-sintered silicon carbide can help the material to retain some lubricating fluid during use, the materials cannot be run dry. Thus, like self-sintered silicon carbide, porous self-sintered silicon carbide must be used in fluid applications where a lubricating fluid is provided.

Further, because the pores of porous self-sintered silicon carbide are not interconnected, porous self-sintered silicon carbide cannot be impregnated with resin, carbon, TEFLON, metals or other compounds or materials.

Siliconized graphite, i.e., graphite siliconized by chemical vapor reaction (CVR), has some self-lubricating properties and has good wear characteristics compared to self-sintered silicon carbide and other silicon carbide composites. Siliconized graphite is produced from specially formulated graphite which is reacted with silicon monoxide (SiO) vapor. The chemical vapor reaction produces a silicon carbide layer (typically 40 mm thick) on an underlying graphite substrate. The silicon carbide surface layer typically has a microstructure of graphite inclusions and interconnected pores throughout the surface layer. A lubricating substance can be impregnated in such pores to produce a self-lubricating material suitable for bearings and seals having a degree of survivability in dry-running conditions.

Siliconized graphite, however, has significant drawbacks. Because the self-lubricating silicon carbide structure is a thin surface layer, seals, bearings and other sliding face products made from siliconized graphite cannot be lapped, polished or repaired by a customer without risking penetration of the silicon carbide layer into the relatively soft graphite substrate. Also, the silicon carbide layer is prone to cracking, delamination and other defects. Further, siliconized graphite is very difficult to impregnate with carbon. Because the silicon carbide surface layer is thin, very porous and bonded to a relatively soft graphite substrate, the silicon carbide layer is weak. When the silicon carbide layer is impregnated with a carbon precursor, such as resin, and the precursor is carbonized, volatilization of the precursor usually causes the silicon carbide layer to crack, delaminate, break apart, or in some cases explode.

SUMMARY OF THE INVENTION

The present invention, which overcomes the shortcomings of the prior materials used for sliding face applications, includes a self-sintered silicon carbide/carbon graphite composite material having interconnected pores which may be impregnated with resin, carbon, TEFLON, metal or other compounds or materials selected to achieve desired tribological characteristics. The present invention also includes a raw batch and process for producing the composite material of the present invention.

The composite material of the present invention comprises a self-sintered, densified matrix of silicon carbide, carbon/graphite inclusions and small amounts of any residual sintering aids, such as boron and free carbon, and has interconnected pores, which may be impregnated with carbon, resin, metal, such as nickel, silver or antimony, TEFLON polytetrafluoroethylene, or other compounds or materials selected for their particular properties to achieve desired tribological characteristics for a specific application.

The composite material of the present invention has wear resistance superior to conventional and porous self-sintered silicon carbide, in that the material of the present invention can run against itself or other hard, non-self-lubricating materials in sliding face applications, such as for mechanical seals and pump bearings, at 200,000 psi-fpm PV or higher. The composite material of the present invention also has thermal shock resistance superior to conventional and porous self-sintered silicon carbide. In catastrophic failure or dry run conditions, such as when fluid is lost in pump applications, seals and bearings made of the material of the present invention have survivability and can maintain their integrity even at 400,000 psi-fpm PV, while seals and bearings made of self-sintered silicon carbide fail in seconds.

Further, because the composite material of the present invention has the same microstructure throughout the material, the material can be lapped, polished or repaired. The single microstructure of the material of the present invention also gives it a structural integrity and useful life superior to materials having surface layers, such as siliconized graphite.

The interconnecting porosity of the material of the present invention allows for impregnation of the material and tailoring of the tribological and other properties of the material for specific applications. The pores can be impregnated with a wide variety of metals, resins, carbon or other compounds or materials to produce a family of materials with different tribological characteristics for different applications. If the material of the present invention is to be used in sealing applications, the interconnected pores must be sufficiently impregnated to seal the material and prevent leaks.

Impregnation of the pores with such materials also provides further advantages. Impregnation of favorable tribological materials improves the mechanical properties, especially the wear and thermal shock resistance, of the present invention material over prior self-sintered silicon carbide materials, including porous self-sintered silicon carbide. Further, impregnation with a tough material, such as nickel or another metal, imparts a toughness to the present invention material not found in prior self-sintered silicon carbide materials, which are notorious for their brittleness.

The composite material of the present invention is produced from a raw batch which includes silicon carbide, sintering aids, a temporary filler and coated graphite particles. The raw batch is then molded/shaped into a green body and heated to carbonize any carbonizable materials and to decompose and volatilize the temporary filler to form a matrix having interconnected pores. The green body is then pressureless sintered to densify the matrix. The interconnected pores can then be impregnated with resin, carbon, metal, TEFLON or other compounds or materials selected for the desired tribological characteristics.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention will be more fully understood from the following detailed description considered in conjunction with the accompanying drawings, in which:

FIG. 1 is a schematic illustration of the process for producing a self-sintered silicon carbide/carbon-graphite composite material having impregnated interconnecting pores according to the present invention;

FIGS. 2A and B are photomicrographs, taken at 50× and 200× respectively, of a self-sintered silicon carbide/carbon-graphite composite material having impregnated interconnecting pores according to the present invention;

FIGS. 3A, 3B and 3C are photomicrographs, taken at 50×, 200× and 400× respectively, of a further self-sintered silicon carbide/carbon-graphite composite material having impregnated interconnecting pores according to the present invention;

FIGS. 4A and 4B are photomicrographs, taken at 12.5×, of opposing seal faces taken after wear testing involving a material of the present invention and reaction-bonded silicon carbide;

FIGS. 5A, 5B, 5C, 5D and 5E are photomicrographs of seal faces made of a material of the present invention taken before and after stages in dry run testing; and

FIGS. 6A, 6B, 6C and 6D are photomicrographs, taken at 14×, of the opposing seal faces before and after catastrophic fluid loss, in dry run testing involving a material of the present invention and conventional self-sintered silicon carbide.

DETAILED DESCRIPTION OF THE INVENTION

The present invention includes a self-sintered silicon carbide/carbon-graphite composite material having interconnected pores which may be impregnated. The composite material comprises a densified self-sintered matrix of approximately 50 to 95% by weight silicon carbide, approximately 5.0 to 50% by weight carbon-graphite inclusions dispersed throughout the matrix and small amounts, approximately 0.3 or less to 5.0% by weight, of any residual sintering aids, such as aluminum, beryllium oxide, boron, boron carbide and/or free carbon. The composite material of the present invention has a microstructure of interconnected pores which may be impregnated with carbon, resin, TEFLON polytetrafluoroethylene, metal or other compounds or materials selected to achieve desired tribological characteristics for a specific application.

