Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS5733270 A
Publication typeGrant
Application numberUS 08/474,839
Publication dateMar 31, 1998
Filing dateJun 7, 1995
Priority dateJun 7, 1995
Fee statusPaid
Also published asCA2194857A1, CA2194857C, DE69620856D1, DE69620856T2, EP0782466A1, EP0782466B1, WO1996040361A1
Publication number08474839, 474839, US 5733270 A, US 5733270A, US-A-5733270, US5733270 A, US5733270A
InventorsMichael T. K. Ling, Lecon Woo, Ying-Cheng Lo, Patrick Balteau, F. Peluso
Original AssigneeBaxter International Inc.
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Method and device for precise release of an antimicrobial agent
US 5733270 A
Abstract
An improved system and method for providing sterile connections. To this end, a device is provided comprising a body, a chamber defined, at least in part, by a portion of the body, the chamber including an interior having a solid sterilizing agent that can sublimate at ambient conditions, and a member that defines., in part, the chamber and is so constructed and arranged to allow the solid sterilizing agent to release in a rate controlled manner through the member.
Images(7)
Previous page
Next page
Claims(14)
We claim:
1. A device comprising:
a body member;
a chamber defined, at least in part, by a portion of the body member, the chamber including an interior having a solid sterilizing component that sublimes at ambient conditions to provide a sterilizing gas in the interior; and
a controlled release member that defines, in part, the chamber and is so constructed and arranged to allow the sterilizing gas to pass in a rate controlled manner from the chamber through the controlled release member to the body member.
2. The device of claim 1 wherein the controlled release member is porous.
3. The device of claim 1 wherein the solid sterilizing component is iodine.
4. The device of claim 1 including means for coupling the device to another device.
5. The device of claim 1 including a fluid flow path through the device, the sterilizing gas contacting at least portions of the fluid flow path after it passes through the controlled release member.
6. The device of claim 1 including means for coupling the device to another device having a second fluid flow path and causing the fluid flow path and second fluid flow path to be in fluid communication.
7. A medical device comprising:
a body member including a fluid flow pathway therethrough;
a chamber member defining an interior, portions of the body member defining the chamber member, the chamber member including a controlled release member;
a solid sterilizing compound located within the interior that sublimes at ambient conditions to provide a sterilizing gas in the interior; and
the controlled release member being so constructed and arranged to allow at least some of the sterilizing gas to pass through the controlled release member and contact at least portions of the fluid flow pathway.
8. The device of claim 7 wherein the controlled release member is porous.
9. The device of claim 7 wherein the solid sterilizing component is iodine.
10. A system for coupling two flow pathways together comprising:
a first member including a first fluid flow pathway;
a second member including a second fluid flow pathway therethrough and a chamber member defining an interior, portions of the body defining the chamber, the chamber also being defined, in part, by a controlled release member, a solid sterilizing compound that sublimes at ambient conditions in the chamber providing a sterilizing gas in the interior, and the controlled release member is so constructed and arranged to allow at least some of the sterilizing gas to pass through the controlled release member and contact at least portions of the fluid flow pathway; and
means for removably coupling the first and second members together so that the first and second fluid flow pathways are in fluid communication.
11. The system of claim 10 wherein the controlled release member is porous.
12. The system of claim 10 wherein the solid sterilizing compound is iodine.
13. A method for performing peritoneal dialysis comprising the steps of implanting in the patient a catheter that includes at an end thereof a device comprising:
a body member including a fluid flow pathway therethrough;
a chamber member defining an interior, the chamber being defined, in part, by a controlled release member;
a solid sterilizing compound located within the chamber that sublimes at ambient conditions to provide a sterilizing gas in the interior; and
the controlled release member being so constructed and arranged to allow at least some of the sterilizing gas to pass through the controlled release member and contact at least portions of the fluid flow pathway.
14. The method of claim 13 wherein the solid sterilizing compound is a halogen.
Description
BACKGROUND OF THE INVENTION

The present invention relates generally to methods and devices that utilize or include disinfectants. More specifically, the present invention relates to connectors and methods of making sterile connections.

In a variety of industries, it may be necessary to provide a device that includes at least one surface that has been sterilized. For example, in the medical industry, it is important to insure that products that are introduced into the body and provide a pathway into the body do not cause an infection due to microbials, such as bacteria. One means by which such infections can be caused is due to connections that create a fluid flow path between an access site in the body and a medical product to be infused into the body.

For example, it is, of course, generally known to provide fluid delivery to a patient for a variety of purposes, such as the delivery of a medicament, provide dialysis, and the like. Such fluid delivery necessitates in many instances, the creation of sterile fluid paths. Some such medical procedures require that the sterile fluid paths be disconnected and reconnected.

For example, it is known to use a cannula or needle to inject into a patient a solution through the use of a length of tubing which is further connected to a container housing a solution. Often, an adapter or other connector is provided for enabling fluid communication between the container and the patient through the tubing. For example, a connector may be provided at a port on a container to connect an end of the length of tubing to the container.

In the medical industry, it is also well known to provide solutions to a patient, such as for peritoneal dialysis. In peritoneal dialysis, a dialysis solution is introduced into the peritoneal cavity utilizing a catheter. After a sufficient period of time, an exchange of solutes between the dialysate and the blood is achieved. Metabolic waste removal is achieved by providing a suitable osmotic gradient. The dialysis solution is then simply drained from the body cavity through the catheter.

This procedure is generally repeated three or four times daily for such a patient. Therefore, repeated connections and disconnections are required to be made from the system. Additionally, during the procedure, the patient may be interrupted due to daily activities, such as answering the door or telephone. This may require that the patient disconnect and reconnect the system during a procedure.

At least three issues arise with respect to the disconnection and reconnection of a sterile flow path, such as that used for peritoneal dialysis. One requirement is that the system must provide a quick and simple method for disconnection from the system. It is also required that a sterile, contaminant-free, environment be maintained after disconnection. Further, such a system must provide means for a simple reconnection to the system.

If the system is so complicated that it requires dismantling the entire set-up, a patient generally will not permit the interruption and will continue receiving the solution ignoring the interruption, e.g. not answering the telephone or door. On the other hand, if the disconnection and/or reconnection cannot be performed without contaminating the system, contaminated system components must be replaced. In the alternative, the contaminated components of the system must be sterilized before reuse of the system. Again, therefore, a patient will ignore the interruption and will continue with the administration of the solution from the system.

However, despite the patient's desire, at times, interruptions, such as emergencies, require disconnection from the system. Therefore, systems must be provided that allow for the disconnection or reconnection of systems without contamination of the components of the system.

In other areas of the medical industry, the industry continues to strive to reduce the incidence of bacteria infection caused by bacteria contamination due to medical devices or procedures. This is particularly true with respect to medical apparatus that cannot normally be sterilized and autoclaved or which are used in bacteria containing environments.

For example, sutures, catheters, surgical tape, tubings, sponges, gloves, pads, surgical covers, dialysis connectors, and certain medical instruments cannot be autoclaved to insure sterility. They often must be used in areas where pathogenic bacteria are encountered. Accordingly, for such medical apparatus, the art has long sought means and methods for rendering those medical apparatus antibacterial and, hopefully, antimicrobial.

The general approach in the art has been that of coating a medical apparatus, or a surface thereof, with a bactericide. However, since most bactericides are partially water soluble, or at least require sufficient solubilization for effective antibacterial action, simple coatings of bactericides have been proven unreliable. For this reason, the art has sought to incorporate the bactericides into the medical apparatus or at least provide a stabilized coating thereon.

For example, with the increased use of polymeric materials for the construction of medical apparatus, utilizing an antimicrobial polymer has become even more desirable. The art, therefore, has sought various combinations of plastics and antibacterial agents. The antibacterial agent could be fixedly attached to or incorporated in the plastic, so that the combination thereof can be used for the manufacture of these plastic medical apparatus.

This relatively recent effort in the art has taken a myriad of different approaches. For example, U.S. Pat. No. 3,401,005, in an attempt to create a product that functions satisfactorily, applies a composition of polyvinylpyrrolidone and iodine to cotton gauze. When dried, the coated material would have a germicidal characteristic. In a similar effort, a complexed composition of polyvinylpyrolidone and iodine was placed in absorbable, gelatin foams to produce surgical sponges. In U.S. Pat. No. 3,401,005, the complexed composition was found to release iodine under use conditions.

Solid polyvinylpyrrolidone complexed with iodine is disclosed in U.S. Pat. No. 3,898,326 as useful as a disinfectant material. U.S. Pat. No. 4,017,407 extends this complexed composition to include detergents.

U.S. Pat. No. 4,381,380 relates to a polymeric bacteriocidal composition for use in antibacterial applications. The composition of U.S. Pat. No. 4,381,380 contains a plastic, sparingly cross-linked polyurethane having --O--(CO)--NH-- urethane linkages and iodine complexed with a sufficient number of the linkages to provide bactericidal properties to the composition. Iodine solutions having concentrations of from 1% to 15% were utilized for complexing the iodine with the urethane linkages.

Utilizing a plastic completely complexed with iodine as a potential self-sterilizing material has disadvantages. Among other factors, the concentration of the iodine in the solution and the solvent of the iodine solution limits the amount of iodine complexed with the polyurethane. Further, the rate of release of iodine from plastics complexed with iodine depends upon the affinity the plastic has for iodine. As a result, these complexed plastics often do not provide an effective delivery of iodine into the atmosphere or a liquid for sufficient antimicrobial treatment.

U.S. patent application Ser. No. 08/366,336 filed on Dec. 28, 1994 provides an antimicrobial material including a plastic material and a molecular halogen entrapped within the plastic material. The molecular halogen is primarily absorbed into the plastic material and only some, if any, is complexed with the plastic material.

In providing such products, a variety of factors must also be considered in addition to providing sterility. Many of the products to be treated require that the antimicrobial function be provided over a prolonged period of time, e.g., several months.

Additionally, because the microbial burdens encountered over time at various clinical and home settings can be very diverse, encompassing nearly all strains of bacterial, fungal, and viral families, the antimicrobial agent must have a broad spectrum in its ability to neutralize these infectious agents. Preferably, little or no resistance should build up through the mutation of the microbial agents against the disinfectant.

Still another requirement for the antimicrobial agent is relatively low toxicity to human tissues over long term contact. This requirement stems from the consideration for the patient and medical personnel safety.

SUMMARY OF THE INVENTION

The present invention provides an improved system and method for providing sterile connections.

To this end, the present invention provides a device comprising a body, a chamber defined, at least in part, by a portion of the body, the chamber including an interior having a solid sterilizing agent that can sublimate at ambient conditions, and a member that defines, in part, the chamber and is so constructed and arranged to allow the solid sterilizing agent to sublimate in a rate controlled manner through the member.

In an embodiment, the member is porous.

In an embodiment, the solid sterilizing agent is iodine.

In an embodiment, the device includes means for coupling the device to another component.

In an embodiment, the device includes a fluid flow path through the device, the solid sterilizing agent contacting at least portions of the fluid flow path after it sublimates through the member for at least portions of the time.

In an embodiment, the device includes means for coupling the device to another component that includes a second fluid flow path and causing the fluid flow path and second fluid flow path to be in fluid communication.

In another embodiment of the invention, a method for disinfecting an area is provided comprising the steps of providing a product having an area, housing a solid disinfectant that sublimates at ambient temperatures in a container that includes a member that is in juxtaposition to the area, and allowing the solid disinfectant to sublimate through the member into the area in a rate controlled manner.

In an embodiment of the method, the solid disinfectant is iodine.

In an embodiment of the method, the product is a connector used in a medical procedure. In a further embodiment of the method, the medical procedure is dialysis.

In an embodiment of the method, the member includes pores.

In still another embodiment, the present invention provides a medical device comprising a body including a fluid flow pathway therethrough, a chamber member defining an interior, portions of the body defining the chamber, the chamber including a controlled release member. A solid sterilizing compound that sublimates at ambient conditions is located within the chamber. And the controlled release member is so constructed and arranged to allow at least some of the sublimated solid sterilizing compound to pass through the controlled release member and contact at least portions of the fluid flow pathway.