The matrix, which is self-sintered, or pressureless-sintered, typically has a density of at least approximately 2.20 gm/cc, or 73% of the theoretical density as determined by the rule of mixtures (before any impregnation of the interconnecting pores). The silicon carbide can be of the alpha form, the beta form or a combination of forms.

The carbon-graphite inclusions are distributed throughout the silicon carbide of the matrix and comprise particles of graphite coated with carbon. In the preferred embodiment, the average grain size of the carbon-graphite inclusions is greater than the average grain size of the silicon carbide. For example, in the preferred embodiment, the silicon carbide has an average grain size between approximately 10 and 25 μm, and the carbon-graphite inclusions have an average grain size between approximately 75 and 125 μm.

In one embodiment, the interconnected pores of the matrix are impregnated with resin, carbon, metal, such as nickel, silver or antimony, TEFLON polytetrafluoroethylene, petroleum pitch, coal tar pitch, or other compounds or materials. The exact composition and density of the final composite material depends upon the material used to impregnate the pores. In the preferred embodiment, in which the pores are impregnated with phenolic resin which is carbonized to form carbon, the final composite material typically comprises a densified self-sintered matrix of approximately 65 to 80% by weight silicon carbide, approximately 10 to 18% by weight carbon-coated graphite inclusions dispersed throughout the matrix and small amounts, approximately 0.3 to 3.0% by weight of boron and free carbon as residual sintering aids. The matrix has a microstructure of interconnected pores impregnated with approximately 10 to 17% by weight carbon. Typically, the final composite material of the preferred embodiment has a density between approximately 2.55 and 2.65 gm/cc.

The process for producing a self-sintered composite material of the present invention is shown schematically in FIG. 1. The composite body is produced from a raw batch of silicon carbide, sintering aids, temporary filler to provide the interconnected pores, and coated graphite for providing the inclusions of carbon-coated coated graphite particles in the sintered matrix. Process aids, such as temporary binders and/or lubricants, can also be included in the raw batch to facilitate the molding or shaping of the raw batch into a green body or to facilitate other processing steps.

The raw batch is produced from fine-grained, high purity silicon carbide powder. Preferably, at least 0.5% α-silicon carbide relative to B-silicon carbide is used. However, any combination of the forms of silicon carbide may be used. Typically, approximately 50 to 90% by weight (of the total raw batch) of silicon carbide is dispersed in an inert solvent, such as water, to form a slurry which aids complete mixing of the raw batch ingredients during preparation. Other mixing aids, such as a dispersant, for example, ammonium polymethacrylate, or a suspension agent, such as xanthan gum, may also be added.

Sintering aids, such as aluminum, beryllium oxide, a boron source and/or a carbon source, are added to the slurry and mixed thoroughly to ensure complete dispersion. Such boron sources include elemental boron and boron carbide (B4 C), and such carbon sources include elemental carbon or a carbonizable organic material, such as phenolic resin, petroleum pitch, coal tar pitch, furfuryl alcohol or sugar. Typically, approximately 2.0 to 20% by weight (of the total raw batch) of the sintering aids are added to the slurry.

A temporary filler is also added to the slurry and thoroughly mixed for good dispersion. Typically, approximately 0.75 to 15.0% (of the total raw batch) of the temporary filler is added to the slurry. The temporary filler can be any particulate material which will decompose and volatilize out of the mixture at or below the carbonization temperature of the mixture to leave a matrix of interconnected pores. Typically, the temporary filler comprises particles of an organic material, such as ground nutshells, wax particles or polypropylene beads. In certain circumstances, for example when the temporary filler is volatilized in a vacuum at very high temperatures (at or above the melting point of the filler), an inorganic material such as ceramic beads might also be used. Preferably, the temporary filler has an average grain size between approximately 10 and 45 μm.

Another component of the raw batch is coated graphite particles, which are added to the slurry and thoroughly mixed. The coated graphite particles are coarse graphite particles coated with a carbon precursor, such as phenolic resin, or another resin or material which will decompose upon heating to leave a carbon residue. Such other materials include furfuryl alcohol, polyester, petroleum pitch, coal tar pitch, or mixtures of these and other materials. Typically, the coating is dissolved in a suitable solvent and mixed thoroughly with the graphite to bond the graphite particles. The mixture is then dried to evaporate the solvent and crushed to obtain the coated graphite particles of a desired size. Typically, the coated graphite particles are passed through a 65 mesh sieve to obtain particles of less than 212 μm. The coated graphite particles are then added to the silicon carbide slurry. Typically, approximately at least 5.0 to 50%, and preferably approximately 10 to 20%, by weight (of the total raw batch) of the coated graphite particles are added to the slurry. But any amount of such particles is helpful in improving the self-lubricating properties of the final composite material.

Process aids, including temporary binders and lubricants, for example oleic acid or any other fatty acid, can be added to the slurry. The addition of a suspension or viscosity agent is particularly helpful if the coated graphite particles are large. For example, if xanthan gum is added to the slurry and mixed, it causes the slurry to coagulate which holds the coated graphite particles in suspension, allowing uniform dispersion. Some materials added to the raw batch can perform multiple functions. For example, phenolic resin can function in the raw batch as both a carbon source sintering aid and a temporary binder. Polyethylene glycol can function as both a temporary binder and a die lubricant.

The inert solvent, temporary filler, temporary binder, dispersant, lubricant and suspension agent are all temporary additives which do not form a part of the final composite material.

The resulting slurry is mixed thoroughly to ensure sufficient dispersion and dried. Typically, the slurry is spray dried to form spherical agglomerates. Other suitable methods for obtaining such granules, such as part drying followed by crushing and sieving, may be employed.

A body made of the composite material of the present invention is produced by then molding or shaping a measured amount of the raw batch into a green body. Conventional methods of molding and shaping can be employed, such as isostatic or die pressing. Preferably, the raw batch is pressed at pressures ranging between approximately 3 and 9 tons/in2 to obtain a green density of approximately 1.60 to 1.90 gm/cc.

The green body is then exposed to the appropriate environment, such as heat, to cure any temporary binders included in the raw batch. The molding and shaping of the green body can also include machining the body to a desired pre-finished shape.

The shaped green body is then carbonized in a non-oxidizing atmosphere at a temperature typically above approximately 800° F. The carbonization step carbonizes any carbonizable carbon source used as a sintering aid and decomposes and volatilizes the temporary filler, which leaves the matrix of interconnected pores. The carbonization step also carbonizes the resin of the resin-coated graphite particles and volatilizes any residue of any dispersant, lubricant or suspension agent of the raw batch.