In yet another embodiment of the present invention, a system is provided for coupling two flow pathways together comprising a first member including a first fluid flow pathway, a second member including a second fluid flow pathway therethrough. The first member includes a chamber defining an interior including a controlled release member. A solid sterilizing compound is located within the chamber and sublimates at ambient conditions. The controlled release member is so constructed and arranged to allow at least some of the solid sterilizing compound to sublimate and pass through the controlled release member and contact at least portions of the fluid flow pathway. Means for removably coupling the first and second members together are provided so as to allow the first and second fluid flow pathways to be in fluid communication.

Further, in another embodiment of the present invention, a method for performing peritoneal dialysis is provided comprising the steps of implanting in the patient a catheter that includes at an end thereof a device comprising a body member including a fluid flow pathway therethrough, a chamber member defining an interior, the chamber including a controlled release member, a solid sterilizing compound is located within the chamber that sublimates at ambient conditions. The controlled release member is so constructed and arranged to allow at least some of the solid sterilizing compound to sublimate and pass through the controlled release member and contact at least portions of the fluid flow pathway.

An advantage of the present invention is to provide an improved method for providing a sterile structure.

An additional advantage of the present invention is to provide an improved disinfectant system.

Still further, an advantage of the present invention is to provide an improved system that can be used in medical devices.

Moreover, an advantage of the present invention is to provide a sterile connection system for use in the medical industry.

Further, an advantage of the present invention is to provide improved CAPD connectors.

Additionally, an advantage of the present invention is to provide a system for sterilizing devices solutions that is self-regulating in the amount of disinfectant that is released.

Furthermore, the present invention provides a method and apparatus for providing antimicrobial action in an extremely compact form and small physical size providing patient convenience, mobility, and ease of product manufacturing.

Another advantage of the present invention is that it provides a system for providing antimicrobial action that can be used for long term antimicrobial action, e.g., several months.

Additional features and advantages of the present invention are described in, and will be apparent from, the detailed description of the presently preferred embodiments and from the drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates an environmental view of a connector of the present invention in its disconnected state between a fluid source and a patient.

FIG. 2 illustrates a cross-sectional view of an embodiment of the connector of FIG. 1.

FIG. 3 is a scanning electron micrograph at 200× magnification of microporous material that can be used in the present invention.

FIG. 4 is a micrograph of the material of FIG. 3 at 1000× magnification.

FIG. 5 illustrates schematically a device used in Example No. 2.

FIG. 6 illustrates schematically another device used in Example No. 2.

FIG. 7 illustrates graphically results of Example No. 2 setting forth iodine release versus thickness.

FIG. 8 also illustrates graphically results of Example No. 2 setting forth iodine release versus thickness of the material.

FIG. 9 illustrates graphically a model setting forth release rate versus rate-length cross-section area.

FIG. 10 illustrates schematically the device used in Example No. 3.

FIG. 11 illustrates graphically the results of Example No. 3 setting forth release rate over time.

DETAILED DESCRIPTION OF THE PRESENTLY PREFERRED EMBODIMENTS

The present invention provides a system and method for sterilizing products, such as medical devices, and more specifically, connectors used in or with medical devices. Although the present invention, in the embodiment described below, is used for medical devices and specifically connectors for use in continuous ambulatory peritoneal dialysis (CAPD), it should be appreciated that the present invention can be used for a variety of other devices in the medical industry and even outside the medical industry wherein antimicrobial agents are necessary.

To this end, the present invention provides a method and system for the controlled release of an antimicrobial agent. Pursuant to the present invention, an antimicrobial agent is provided having a significant vapor pressure at room temperature. The antimicrobial agent is used in a substantially pure, uncomplexed form. Halogens, halogen compounds, and especially molecular iodine are especially useful for this purpose.

As set forth in detail below, the antimicrobial agent is enclosed in a space where at least one of the surfaces is essentially impervious and unreactive to the agent. However, at least one rate controlling member for delivery of the antimicrobial agent in substantially its vapor form is provided. To provide a rate controlling member at least one wall, or surface is provided that allows for the diffusion of the antimicrobial agent therethrough.

In an embodiment, the surface is of a porous nature wherein the density of the structure and the pores control the delivery of the antimicrobial agent. However, the device can also be dense and pore free and control of the delivery is thereby through molecular diffusion of the antimicrobial agent through the thickness of the device.

The present invention provides many advantages for a system and method for delivering antimicrobial agents. First, the rate of delivery of the antimicrobial agent can be precisely controlled by the pore structures, size of the area for permeation, the height/length of the member and the selection of material in the case of molecular diffusion.

Because the antimicrobial agent is in substantially its pure form, the total amount of antimicrobial agent that can be delivered is significantly greater than that for a complexed agent. In this regard, in a complexed agent only a minority of the complexed mass constitutes the active agent. Because, in the present invention, the antimicrobial agent is provided in substantially its pure form, this greater capacity allows the antimicrobial agent to be maintained and available over a much longer period of time.

Additionally, the present invention provides for the separation of the storage function and release regulating function for the antimicrobial agent. This allows significant freedoms in the design and assembly of the device.

Still further, the pure form of the active agent reduces the bulk and size of the container necessary for housing the agent. This allows one to provide a device that affords greater patient convenience.

Separation of function also allows the release of antimicrobial agent to be directional. In this regard, the release of antimicrobial agent is controlled by the orientation and location of the delivery surface with respect to the volume where the antimicrobial agents are required.

As noted above, the present invention, in an embodiment, will be described with respect to use in a CAPD connection system; again, however, the application is not so limited. U.S. patent application Ser. No. 08/295,112, filed on Aug. 24, 1994 and entitled: "Transfer Set Connector With Permanent, Integral Cam Opening Closure and a Method of Using the Same" describes a connection device for a CAPD system. That disclosure is hereby incorporated by reference.

Generally, the device of that application provides a connector assembly and a method of connecting a pair of connectors to provide fluid communication between a first length of tubing and a second length of tubing. The connector assembly incorporates a hinged closure providing sealed connection and disconnection of the assembly upon connection of the connectors. In an embodiment, the connector assembly comprises a male component connected to a first length of tubing and a female component connected to a second length of tubing. The female component selectively mates with the male component providing communication between the first length of tubing and the second length of tubing. The female component comprises a hinged closure providing selected access to an orifice of the female component. Preferably, the hinged closure of the connector assembly includes a spring to maintain a seal of the hinged closure.

Referring now to the drawings, FIG. 1 illustrates an environmental view of a system employing the connector 10 of the present invention. The connector 10 is part of a connection system that is generally illustrated at 1 and includes the connector 10 that is a female component and a male component 12. As illustrated in FIG. 1, in a preferred embodiment of the present invention, the female component 10 is connected to a conduit 14 which is attached via a catheter 15 to a patient 2.

The male component 12, on the other hand, in a preferred embodiment, may be connected to a Y-set generally illustrated at 18. The Y-set 18 includes two containers 20a, 20b. Typically, for peritoneal dialysis, one of the containers, for example, the container 20a, is filled with a dialysate and the other container 20b is empty. The containers 20a and 20b are attached to the male component 12 through a length of conduit 22 to control flow of dialysate as desired. In another embodiment, the male component 12 of the connector 1 may have clamps integrated into its housing.

Referring now to FIG. 2, the connector 10 is illustrated. In the embodiment illustrated, the connector 10 includes a channel 30 that creates a fluid path from an open well 32 to a tubing 14 that is in fluid communication with the catheter on the patient 2. The channel 30 includes an opening 36 that has a greater diameter than the remaining portions of the channel. The opening 36 is designed to receive a catheter from the second male member 12 of FIG. 1. This will create a fluid flow path from the CAPD fluid source, or an empty CAPD bag, and the patient. Preferably, the opening 36 includes a seal 38 for sealingly receiving the catheter. However, in another embodiment, the seal is provided on the catheter.

As illustrated, the connector 10 includes a cover 40 for covering the open well 32 and opening 36 of the channel 30. As discussed in detail in U.S. patent application Ser. No. 08/295,112, in the embodiment of the connector 10 illustrated in FIGS. 1 and 2, the male component 12 is designed to bias open the cover 40 allowing a connection between the female connector 10 and the male component 12. To this end, the cover can pivot on a metal pin 43 that secures the cover 40 to the remaining portions of the connector 10. Preferably, the cover includes a fluorocarbon lip seal 45.

Pursuant to the present invention, in order to provide a sterile fluid flow path through the channel 30 of the connector 10, the connector includes a rate controlling antimicrobial agent releasing system 41. In a preferred embodiment illustrated, the system 41 circumscribes the opening 36 of the channel member 30. Due to the location of the system 41, antimicrobial agent is released and sterilizes the surfaces of the enclosed well 32 when the cover 40 is closed in addition to the opening 36 and the channel 30.

The rate controlling antimicrobial releasing system 41 includes an internal chamber 44. The internal chamber 44 is defined by wall members 46, 48, 50, and 52. Located within the chamber 44 is a solid antimicrobial agent 54.

In the preferred embodiment illustrated, wall members 46, 48, and 50 are impervious and unreactive to the antimicrobial agent 54. However, the system 41 includes an antimicrobial releasing wall member 52. The antimicrobial releasing wall member 52 allows the antimicrobial agent, which is in a solid form in the chamber 44, to diffuse through the wall. This allows the antimicrobial agent 54 to diffuse across the surface of the wall 52 and open well 32, as well as into parts of the channel 30 including the opening 36 therein.

The diffusion of the antimicrobial agent sterilizes the connection between the female connector 10 and male component 12. In this regard, even though the cover 40 of the connector 10 is closed, the antimicrobial agent will saturate and diffuse across the well 32. Accordingly, when it is time to make a connection between the two devices 10 and 12, the antimicrobial agent will be in place to sterilize the surface of the catheter being inserted into the channel 30 of the connector 10, as well as sterilize and decontaminate any contaminants that may be present during the connection.

Of course, the system 41 can be used on a variety of different connection systems, as well as different medical devices. What is required for the system is the use of a solid disinfectant. As set forth above, the solid disinfectant is preferably a halogen, such as iodine. The disinfectant must be capable of sublimation at ambient conditions. Additionally, the system requires that a member be present that allows for the diffusion of the halogen through the member and thereby provides a rate controlling release of the halogen. In part, the release rate of the antimicrobial agent is a function of its pressure within the chamber as well as the geometry and structure of the member.

A variety of different materials can be utilized for the rate controlling release member of the present invention. In an embodiment, the member is porous. A variety of different porous plastics may be used including thermoplastic polymers, such as polyethylene, polypropylene, PVF, PTEC, nylon, PES, and similar materials.

For example, a porous wall member can be utilized such as that sold by Porex Technologies of Fairburn, Ga. under the tradename Porex®. It has been found that a Porex material constructed from a polymer of ultra high molecular weight polyethylene (UHMWPE) having 5 to 15 micron pores can be satisfactorily utilized in a CAPD connector. The Porex® material is a microporous material with known pore size. Porex® is permeable to vapor, but not aqueous liquids; e.g., it is hydrophobic. It provides a material that is impervious to microorganisms. Additionally, the material allows for a constant rate of delivery of the antimicrobial material. FIGS. 3 and 4 illustrate photomicrographs of the Porex® material. FIG. 3 illustrates the Porex material at 200× magnification. FIG. 4 illustrates the Porex material at 1000× magnification.

For a porous structure, the density and structure of the pores control, at least in part, the delivery of the antimicrobial agent. By selection of the pore structures, size of the area for permeation, length/height and selection of material, the delivery of the antimicrobial agent can be precisely controlled.

However, the rate controlling release member can also be dense and pore-free. The control of delivery of such a member thereby through molecular diffusion of the antimicrobial agent through the thickness of the member. One such material that can be used as the antimicrobial releasing wall is inert polymeric material. By selection of the material and thickness of the wall structure, the rate of delivery of the antimicrobial agent can be precisely controlled.

Materials that it is believed can be used for the antimicrobial releasing member include: sintered polymers, metals, and ceramics; non-wovens, such as Tyvex® (HDPE); microporous membranes; track etched membranes; and dense film structures such as polyesters, thermoplastic elastomers, and low density polyolefins. Preferably, the material is hydrophobic.

By way of example, and not limitation, examples illustrating the present invention will now be set forth.

EXAMPLE NO. 1 Iodine Requirement for Microbial Kill

Saturated iodine water (˜300 PPM) was diluted with Dianeal® or Nutrineal™ solution, available from Baxter Healthcare Corporation, to a desired concentration for a microbial kill test. For example, to obtain 100 PPM solution, 1 ml of I2 saturated water was mixed with 2 ml of Dianeal® or Nutrineal™ solution. Because of the strong reaction between iodine and Nutrineal™, and therefore, loss of activity, during the antimicrobial activity determination Staphylococcus Aureus is added both before and after the dilution solution to examine the sequence effect.