In a typical carbonization cycle, the green body is heated in an oven from room temperature to 350° F. during a half hour and allowed to soak at that temperature for another half hour. The temperature is then raised to 850° F. over a period of 10 hours and held at 850° F. for five hours to carbonize the body. The body is then cooled to room temperature. Other carbonization cycles may be used.

The carbonized green body is then pressureless sintered typically at a temperature ranging from approximately 1900° to 2500° C. in a substantially inert atmosphere at or below atmospheric pressure to densify the matrix. Preferably, the matrix is sintered to a density between approximately 2.10 and 2.60 gm/cc or 12 to 15% shrinkage. In a typical sintering cycle, the temperature is raised to the sintering temperature over an eight hour period, the furnace is held at the peak temperature for one hour, and then allowed to cool to room temperature. The actual times depend upon the particular furnace used. Other suitable sintering cycles may also be employed. The carbonization cycle and sintering cycle may be carried out in the same furnace in sequential cycles.

In the preferred embodiment, the sintered body typically comprises a densified, self-sintered matrix of approximately 80 to 90% by weight silicon carbide, approximately 10 to 20% by weight carbon-coated graphite inclusions dispersed throughout the matrix, and small amounts, approximately 0.3 to 3.0% by weight, of boron and carbon as residual sintering aids. The matrix has a microstructure of interconnected pores, and the sintered body has approximately 3 to 12% absorption, or approximately 8 to 30% porosity.

The sintered body can then be impregnated with carbon, resin, metal, such as nickel, silver or antimony, TEFLON or other compounds or materials selected for their self-lubricating properties to achieve desired tribological characteristics for a specific application. If a resin is used as a carbon precursor to impregnate the interconnected pores with carbon, the sintered body must once again be heated to carbonize the resin. If the sintered body is to be used in sealing applications, the interconnected pores must be sufficiently impregnated to seal the body and prevent leaks.

Finally, if necessary, the impregnated sintered body can be finished by grinding, diamond polishing or any other finishing method.

EXAMPLE

The preferred embodiment of the present invention, which is described in this Example, was prepared from a raw batch of mostly beta silicon carbide, some alpha silicon carbide, boron carbide (B4 C), phenolic resin, polyethylene glycol, polypropylene beads, xanthan gum and phenolic resin-coated graphite particles.

In the preferred embodiment, 100 parts (69.0% by weight of the total raw batch) of β-silicon carbide having a BET specific surface area of approximately 13.5-18.5 m2 /g and a particle size below approximately 2.40 μm, and one part (0.7% by weight of the total raw batch) of B4 C as a water slurry were stirred for one half hour. Superior Graphite HSC-059(s), which is a premixed slurry of β-silicon silicon carbide and B4 C in water, was used. Four parts (2.8% by weight of the total raw batch) of β-carbide, LONZA CARBOGRAN UF-10, having a BET surface area of approximately 9.0-11.0 m2 /g and a particle size below approximately 3.0 μm, which had been dispersed in deionized water with 0.03 parts (0.02% by weight of the total raw batch) of ammonium polymethacrylate (DARVAN C) dispersant and ball milled, were then added to the slurry while the stirring continued.

While stirring, five parts (3.4% by weight of the total raw batch) of phenolic resin pre-dispersed in an equal amount of deionized water were added. The phenolic resin, which is a known binder and has a char yield of approximately 50%, is a carbon source and functioned as both a sintering aid and a temporary binder.

Seven parts (4.8% by weight of the total raw batch) of modified polyethylene glycol, PEG Compound 20M made by Union Carbide, was premixed with water as a solution of 33% polyethylene glycol and 67% water. The polyethylene glycol solution was then added to the raw batch while the stirring continued. The polyethylene glycol functioned in the raw batch as both a temporary binder and as a lubricant for the subsequent molding and shaping step.

Eleven parts (7.6% by weight of the total raw batch) of PROPYLTEX 325 S polypropylene beads made by Micro Powder, Inc. were slowly added to the slurry while the stirring continued. The polypropylene beads, which were all under 44 μm and had a mean particle size of 11-15 μm, functioned as the temporary filler used to create the interconnected pores of the matrix of the final body.

While stirring, one part (0.7% by weight of the total raw batch) of dispersible xanthan gum was added as a suspension agent. The mixture was then stirred for one hour to thoroughly mix the ingredients and to coagulate the slurry.

Sixteen parts (11.0% by weight of the total raw batch) of resin-coated graphite particles, which functioned as the coated graphite particles, were then added to the mixture while the stirring continued. The resin-coated graphite particles were prepared from a mixture of 80% by weight coarse graphite, LONZA KS-150, having a particle size below approximately 180 μm, and an average particle size of approximately 65 μm, and 20% by weight DURITE RD-2414 phenolic resin in powdered form which had been dissolved in acetone. The phenolic resin/acetone/graphite mixture was mixed thoroughly to bond the resin to the graphite. The mixture was then dried to evaporate the acetone, crushed and sieved to obtain resin-coated graphite particles having an average size of 100 μm.

After the resin-coated particles were added to the slurry, the resultant slurry was stirred for a minimum of one hour, spray dried and screened through a 35 mesh.

A measured amount of the raw batch was then isostatic pressed into a shaped green body to a green density of approximately 1.90 gm/cc (approximately 9 tons/in2 pressure). The binders were then cured at 250° F. for 5 hours and the green body was pre-machined to a desired pre-finished shape.

The green body was then heated to 850° F. for 5 hours to carbonize the phenolic resin and to decompose and volatilize the polypropylene beads to form the matrix of interconnected pores. The carbonization cycle also decomposed and volatilized any residual amounts of the polyethylene glycol and xanthan gum used as temporary binder, lubricant and suspension agent.

The green body was then pressureless sintered to a density of approximately 2.40 gm/cc or 12% shrinkage at a 2190° C. peak temperature in Argon at approximately two-thirds atmosphere for approximately one hour. The resulting sintered body comprised a densified, self-sintered matrix of approximately 85% by weight silicon carbide, approximately 13% by weight carbon-coated graphite inclusions dispersed throughout the matrix and small amounts, approximately 2.0% by weight, of boron and carbon as residual sintering aids. The silicon carbide had an average grain size between approximately 10 and 25 μm, and the carbon-graphite inclusions had an average grain size between approximately 75 and 125 μm. The resulting sintered body had approximately 8% absorption, or approximately 19% porosity.

The interconnected pores of the densified matrix body were then impregnated with phenolic resin, which was cured at 350° F. at approximately 85-110 psig for 6 hours. The impregnated phenolic resin was then carbonized very slowly for 48 hours at a peak temperature of 850° F. For some batches, if necessary, the body was impregnated a second time with phenolic resin, which was cured and carbonized, to ensure that the final composite body was leak proof.