The following table (Table 1) illustrates the result after one hour of dwell. Since the iodine release rate is not a factor in this example, the dwell time is relatively immaterial. This means that extension of dwell time does not kill more bacteria.

              TABLE NO. 1______________________________________    Log reduction in one hour                             ComplexIodine concentration              Carbohydrate(PPM) or μg/g      Dianeal ® (1.5%)                  Nutrineal ™                             Solution______________________________________Iodine100a  5.77        3.36       3.4550a   --          2.19       --10a   5.77        0.91       0.321a    0           0.24       0100b  5.32        6.23       4.9550b   5.32        2.47       1.7310b   5.32        0.37       0.221b    --          0.19       --Betadine ®100a  5.77        0.82       0.4450a   --          0.67       --10a   5.77        0.19       0.141a    0           0.12       0.07______________________________________ a S.A. bacteria is added to the iodine disinfectant dialysate solution. b S.A.. bacteria is added to the dialysate solution first and added the iodine disinfectant concentrate.
EXAMPLE NO. 2 Determination of Iodine Release Rate into Air and H2 O Environment

A systematic setup 60 to measure the iodine release rate by permeation throughout the UHMWPE microporous material into the air environment is shown in FIG. 5. Roughly 1×1 in2 of iodine solid 62 was prepared from the iodine powder by compression molding. A piece of UHMWPE microporous sheeting 64, POREX®, was then cut and trimmed to size to cover the iodine sublimation surface 62. The POREX® 64 was placed on the top of the iodine sublimation surface 62 which was placed on a microbalance 66. The release rate measurement was determined by the micro-balance 66. A house vacuum 68 was placed roughly 24 inches above the testing article to remove the volatile iodine gas.

FIG. 6 illustrates a setup 70 for release into water 77. A container 71 including the POREX® wall 76 (similar to wall 64 of FIG. 5) was located in a glass vial 74. The amount of iodine 78 released into the water 77 was measured by UV spectrophotometer at ABS 460 nm.

FIG. 7 illustrates the iodine release thickness contour plot for the extra fine microporous UHMWPE (5-15 μm). A constant release rate was observed for a given thickness. However, the iodine release rate is not a linear function of POREX thickness. Release rate approaches a plateau as the thickness passes 0.25", see FIG. 8.

Based on this data, a model was then generated to assess and predict the iodine release rate per unit thickness of the microporous material and per unit release surface. FIG. 9 graphically illustrates this material. For instance, if one required 500 μg/hour of iodine release, a cross-section area of 0.1 in2 in combination with a thickness of ˜0.25" will be adequate. Iodine release rate could be increased by increasing the cross sectional area and decreasing the thickness.

EXAMPLE NO. 3 Release Plug Design and Characterization

FIG. 10 illustrates schematically a device 80 to measure iodine release rate in a connector that is similar to the connector of the present invention. Wall members 82 define a cavity that includes a polysulfone member 84. The member 84 and wall member 82 define a chamber 86 that houses solid iodine 88. To tests the rate release, a UHMWPE POREX® plug 90 is placed over the iodine.

The release rate was measured in a continuous mode. Table No. 2, below, sets forth the release rate into various environments.

              TABLE NO. 2______________________________________Iodine Release Rate Into Various Environment          Release RateRelease Into   (μg/hour)                      Measurement Method______________________________________Dianeal        19.4#       Chemical analysisNutrineal      175#        Chemical analysisH2 O      42 ± 7   UV spectrophotometerOpen Air       287 ± 24 GravimetricVacuum˜20 in-Hg          1500        GravimetricSublimation (in air) w/o plug          1471        Gravimetric______________________________________ *Except release to water, all other are constant rate. #Single point data determination.

FIG. 11 illustrates, graphically, the results of the experiment of Example No. 3. It should be noted that the iodine release rate into Nutrineal™ solution environment is about 9 to 10 times greater than in Dianeal® solution, see FIG. 11. This difference is favorable in the sense that the mechanism itself provides self regulation in iodine release base on demand. This also reduces toxicity levels and at the same time conserves iodine source.

It was noted that the iodine release rate in Dianeal® and Nutrineal™ is constant within the patient usage time frame. In other words, the release rate is not reduced as the concentration of the iodine in the solution increases or decreases. This particular design is able to provide an average of 174 μg/hr and 20 μg/hr in releasing to the Nutrineal™ and Dianeal® environment, respectively. Based on earlier estimations by one-time iodine loading (Table 1), roughly 200 ppm of iodine concentration is need to provide a 5 log kill. This means that the current design, at least in theory, should provide 5 log kill in one hour. Table 3 below sets forth the accuracy of the release rate production.

              TABLE NO. 3______________________________________   lab. estimated ppm                Actual deviceRelease to   for 5 log kill                release rate                            PPM conversion*______________________________________Dianeal ˜10     19 μg/hr                             19 ppm/hrNutrineal   ˜200   174 μg/hr                            174 ppm/hr______________________________________ *PPM (μg/g) in the solution is depended on the amount of solution in the lumen of the connector. The less the volume, the higher the ppm. The conversion assumes 1 ml residual fluid.

Free iodine concentration for kill at a given time is probably less than the one time loaded situation. This required longer time to achieve 5 log kill for a continuous release system. However, the concentration can be increased by reducing the fluid volume, since ppm concentration at a given time is calculated as release rate divided by the fluid volume multiplied by the time. The lower the fluid volume, the higher the concentration.

Table Nos. 4 and 5 below illustrate the results in Nutrineal™ environment after the devices were exposed to Dianeal® and Nutrineal™ solutions continuously for one month. 1 cc of Dianeal® was used for soaking and was replaced three times a week.