The body was then finished by grinding and diamond polishing.

The composite material, shown in FIGS. 2A and 2B, throughout the body comprised a densified self-sintered matrix of approximately 73% by weight silicon carbide approximately 11% by weight carbon-coated graphite inclusions dispersed throughout the matrix and small amounts, approximately 2% by weight, of boron and free carbon as residual sintering aids. The silicon carbide had an average grain size between approximately 10 and 25 μm, and the carbon-graphite inclusions had an average grain size between approximately 75 and 125 μm.

The densified matrix had a microstructure of interconnected pores impregnated with approximately 14% by weight carbon. The interconnected pores, which contained carbon carbonized from the impregnated phenolic resin, had an average size of approximately 13 μm. The final body had a density of between approximately 2.55 and 2.65 gm/cc or 88 to 92% of the theoretical density as determined by the rule of mixtures.

EXAMPLE

The body of this example of the present invention was prepared in a manner identical to the process described for the previous example, except that in place of the combination of beta and alpha silicon carbide used in the previous example, alpha silicon carbide was used for this example. First, 10 lbs. of α-silicon carbide, LONZA CARBOGRAN UF-10, having a BET surface area of approximately 9.0-11.0 m2 /g and a particle size below approximately 3.0 μm, was mixed with 15 lbs of deionized water and 10 gms. of DARVAN C dispersant to form a slurry. The slurry was ball milled for two hours.

One-hundred four parts (71.8% by weight of the total raw batch) of α-silicon carbide in the water slurry was then mixed with one part (0.7% by weight of the total raw batch) of B4 C and stirred for one half hour. The processing then continued as described above for the previous example.

The sintered body before impregnation comprised a densified, self-sintered matrix of approximately 85% by weight silicon carbide, approximately 13% by weight carbon-coated graphite inclusions dispersed throughout the matrix and small amounts, approximately 2.0% by weight, of boron and carbon as residual sintering aids. The silicon carbide had an average grain size between approximately 10 and 25 μm, and the carbon-graphite inclusions had an average grain size between approximately 75 and 125 μm.

After impregnation, the composite material, shown in FIGS. 3A, 3B and 3C, throughout the body of this Example comprised a densified self-sintered matrix of approximately 73% by weight silicon carbide, approximately 11% by weight carbon-coated graphite inclusions dispersed throughout the matrix and small amounts, approximately 2% by weight, of boron and free carbon as residual sintering aids. The silicon carbide of the final composite material had an average grain size between approximately 10 and 25 μm, and the carbon-graphite inclusions had an average grain size between approximately 75 and 125 μm.

The densified matrix of this Example also had a microstructure of interconnected pores filled with approximately 14% by weight carbon carbonized from the impregnated phenolic resin. The interconnected pores had an average size of approximately 13 μm. The final body had a density of approximately 2.60 gm/cc or 90% of the theoretical density as determined by the rule of mixtures.

Results from wear and other testing of the composite material of the present invention demonstrate that the materials have wear characteristics and thermal shock resistance superior to other silicon carbide materials, and are self-lubricating. In one test, seals made of the composite material of the present invention, as described in the first Example above, were run against mating rings made of reaction-bonded silicon carbide at 300,000 psi-fpm (167 psi×1802 fpm) PV in 107 psi of deionized water for 50 hours. Although the faces of the reaction-bonded silicon carbide mating rings exhibited an average wear of 0.00002 in., the faces of the seals of the material of the present invention showed no measurable wear. A representative portion of one of the faces of the reaction-bonded silicon carbide rings after testing is shown in FIG. 4A, and a representative portion of one of the faces of the seals of the present invention material after testing is shown in FIG. 4B.

In another test, the self lubricating and dry running properties of the material of the present invention against itself were investigated. A seal and a mating ring were fabricated from the composite material of the present invention as described in the first Example, except that the phenolic resin impregnated into the pores of the matrix was not carbonized. Portions of the material of the seal, which are representative of both the seal and ring materials, are shown in FIGS. 5A and 5B. The seal and mating ring were then run against each other at 104,000 psi-fpm (57 psi×1820 fpm) PV in deionized water for one hour. The water was then removed from the system, and the seal and mating ring were run dry against each other at 56,000 psi-fpm (31 psi×1820 fpm) PV. The seal and ring ran dry for approximately 45 minutes before the impregnated resin softened and smeared, requiring shut-down. The faces of the seal and ring after shutdown are shown in FIGS. 5C and 5D respectively. The densified silicon carbide matrix, carbon-coated graphite inclusions and resin-impregnated interconnected pores can clearly be seen in FIGS. 5A-5D.

Using a 48 hour coking cycle, the seal and mating ring were then successfully coked to carbonize the impregnated resin without destroying the parts. The material of the mating ring after coking is shown in FIG. 5E, which is also representative of material of the seal after coking. The interconnected pores containing the carbon carbonized from the impregnated resin can easily be seen in FIG. 5E.

The parts were then run again against themselves for one hour in deionized water at 104,000 psi-fpm PV, and the water was once again removed. The parts successfully ran on themselves dry at 56,000 PV for one hour, at which time the test was shut down to evaluate the faces. Although there was some wear on the faces after running for one hour dry, the material of the present invention clearly demonstrated that it could survive dry running conditions.

To further evaluate the self-lubricating properties of the material of the present invention, seals made of the material of the present invention, as described in the first Example above, were run against mating rings made of conventional self-sintered silicon carbide at 400,000 psi fpm (221 psi×1820 fpm) PV in 168 psi of deionized water. After 30 minutes, the water was removed from the system and the faces were run dry. After only seconds, the test rig had to be quickly shut down because, as shown in FIG. 6C, the conventional self-sintered silicon carbide ring disintegrated. FIGS. 6A and 6B show the faces of the conventional self-sintered silicon carbide mating ring and the seal of the present invention respectively before dry running. FIGS. 6C and 6D show the faces of the conventional self-sintered silicon carbide ring and the seal of the present invention respectively after shut down. FIGS. 6C and 6D clearly show that while the conventional self-sintered silicon carbide ring disintegrated, the seal of the present invention survived the dry running test with little or no damage.

The above description is not intended to limit the present invention. Alternative embodiments are possible. Accordingly, the scope of the invention should be determined by the appended claims and their legal equivalents, not by the embodiments described and shown above.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US30286 *Oct 9, 1860 Bedstead-fastening
US2609318 *Dec 8, 1949Sep 2, 1952Carborundum CoSilicon carbide refractory article
US2614946 *Mar 17, 1950Oct 21, 1952Carborundum CoGranular silicon carbide and method of making same
US2614947 *Nov 3, 1948Oct 21, 1952Carborundum CoRefractory articles and method of making
US2636826 *Jun 2, 1950Apr 28, 1953Carborundum CoSilicon carbide refractory
US2691605 *Sep 15, 1950Oct 12, 1954Carborundum CoSilicon carbide articles and method of manufacturing same
US2784112 *May 17, 1952Mar 5, 1957Carborundum CoMethod of making silicon carbidebonded refractory bodies and coated metal articles
US2887393 *Mar 12, 1956May 19, 1959Carborundum CoRefractory bodies containing boron nitride
US2897572 *Jan 28, 1955Aug 4, 1959Carborundum CoRefractory bodies and method of making the same
US2907972 *Aug 12, 1957Oct 6, 1959Carborundum CoProcess for producing silicon carbide bodies
US2916460 *Jun 28, 1956Dec 8, 1959Carborundum CoSilicon carbide resistance bodies and methods of making same
US2941962 *Feb 17, 1958Jun 21, 1960Carborundum CoSilicon carbide resistor bodies
US3051564 *Aug 12, 1959Aug 28, 1962Carborundum CoComposition for metallurgical use and process of using the same
US3094679 *Jan 13, 1960Jun 18, 1963Carborundum CoSilicon carbide resistance body and method of making the same
US3108887 *May 6, 1959Oct 29, 1963Carborundum CoRefractory articles and method of making same
US3166380 *May 1, 1961Jan 19, 1965Carborundum CoProcess for the production of submicron silicon carbide
US3175884 *May 1, 1961Mar 30, 1965Carborundum CoSubmicron silicon carbide
US3189472 *Feb 3, 1961Jun 15, 1965Carborundum CoRefractory articles
US3189477 *Apr 13, 1960Jun 15, 1965Carborundum CoOxidation-resistant ceramics and methods of manufacturing the same
US3205043 *Apr 4, 1962Sep 7, 1965Carborundum CoCold molded dense silicon carbide articles and method of making the same
US3252827 *Nov 5, 1958May 24, 1966Carborundum CoRefractory carbide bodies and method of making them
US3305372 *Sep 1, 1964Feb 21, 1967Carborundum CoProduction of refractory bodies
US3372305 *Apr 15, 1966Mar 5, 1968Carborundum CoSilicon carbide igniter
US3459566 *Jan 3, 1967Aug 5, 1969Carborundum CoProcess for producing silicon carbide articles employing pyromellitic dianhydride-limonene dioxide mixture
US3480395 *Dec 5, 1967Nov 25, 1969Carborundum CoMethod of preparing extruded grains of silicon carbide
US3513019 *Jan 3, 1967May 19, 1970Carborundum CoCoated beta-silicon carbide whiskers and process for their production
US3520667 *Aug 15, 1967Jul 14, 1970Carborundum CoSilicon carbide coated diamond abrasive grains
US3765300 *May 22, 1967Oct 16, 1973Carborundum CoDense carbide composite for armor and abrasives
US3796564 *Jun 19, 1969Mar 12, 1974Carborundum CoDense carbide composite bodies and method of making same
US3808012 *Apr 19, 1971Apr 30, 1974Carborundum CoDense composite ceramic bodies
US3852099 *Nov 27, 1972Dec 3, 1974Gen ElectricDense silicon carbide ceramic and method of making same
US3853566 *Dec 21, 1972Dec 10, 1974Gen ElectricHot pressed silicon carbide
US3859399 *Sep 15, 1972Jan 7, 1975Carborundum CoDense composite ceramic bodies and method for their production
US3954483 *Jan 8, 1974May 4, 1976General Electric CompanyDense polycrystalline silicon carbide
US3960577 *Jan 8, 1974Jun 1, 1976General Electric CompanyBoron, silicon nitride
US3968194 *Oct 6, 1975Jul 6, 1976General Electric CompanyDense polycrystalline silicon carbide
US3969124 *Feb 11, 1974Jul 13, 1976Exxon Research And Engineering CompanyCarbon articles
US3993602 *Nov 17, 1975Nov 23, 1976General Electric CompanyPolycrystalline silicon carbide with increased conductivity
US4004934 *Apr 22, 1976Jan 25, 1977General Electric CompanySintered dense silicon carbide
US4017319 *Jan 6, 1976Apr 12, 1977General Electric CompanySi3 N4 formed by nitridation of sintered silicon compact containing boron
US4023975 *Nov 17, 1975May 17, 1977General Electric CompanyHot pressed silicon carbide containing beryllium carbide
US4031178 *Apr 9, 1976Jun 21, 1977General Electric CompanyStrength improvement in machined SiC bodies
US4041117 *Jun 21, 1976Aug 9, 1977General Electric CompanySilicon carbide sintered body
US4080415 *Nov 22, 1976Mar 21, 1978The Carborundum CompanySintering silicon carbide with boron or boron compounds present asdensification aids
US4081284 *Aug 4, 1976Mar 28, 1978General Electric CompanySilicon carbide-boron carbide sintered body
US4108929 *Jun 11, 1976Aug 22, 1978General Electric CompanyHigh density, boron or boron carbide additive
US4109050 *Dec 9, 1976Aug 22, 1978General Electric CompanyCoated silicon-based ceramic composites and method for making same
US4119475 *Nov 7, 1977Oct 10, 1978General Electric CompanyPolycrystalline
US4119689 *Jan 3, 1977Oct 10, 1978General Electric CompanySintering of silicon nitride using Be additive
US4119690 *Jan 3, 1977Oct 10, 1978General Electric CompanySintering of silicon nitride using Mg and Be additives
US4120731 *Feb 23, 1976Oct 17, 1978General Electric CompanyMethod of making molten silicon infiltration reaction products and products made thereby
US4120827 *Mar 12, 1976Oct 17, 1978The Carborundum CompanyFuel igniter comprising a novel silicon carbide composition and process for preparing the composition
US4122140 *Jan 3, 1977Oct 24, 1978General Electric CompanyHot pressing of silicon nitride using beryllium additive
US4122155 *Jan 3, 1977Oct 24, 1978General Electric CompanyPreparation of silicon nitride powder
US4123286 *Dec 27, 1976Oct 31, 1978The Carborundum CompanySilicon carbide powder compositions