                                  TABLE NO. 4__________________________________________________________________________       Device #Properties   fluid cc       #1   #2  #3   #4  #5   #8__________________________________________________________________________log reduction   1 CC       0.5      4        2Iodine      0.17 0.28                0.14 0.55                         0.45 --measured (mg)release rate       170  280 140  550 450  --(μg/hr)log reduction   0.5 CC       3    3   5    5   5    5Iodine      0.33 0.24                0.38 0.3 0.38 0.28measured (mg)release rate       165  120 190  150 190  140(μg/hr)__________________________________________________________________________

              TABLE NO. 5______________________________________                total iodine (ppm)Fluid amount    Log reduction                in 2 hours  iodine release rate______________________________________1     cc     2.2 ± 1.8 log                    310 ± 178                              310* ± 178 μg/hr0.5   cc     4.3 ± 1 log                    637 ± 112                              159 ± 28 μg/hr______________________________________ *The cause of variation is unknown at this point.

The release rates are found comparable after one month of soaking in Dianeal® solution. They are 174 μg/hr and 159 μg/hr, respectively.

It appears that the average PPM (μg/g/2 hr) correlates better with the ˜200 PPM requirement as established earlier for 5 log kill. The average PPM in 2 hours for the 0.5 CC Nutrineal solution is about 300. More PPM is needed in the controlled release simply due to the competing mechanism between the iodine complexization and the free iodine available for kill.

EXAMPLE NO. 5 Iodine Weight Determination for Transfer Set and Disinfect Connector

APD patient: 12 hours exchanges (8 p.m. to 8 a.m.) and 12 hours wet (8 a.m. to 8 p.m.). Iodine required for 6 months of service is calculated as (287 μg/hr)×12 hr+(175 μg/hr)×12 hr!×180 day=0.99792 gram ˜=1 gram.

The first part of the calculation is based on open air release rate as the worst case. In the actual device, the loss is believed to be less. The second part of the calculation is based on Nutrineal solution environment. Again, this is worst case.

CAPD patient: 3 times Dianeal (12 hours), 1 time Nutrineal (worst case 8 hours overnight), total 4 hours exchanges maximum.

Iodine required for 6 months of service is calculated as 0.5 grams.

Lose in Dianeal=20 μg/hr×12 hr=240 μg

Lost in Nutrineal=175 μg/hr×8 hr=1400 μg

Lose in exchange=287 μg/hr×4 hr=1148 μg

Based on this preliminary calculation, 1 gram of iodine is needed.

SUMMARY

An iodine POREX design is able to provide ˜170 μg/hr of iodine in the Nutrineal™ solution and ˜20 μg/hr in the Dianeal® solution. To provide 5 log kill in 2 hours, 300 ppm on average (0-600 ppm in 2 hrs, in other words 600 ppm at the end of 2 hours control release) is needed for the Nutrineal™ solution and 10 PPM on average for the Dianeal® solution environment. Current POREX® dimension with 0.5 ml or less of residual fluid meets the average 5 log kill requirement. 1 gram of iodine is sufficient to provide 6 months of usage for both APD and CAPD patients and may be extended to one year of uses depending on the iodine consumption actually.