US4124402 *Nov 7, 1977Nov 7, 1978General Electric CompanyHot pressing of silicon nitride using magnesium silicide
US4124403 *Nov 7, 1977Nov 7, 1978General Electric CompanyHot pressing of silicon nitride using beryllium additive
US4124667 *Apr 25, 1977Nov 7, 1978The Carborundum CompanyProcess for producing sintered silicon carbide ceramic body
US4135937 *Mar 31, 1977Jan 23, 1979The Carborundum CompanyHigh density hot pressed thermal shock resistant silicon carbide
US4135938 *Mar 31, 1977Jan 23, 1979The Carborundum CompanyCeramic of silicon carbide and aluminum diboride
US4141948 *Apr 30, 1975Feb 27, 1979General Electric CompanyMethod of making a shaped silicon carbide-silicon matrix composite and articles made thereby
US4144207 *Dec 27, 1977Mar 13, 1979The Carborundum CompanyComposition and process for injection molding ceramic materials
US4148894 *Nov 7, 1977Apr 10, 1979General Electric CompanyImpact resistant refractory base
US4150998 *Dec 9, 1976Apr 24, 1979General Electric CompanyRotary sealant abradable material and method for making
US4179299 *Mar 26, 1979Dec 18, 1979The Carborundum CompanySintered alpha silicon carbide ceramic body having equiaxed microstructure
US4207226 *Aug 3, 1978Jun 10, 1980The Carborundum CompanyCeramic composition suited to be injection molded and sintered
US4209474 *Feb 9, 1979Jun 24, 1980General Electric CompanyProcess for preparing semiconducting silicon carbide sintered body
US4225356 *Aug 13, 1979Sep 30, 1980General Electric CompanyBeryllium
US4233256 *Dec 18, 1978Nov 11, 1980The Carborundum CompanyProcess for injection molding sinterable carbide ceramic materials
US4237085 *Mar 19, 1979Dec 2, 1980The Carborundum CompanyBy sintering in presence of boron carbide
US4238433 *Dec 15, 1978Dec 9, 1980General Electric CompanySilicon carbide, carbon fibers
US4240835 *Dec 5, 1979Dec 23, 1980General Electric CompanyMethod of making a shaped silicon carbide-silicon matrix composite and articles made thereby
US4279656 *Jan 23, 1980Jul 21, 1981General Electric CompanyBeryllium oxide additive
US4294788 *Mar 21, 1980Oct 13, 1981General Electric CompanyVacuum molding, infiltration
US4312954 *Jun 5, 1975Jan 26, 1982Kennecott CorporationSintered silicon carbide ceramic body
US4327186 *Jun 23, 1980Apr 27, 1982Kennecott CorporationSintered silicon carbide-titanium diboride mixtures and articles thereof
US4332755 *Dec 19, 1980Jun 1, 1982Kennecott CorporationSintered silicon carbide - aluminum nitride articles and method of making such articles
US4346049 *Jul 31, 1978Aug 24, 1982Kennecott CorporationSintered alpha silicon carbide ceramic body having equiaxed microstructure
US4374792 *Aug 27, 1981Feb 22, 1983General Electric CompanyHigh pressure nitrogen atmosphere
US4379110 *Sep 14, 1981Apr 5, 1983General Electric CompanySintering of silicon nitride to high density
US4385020 *Jan 11, 1982May 24, 1983General Electric CompanyMethod for making shaped silicon-silicon carbide refractories
US4419161 *Dec 18, 1981Dec 6, 1983Kennecott CorporationMetal broide cement, sintering
US4420539 *Jun 9, 1980Dec 13, 1983Kostikov Valery IHeat treatment a siliconized graphite in vacuum, impregnation with metal or alloy
US4455385 *Nov 5, 1980Jun 19, 1984General Electric CompanySilicon carbide sintered body
US4524138 *May 5, 1983Jun 18, 1985Elektroschmelzwerk Kempten GmbhSubstantially pore-free sintered polycrystalline articles of α-silicon carbide, boron carbide and free carbon and process for their manufacture
US4525461 *Dec 14, 1983Jun 25, 1985Kennecott CorporationSintered silicon carbide/graphite/carbon composite ceramic body having ultrafine grain microstructure
US4530808 *Apr 11, 1984Jul 23, 1985General Electric CompanyBinder removal from thermoplastically formed SiC article
US4551436 *Apr 11, 1984Nov 5, 1985General Electric CompanyAgglomeration, sintering
US4551496 *Apr 11, 1984Nov 5, 1985General Electric CompanyThermoplastic molding of sinterable silicon carbide
US4554717 *Dec 8, 1983Nov 26, 1985The United States Of America As Represented By The Secretary Of The ArmyPhotoresist; free of etch pits and channels
US4571414 *Apr 11, 1984Feb 18, 1986General Electric CompanyBlending particles in binder consisting of fatty acid and ethylene-vinyl acetate copolymer, and baking
US4649022 *Apr 23, 1984Mar 10, 1987Ford Motor CompanyMethod of making a current collector for a sodium/sulfur battery
US4659002 *Aug 8, 1985Apr 21, 1987Pace, IncorporatedApparatus for replacement of through-hole mounted PCB components
US4666775 *Jan 3, 1986May 19, 1987Kennecott CorporationProcess for sintering extruded powder shapes
US4676940 *Apr 1, 1985Jun 30, 1987Kennecott CorporationReduced cycle time
US4693988 *Jul 1, 1986Sep 15, 1987Kennecott CorporationControlling particle size distribution
US4908340 *Jul 16, 1987Mar 13, 1990The Standard Oil CompanyNon-oxide sintered ceramic fibers
US4932438 *May 8, 1989Jun 12, 1990Kitamura Valve Co., LtdValve provided with valve bodies made of a ceramic compound
US5114886 *Feb 28, 1990May 19, 1992Ibiden, Co., Ltd.Unique ceramic compound
US5395807 *May 25, 1993Mar 7, 1995The Carborundum CompanyProcess for making silicon carbide with controlled porosity
Non-Patent Citations
Reference
1"5.2.3 Silicon Carbide," pp. 5.2.3-1-5.2.3-11 (No Date).
2"Beta Silicon Carbide" Report by Peter T.B. Shaffer, Materials Research Bulletin, vol. 4, pp. S97-S106, 1969, proceedings of Silicon Carbide International Conference, University Park, PA, Oct. 20-23, 1968.
3"Investigation of Ceramics for High Temperature Turbine Components" Final Report, Dec. 1975, by Svante Prochazka et al., prepared under Contract N62269-75-C-0122 for Department of Navy.
4"Investigation of Ceramics for High Temperature Turbine Components" Final Report, Mar. 25, 1976-Mar. 25, 1977, by Curtis A. Johnson et al., prepared under Contract N62269-76-C-0243 for Department of Navy.
5"Investigation of Ceramics for High Temperature Turbine Vanes" Final Report, Dec. 1972, by Svante Prochazka, prepared under Contract N00019-72-C-0129 for Department of Navy.