It should be understood that various changes and modifications to the presently preferred embodiments described herein will be apparent to those skilled in the art. Such changes and modifications can be made without departing from the spirit and scope of the present invention and without diminishing its attendant advantages. It is therefore intended that such changes and modifications be covered by the appended claims.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US4249562 *Nov 6, 1978Feb 10, 1981King Lloyd H SrInline dispersal valve
US4381380 *Nov 3, 1980Apr 26, 1983Leveen Harry HThermoplastic polyurethane article treated with iodine for antibacterial use
US4624847 *Apr 22, 1985Nov 25, 1986Alza CorporationDrug delivery device for programmed delivery of beneficial drug
US4968439 *Oct 13, 1988Nov 6, 1990Medicinal Developments, Inc.Sterilizing device and method using polyurethane iodine sponge
US5004614 *Aug 25, 1989Apr 2, 1991Forum Chemicals Ltd.Controlled release device with an impermeable coating having an orifice for release of drug
US5026359 *Feb 11, 1987Jun 25, 1991The Kendall CompanyAdapter with antiseptic agent
US5070889 *Nov 15, 1990Dec 10, 1991Leveen Harry HContraceptive sponge and tampon
US5071648 *Mar 29, 1990Dec 10, 1991Merocel CorporationPolymeric broad-spectrum antimicrobial materials
US5156164 *Feb 4, 1991Oct 20, 1992Leveen Harry HIodine contraceptive sponge
US5344411 *Nov 3, 1993Sep 6, 1994Leonard BloomMethod and device for inhibiting HIV, hepatitis B and other viruses and germs when using a catheter in a medical environment
EP0126650A2 *May 21, 1984Nov 28, 1984Japan Medical Supply Company LimitedTechnique and equipment for dialysis treatment
GB1437835A * Title not available
JPS61171403A * Title not available
WO1992015286A1 *Feb 26, 1992Sep 17, 1992Nova Pharmaceutical CorporationAnti-infective and anti-inflammatory releasing systems for medical devices
Non-Patent Citations
Reference
1 *Jensen et al, In Vitro Efficacy of a Central Venous Catheter Complexed with Iodine to Prevent Bacterial Colonization, J. Antimicrob. Chemother., vol. 30, pp. 135 139 (1992).
2Jensen et al, In-Vitro Efficacy of a Central Venous Catheter Complexed with Iodine to Prevent Bacterial Colonization, J. Antimicrob. Chemother., vol. 30, pp. 135-139 (1992).
3 *Kristinsson et al, Antimicrobial Activity of Polymers Coated with Iodine Complexed Polyvinylpyrrolidone, J. Biomater. Appl., vol. 5, pp. 173 184 (1991).
4Kristinsson et al, Antimicrobial Activity of Polymers Coated with Iodine-Complexed Polyvinylpyrrolidone, J. Biomater. Appl., vol. 5, pp. 173-184 (1991).
5 *LaVeen et al, The Mythology of Povidone Iodine and the Development of Self Sterilizing Plastics, Surg. Gynecol. Obstet., vol. 176, pp. 183 190 (1993).
6LaVeen et al, The Mythology of Povidone-Iodine and the Development of Self-Sterilizing Plastics, Surg. Gynecol. Obstet., vol. 176, pp. 183-190 (1993).
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US5948385 *Sep 30, 1997Sep 7, 1999Baxter International Inc.Antimicrobial materials
US6379713 *Mar 23, 2001Apr 30, 2002REISS ANDRéMethod of treating an itch with iodine
US7306197Mar 21, 2003Dec 11, 2007Gambro Lundia AbConnection element and connecting device for tubes
US7638090Apr 25, 2006Dec 29, 2009Searete LlcSurveying sterilizer methods and systems
US7754156Oct 20, 2006Jul 13, 2010The Invention Science Fund I, LlcSurveying sterilizer methods and systems
US8029740Jul 11, 2008Oct 4, 2011The Invention Science Fund I, LlcEvent-triggered self-sterilization of article surfaces
US8114342Apr 28, 2006Feb 14, 2012The Invention Science Fund I, LlcMethods and systems for monitoring sterilization status
US8114346Sep 3, 2008Feb 14, 2012The Invention Science Fund I, LlcEvent-triggered ultraviolet light sterilization of surfaces
US8162924Dec 4, 2008Apr 24, 2012The Invention Science Fund I, LlcSystem, devices, and methods including actively-controllable superoxide water generating systems
US8178042Oct 20, 2006May 15, 2012The Invention Science Fund I, LlcMethods and systems for monitoring sterilization status
US8216173May 21, 2010Jul 10, 2012The Invention Science Fund I, LlcSystems, devices, and methods including infection-fighting and monitoring shunts
US8277724Mar 31, 2006Oct 2, 2012The Invention Science Fund I, LlcSterilization methods and systems
US8282593May 21, 2010Oct 9, 2012The Invention Science Fund I, LlcSystems, devices, and methods including infection-fighting and monitoring shunts
US8343086May 21, 2010Jan 1, 2013The Invention Science Fund I, LlcSystems, devices, and methods including infection-fighting and monitoring shunts
US8343434May 26, 2011Jan 1, 2013The Invention Science Fund I, LlcEvent-triggered self-sterilization of article surfaces
US8366652Feb 19, 2010Feb 5, 2013The Invention Science Fund I, LlcSystems, devices, and methods including infection-fighting and monitoring shunts
US8414517May 21, 2010Apr 9, 2013The Invention Science Fund I, LlcSystems, devices, and methods including infection-fighting and monitoring shunts
US8460229Nov 10, 2010Jun 11, 2013The Invention Science Fund I, LlcSystems, devices, and methods including catheters having components that are actively controllable between transmissive and reflective states
US8585627Nov 10, 2010Nov 19, 2013The Invention Science Fund I, LlcSystems, devices, and methods including catheters configured to monitor biofilm formation having biofilm spectral information configured as a data structure
US8647292Nov 10, 2010Feb 11, 2014The Invention Science Fund I, LlcSystems, devices, and methods including catheters having components that are actively controllable between two or more wettability states
US8702640Nov 10, 2010Apr 22, 2014The Invention Science Fund I, LlcSystem, devices, and methods including catheters configured to monitor and inhibit biofilm formation
US8706211Nov 10, 2010Apr 22, 2014The Invention Science Fund I, LlcSystems, devices, and methods including catheters having self-cleaning surfaces
US8734718Nov 10, 2010May 27, 2014The Invention Science Fund I, LlcSystems, devices, and methods including catheters having an actively controllable therapeutic agent delivery component
US8753304Nov 10, 2010Jun 17, 2014The Invention Science Fund I, LlcSystems, devices, and methods including catheters having acoustically actuatable waveguide components for delivering a sterilizing stimulus to a region proximate a surface of the catheter
US8758679May 20, 2010Jun 24, 2014The Invention Science Fund I, LlcSurveying sterilizer methods and systems
US8888731May 21, 2010Nov 18, 2014The Invention Science Fund I, LlcSystems, devices, and methods including infection-fighting and monitoring shunts
US8932535Sep 30, 2009Jan 13, 2015The Invention Science Fund I, LlcSurveying sterilizer methods and systems
US8992837Jul 11, 2012Mar 31, 2015The Invention Science Fund I, LlcMethods and systems for monitoring sterilization status
US9005263Dec 3, 2009Apr 14, 2015The Invention Science Fund I, LlcSystem, devices, and methods including actively-controllable sterilizing excitation delivery implants
US9101678Nov 3, 2011Aug 11, 2015Elwha LlcHeat-sanitization of surfaces
US9149648Dec 14, 2012Oct 6, 2015The Invention Science Fund I, LlcSystems, devices, and methods including infection-fighting and monitoring shunts
US9421286Jul 6, 2015Aug 23, 2016Elwha LlcHeat-sanitization of surfaces
US9474831Feb 14, 2011Oct 25, 2016Gearbox, LlcSystems, devices, and methods including implantable devices with anti-microbial properties