6"Investigation of Ceramics for High Temperature Turbine Vanes" Final Report, Jan. 23, 1974-Oct. 23, 1974, by Svante Prochazka et al., prepared under Contract N62269-74-C-0255 for Department of Navy.
7"Investigation of Ceramics for High Temperature Turbine Vanes" Final Report, Mar. 1972, by Svante Prochazka, prepared under Contract N00019-71-C-0290 for Department of Navy.
8"Investigation of Ceramics for High Temperature Turbine Vanes" Final Report, Mar. 20, 1973-Dec. 19, 1973, by Svante Prochazka & Peter C. Smith, prepared under Contract N62269-73-C-0356 for Department of Navy.
9"Phase Stability of Silicon Carbide in the Temary System Si-C-N" Report by A.R. Kieffer et al., Material Research Bulletin, vol. 4, pp. S153-S166, 1969, proceedings of Silicon Carbide International Conference, University Park, Pa, Oct. 20-23, 1968.
10"Problems in Silicon Carbide Device Development" Report by Peter T.B. Shaffer, Materials Research Bulletin, vol. 4, pp. S13-S24, 1969, proceedings of Silicon Carbide International Conference, University Park, PA, Oct. 20-23, 1968.
11"Sintered Alpha Silicon Carbide Pump Bearings--Tribiological Materials Optimization to Improve Reliability", by Heinrich Knoch, Joseph Kracker and William D. Long, Proceedings of the Tenth International Pump Users Symposium, Mar. 1993.
12"Sintered Silicon Carbides with Controlled Porosity for Mechanical Face Seal Applications" by R. Divaker, STLE Lubrication, Journal of the Society of Tribologists and Lubrication Engineers, vol. 50, pp. 75-80, Presented at 48:Annual Meeting in Calgary, Alberta, Canada May 17-20, 1993.
13"Substitution of Ceramics for Ductile Materials in Design" Report by J.A. Coppola et al., presented at National Symposium on Ceramics in the Service of Man, Jun. 7, 1976.
14 *5.2.3 Silicon Carbide, pp. 5.2.3 1 5.2.3 11 (No Date).
15 *Beta Silicon Carbide Report by Peter T.B. Shaffer, Materials Research Bulletin, vol. 4, pp. S97 S106, 1969, proceedings of Silicon Carbide International Conference, University Park, PA, Oct. 20 23, 1968.
16 *Investigation of Ceramics for High Temperature Turbine Components Final Report, Dec. 1975, by Svante Prochazka et al., prepared under Contract N62269 75 C 0122 for Department of Navy.
17 *Investigation of Ceramics for High Temperature Turbine Components Final Report, Mar. 25, 1976 Mar. 25, 1977, by Curtis A. Johnson et al., prepared under Contract N62269 76 C 0243 for Department of Navy.
18 *Investigation of Ceramics for High Temperature Turbine Vanes Final Report, Dec. 1972, by Svante Prochazka, prepared under Contract N00019 72 C 0129 for Department of Navy.
19 *Investigation of Ceramics for High Temperature Turbine Vanes Final Report, Jan. 23, 1974 Oct. 23, 1974, by Svante Prochazka et al., prepared under Contract N62269 74 C 0255 for Department of Navy.
20 *Investigation of Ceramics for High Temperature Turbine Vanes Final Report, Mar. 1972, by Svante Prochazka, prepared under Contract N00019 71 C 0290 for Department of Navy.
21 *Investigation of Ceramics for High Temperature Turbine Vanes Final Report, Mar. 20, 1973 Dec. 19, 1973, by Svante Prochazka & Peter C. Smith, prepared under Contract N62269 73 C 0356 for Department of Navy.
22 *Phase Stability of Silicon Carbide in the Temary System Si C N Report by A.R. Kieffer et al., Material Research Bulletin, vol. 4, pp. S153 S166, 1969, proceedings of Silicon Carbide International Conference, University Park, Pa, Oct. 20 23, 1968.
23 *Problems in Silicon Carbide Device Development Report by Peter T.B. Shaffer, Materials Research Bulletin, vol. 4, pp. S13 S24, 1969, proceedings of Silicon Carbide International Conference, University Park, PA, Oct. 20 23, 1968.
24Pure Industries, Inc., Pure Carbon Co., Brochure entitled "Bearings for Difficult Applications" (No Date).
25Pure Industries, Inc., Pure Carbon Co., Brochure entitled "Purebide Components for Demanding Applications" (No Date).
26Pure Industries, Inc., Pure Carbon Co., Brochure entitled "Rubbing Components for Mechanical Seals" (No Date).
27 *Pure Industries, Inc., Pure Carbon Co., Brochure entitled Bearings for Difficult Applications (No Date).
28 *Pure Industries, Inc., Pure Carbon Co., Brochure entitled Purebide Components for Demanding Applications (No Date).
29 *Pure Industries, Inc., Pure Carbon Co., Brochure entitled Rubbing Components for Mechanical Seals (No Date).
30Pure Industries, Inc.,Pure Carbon Co., Brochure entitled "The Carbon Component Specialist" (No Date).
31 *Pure Industries, Inc.,Pure Carbon Co., Brochure entitled The Carbon Component Specialist (No Date).
32 *Quarterly Progress Report No. 1, Report No. SRD 74 057, of contract N62269 74 C 0255, entitled Investigation of Ceramics for High Temperature Turbine Vanes, covering work performed from Jan. 23, 1974 to Apr. 23, 1974.
33Quarterly Progress Report No. 1, Report No. SRD-74-057, of contract N62269-74-C-0255, entitled "Investigation of Ceramics for High-Temperature Turbine Vanes," covering work performed from Jan. 23, 1974 to Apr. 23, 1974.
34 *Quarterly Progress Report No. 2, Report No. SRD 75 042, of contract N62269 75 C 0122, entitled Investigation of Ceramics for High Temperature Turbine Vanes, covering work performed from Jan. 19, 1975 to Apr. 18, 1975.
35Quarterly Progress Report No. 2, Report No. SRD-75-042, of contract N62269-75-C-0122, entitled "Investigation of Ceramics for High-Temperature Turbine Vanes," covering work performed from Jan. 19, 1975 to Apr. 18, 1975.
36 *Semi Annual Technical Report No. SRD 75 047 of contract N00014 74 C 0331, entitled Ceramic Sintering dated Apr. 1975.
37Semi-Annual Technical Report No. SRD-75-047 of contract N00014-74-C-0331, entitled "Ceramic Sintering" dated Apr. 1975.
38 *Silicon Carbide 1973, edited by R.C. Marschall et al., pp. 343 402, 420 426, University of South Carolina Press, 1974.
39Silicon Carbide--1973, edited by R.C. Marschall et al., pp. 343-402, 420-426, University of South Carolina Press, 1974.