US20050212292 *Mar 21, 2003Sep 29, 2005Andrea ParrinoConnection element and connecting device for tubes
US20070231188 *May 23, 2006Oct 4, 2007Searete Llc, A Limited Liability Corporation Of The State Of DelawareMethods and systems for sterilization
US20070231189 *Mar 31, 2006Oct 4, 2007Searete Llc, A Limited Liability Corporation Of The State Of DelawareSterilization methods and systems
US20070231191 *Apr 28, 2006Oct 4, 2007Searete Llc, A Limited Liability Corporation Of The State Of DelawareMethods and systems for monitoring sterilization status
US20070231192 *May 26, 2006Oct 4, 2007Searete Llc, A Limited Liability Corporation Of The State Of DelawareSterilization methods and systems
US20070231204 *Oct 20, 2006Oct 4, 2007Searete Llc, A Limited Liability Corporation Of The State Of DelawareSurveying sterilizer methods and systems
US20070237674 *Oct 20, 2006Oct 11, 2007Searete Llc, A Limited Liability Corporation Of The State Of DelawareMethods and systems for monitoring sterilization status
US20070286398 *Jun 7, 2006Dec 13, 2007Venkatesan RamamoorthyVoice Recognition Dialing For Alphabetic Phone Numbers
US20080085223 *Aug 9, 2007Apr 10, 2008Searete LlcSterilization methods and systems
US20090048648 *Aug 17, 2007Feb 19, 2009Searete Llc, A Limited Liability Corporation Of The State Of DelawareSelf-sterilizing device
US20090117001 *Sep 3, 2008May 7, 2009Searete Llc, A Limited Liability Corporation Of The State Of DelawareEvent-triggered ultraviolet light sterilization of surfaces
US20090163964 *Dec 4, 2008Jun 25, 2009Searete Llc, A Limited Liability Corporation Of The State Of DelawareSystem, devices, and methods including sterilizing excitation delivery implants with general controllers and onboard power
US20090163965 *Dec 4, 2008Jun 25, 2009Searete Llc, A Limited Liability Corporation Of The State Of DelawareSystem, devices, and methods including actively-controllable sterilizing excitation delivery implants
US20090163977 *Dec 4, 2008Jun 25, 2009Searete Llc, A Limited Liability Corporation Of The State Of DelawareSystem, devices, and methods including sterilizing excitation delivery implants with cryptographic logic components
US20090171263 *Dec 4, 2008Jul 2, 2009Searete Llc, A Limited Liability Corporation Of The State Of DelawareSystem, devices, and methods including actively-controllable superoxide water generating systems
US20090177254 *Dec 4, 2008Jul 9, 2009Searete Llc, A Limited Liability Of The State Of The State Of DelawareSystem, devices, and methods including actively-controllable electrostatic and electromagnetic sterilizing excitation delivery system
US20090208378 *Mar 31, 2009Aug 20, 2009Searete LlcMethods and systems for monitoring sterilization status
US20100008822 *Jul 11, 2008Jan 14, 2010Searete Llc, A Limited Liability Corporation Of The State Of DelawareEvent-triggered self-sterilization of article surfaces
US20100086447 *Oct 2, 2009Apr 8, 2010Searete LlcMethods and systems for sterilization
US20100111775 *Sep 30, 2009May 6, 2010Searete Llc, A Limited Liability Corporation Of The State Of DelawareSurveying sterilizer methods and systems
US20100145412 *Feb 27, 2009Jun 10, 2010Searete Llc, A Limited Liability CorporationSystem, devices, and methods including actively-controllable sterilizing excitation delivery implants
US20100174346 *Dec 3, 2009Jul 8, 2010Boyden Edward SSystem, devices, and methods including actively-controllable sterilizing excitation delivery implants
US20100234793 *May 21, 2010Sep 16, 2010Searete Llc, A Limited Liability Corporation Of The State Of DelawareSystems, devices and methods including infection-fighting and monitoring shunts
US20100241049 *May 21, 2010Sep 23, 2010Searete Llc, A Limited Liability Corporation Of The State Of DelawareSystems, devices, and methods including infection-fighting and monitoring shunts
US20100241050 *May 21, 2010Sep 23, 2010Searete Llc, A Limited Liability Corporation Of The State Of DelawareSystems, devices, and methods including infection-fighting and monitoring shunts
US20100241051 *May 21, 2010Sep 23, 2010Searete Llc, A Limited Liability Corporation Of The State Of DelawareSystems, devices, and methods including infection-fighting and monitoring shunts
US20100241052 *May 21, 2010Sep 23, 2010Searete Llc, A Limited Liability Corporation Of The State Of DelawareSystems, devices, and methods including infection-fighting and monitoring shunts
US20100241053 *May 21, 2010Sep 23, 2010Searete Llc, A Limited Liability Corporation Of The State Of DelawareSystems, devices, and methods including infection-fighting and monitoring shunts
US20100241055 *May 21, 2010Sep 23, 2010Searete Llc, A Limited Liability Corporation Of The State Of DelawareSystems, devices, and methods including infection-fighting and monitoring shunts
US20100249692 *May 21, 2010Sep 30, 2010Searete Llc, A Limited Liability Corporation Of The State Of DelawareSystems, devices, and methods including infection-Fighting and monitoring shunts
US20110144566 *Nov 10, 2010Jun 16, 2011Searete Llc, A Limited Liability Corporation Of The State Of DelawareSystems, devices, and methods including catheters having an actively controllable therapeutic agent delivery component
US20110152750 *Nov 10, 2010Jun 23, 2011Searete Llc, A Limited Liability Corporation Of The State Of DelawareSystems devices, and methods including catheters configured to monitor and inhibit biofilm formation
US20110152751 *Nov 10, 2010Jun 23, 2011Searete Llc, A Limited Liability Corporation Of The State Of DelawareSystems, devices, and methods including catheters having UV-Energy emitting coatings
US20110152789 *Nov 10, 2010Jun 23, 2011Searete Llc, A Limited Liability Corporation Of The State Of DelawareSystems, devices, and methods including catheters having components that are actively controllable between two or more wettability states
US20110152978 *Nov 10, 2010Jun 23, 2011Searete Llc, A Limited Liability Corporation Of The State Of DelawareSystems, devices, and methods including catheters configured to monitor biofilm formation having biofilm spectral information configured as a data structure
US20110160643 *Nov 10, 2010Jun 30, 2011Searete Llc, A Limited Liability Corporation Of The State Of DelawareSystems, devices, and methods including catheters having acoustically actuatable waveguide components for delivering a sterilizing stimulus to a region proximate a surface of the catheter
US20110160644 *Nov 10, 2010Jun 30, 2011Searete Llc, A Limited Liability Corporation Of The State Of DelawareSystems, devices, and methods including catheters configured to release ultraviolet energy absorbing agents
US20140264151 *Mar 13, 2014Sep 18, 2014Cabot Microelectronics CorporationAqueous cleaning composition for post copper chemical mechanical planarization
Classifications
U.S. Classification604/326, 604/85, 604/203, 604/905
International ClassificationA61M39/16, A61L31/16, A61L29/16, A61L2/20
Cooperative ClassificationY10S604/905, A61L29/16, A61L2300/404, A61M39/162, A61L2300/106
European ClassificationA61M39/16B, A61L29/16
Legal Events
DateCodeEventDescription
Jun 10, 1996ASAssignment
Owner name: BAXTER INTERNATIONAL INC., ILLINOIS
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LING, MICHAEL T.K.;WOO,, LECON;LO CHENG-YING;AND OTHERS;REEL/FRAME:008004/0527;SIGNING DATES FROM 19960517 TO 19960604
Jul 21, 1998CCCertificate of correction
Sep 28, 2001FPAYFee payment
Year of fee payment: 4
Sep 30, 2005FPAYFee payment
Year of fee payment: 8
Sep 30, 2009FPAYFee payment
Year of fee payment: 12