40 *Sintered Alpha Silicon Carbide Pump Bearings Tribiological Materials Optimization to Improve Reliability , by Heinrich Knoch, Joseph Kracker and William D. Long, Proceedings of the Tenth International Pump Users Symposium, Mar. 1993.
41 *Sintered Silicon Carbides with Controlled Porosity for Mechanical Face Seal Applications by R. Divaker, STLE Lubrication, Journal of the Society of Tribologists and Lubrication Engineers, vol. 50, pp. 75 80, Presented at 48:Annual Meeting in Calgary, Alberta, Canada May 17 20, 1993.
42 *Substitution of Ceramics for Ductile Materials in Design Report by J.A. Coppola et al., presented at National Symposium on Ceramics in the Service of Man, Jun. 7, 1976.
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US5928583 *May 29, 1997Jul 27, 1999The Reagents Of The University Of CaliforniaProcess for making ceramic bodies having a graded porosity
US6207230 *Jun 2, 2000Mar 27, 2001Mitsubishi Gas Chemical Company, Inc.Method of the preparation of high-heat-resistance resin composite ceramic
US6338906Nov 11, 1999Jan 15, 2002Coorstek, Inc.Sintering ceramic matrices and interconnecting pore structure
US6555031Mar 26, 2001Apr 29, 2003Corning IncorporatedProcess for producing silicon carbide bodies
US6716800 *Apr 12, 2002Apr 6, 2004John Crane Inc.Composite body of silicon carbide and binderless carbon, process for producing such composite body, and article of manufacturing utilizing such composite body for tribological applications
US6774073Jul 29, 2002Aug 10, 2004Coorstek, Inc.Graphite loaded silicon carbide and methods for making
US6946096 *May 15, 2003Sep 20, 2005Honeywell International, Inc.Use of powder metal sintering/diffusion bonding to enable applying silicon carbide or rhenium alloys to face seal rotors
US7015165Apr 22, 2004Mar 21, 2006Coorstek, Inc.mixing dry lubricant slurry and binder, drying to form mixture having a plurality of spherical agglomerates wherein the binder has a demarcation temperature that is less than boiling point of water, and wherein binder is soluble in water that is below the demarcation temperature; for bearings, pump seals
US7128528 *Apr 22, 2003Oct 31, 2006Hitachi, Ltd.Bearings for CO2 refrigerant compressor use, compressor using the same, and applications of the same
US7166550Jan 7, 2005Jan 23, 2007Xin ChenCeramic composite body of silicon carbide/boron nitride/carbon
US7214342 *Jul 23, 2004May 8, 2007Schunk Ingenieurkeramik GmbhMethod of making a composite silicon carbide
US7226671 *Mar 9, 2005Jun 5, 2007Honeywell International, Inc.Use of powdered metal sintering or diffusion bonding to enable silicon carbide and/or rhenium alloys to coat face seal rotors, such as face seal rotors found in air turbine starter components for gas turbine engines found in aircraft
US7588179Mar 30, 2007Sep 15, 2009Honeywell International Inc.Bonding of carbon fibers to metal inserts for use in composites
US7704641Jul 6, 2005Apr 27, 2010Lg Chem, Ltd.Organic/inorganic composite porous film and electrochemical device prepared thereby
US7878757Apr 24, 2007Feb 1, 2011VRC, IncCentrifugal water pump
US8357623Mar 30, 2009Jan 22, 2013U.S. Department Of EnergyComposite materials and bodies including silicon carbide and titanium diboride and methods of forming same
US8382428Dec 20, 2010Feb 26, 2013Vrc, Inc.Centrifugal water pump
US8409746Sep 1, 2005Apr 2, 2013Lg Chem, Ltd.Organic/inorganic composite porous film and electrochemical device prepared thereby
US20110008604 *Jul 7, 2010Jan 13, 2011Morgan Advanced Materials And Technology Inc.Hard non-oxide or oxide ceramic / hard non-oxide or oxide ceramic composite hybrid article
US20120156479 *Sep 1, 2010Jun 21, 2012Toyo Tanso Co., Ltd.Process for production of silicon-carbide-coated carbon base material, silicon-carbide-coated carbon base material, sintered (silicon carbide)-carbon complex, ceramic-coated sintered (silicon carbide)-carbon complex, and process for production of sintered (silicon carbide)-carbon complex
CN100593872CAug 17, 2005Mar 10, 2010株式会社Lg化学Organic/inorganic composite porous film and electrochemical device prepared thereby
EP1499572A1 *Apr 10, 2003Jan 26, 2005John Crane Inc.A composite body of silicon carbide and binderless carbon and process for producing
EP1784876A1 *Aug 17, 2005May 16, 2007LG Chem, Ltd.Organic/inorganic composite porous film and electrochemical device prepared thereby
EP2589580A1 *Oct 30, 2012May 8, 2013Shinano Electric Refining Co., Ltd.A spherical alpha-type crystal silicon carbide, the method for manufacturing the same, and a sintered body as well as an organic resin-based composite made from the silicon carbide
WO2003087013A1 *Apr 10, 2003Oct 23, 2003Crane John IncA composite body of silicon carbide and binderless carbon and process for producing
WO2006004366A1 *Jul 5, 2005Jan 12, 2006Lg Chemical LtdNew organic/inorganic composite porous film and electrochemical device prepared thereby
WO2006025662A1 *Aug 17, 2005Mar 9, 2006Lg Chemical LtdOrganic/inorganic composite porous film and electrochemical device prepared thereby
WO2006138031A2 *May 24, 2006Dec 28, 2006Eastman Chem CoProcess for removing metal species in the presence of hydrogen and a porous material and polyester polymer containing reduced amounts of metal species
Classifications
U.S. Classification264/29.7, 264/29.6, 427/228, 427/383.5, 501/90, 501/99, 264/44, 264/29.1, 427/393.6
International ClassificationC04B35/626, C04B35/532, C04B35/565, C04B41/50, F27D1/00, C04B38/06
Cooperative ClassificationC04B38/06, C04B41/5001, C04B35/532, C04B38/0635, C04B35/565, C04B41/009, F27D1/0006
European ClassificationC04B41/00V, C04B35/532, C04B38/06, C04B38/06F2, C04B41/50B, C04B35/565, F27D1/00A1
Legal Events
DateCodeEventDescription
Jun 10, 2009FPAYFee payment
Year of fee payment: 12
Jun 16, 2005FPAYFee payment
Year of fee payment: 8
Jun 28, 2001FPAYFee payment
Year of fee payment: 4
Jan 4, 2000CCCertificate of correction