Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS5743906 A
Publication typeGrant
Application numberUS 08/713,168
Publication dateApr 28, 1998
Filing dateSep 12, 1996
Priority dateJan 20, 1995
Fee statusLapsed
Also published asUS5603711
Publication number08713168, 713168, US 5743906 A, US 5743906A, US-A-5743906, US5743906 A, US5743906A
InventorsDavid J. Parins, Richard Keith Poppe
Original AssigneeEverest Medical Corporation
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Endoscopic bipolar biopsy forceps
US 5743906 A
Abstract
A bipolar biopsy device comprising two biopsy tissue collecting receptacles wherein at least one biopsy tissue collecting receptacle is pivotable in relation to the other and wherein each biopsy tissue collecting receptacle supports an electrode portion thereon to which current can flow and a cutting edge that is electrically insulated from the electrode portion. The electrode portion coagulates the tissue surrounding the cutting portion. The cut tissue sample is retained within the receptacles so that it maybe removed for biopsy purposes. Preferably, each biopsy receptacle is individually pivotable in relation to the other and the device is dimensioned to have utility in endoscopic or similar procedures.
Images(2)
Previous page
Next page
Claims(20)
What is claimed:
1. A bipolar biopsy device comprising:
(a) a bipolar biopsy jaw arrangement having a first and second jaw member, said first jaw member is pivotable in relation to the second jaw member, a first tissue specimen collecting receptacle on a distal end of said first jaw member and a second tissue specimen collecting receptacle on a distal end of said second jaw member and a cutting edge on said first tissue specimen collecting receptacle;
(b) first conductive coating on said first tissue specimen collecting receptacle and a second conductive coating on said second tissue specimen collecting receptacle;
(c) a spacing means for electrically isolating said conductive coatings from said first and second tissue specimen collecting receptacles; and
(d) means to supply a voltage across said conductive coatings.
2. The bipolar biopsy device of claim 1 wherein each said conductive coating includes metal traces.
3. The bipolar biopsy device of claim 1 wherein each said conductive coating has a thickness in the range of 1-5 mils.
4. The bipolar biopsy device of claim 1 and further including a first insulative layer positioned between said first conductive coating and said first tissue specimen collecting receptacle and a second insulative layer positioned between said second conductive coating and said second tissue specimen collecting receptacle.
5. The bipolar biopsy device of claim 4 wherein said first insulative layer has a thickness in the range of 1-5 mils and said second insulative layer has a thickness in the range of 1-5 mils.
6. A bipolar biopsy device comprising:
(a) an elongated tubular member having a proximal end, a distal end and a lumen extending therebetween;
(b) first and second biopsy collecting receptacles formed from electrically conductive material disposed at said distal end of the tubular member and configured to hold a tissue sample therebetween, said first biopsy collecting receptacle is pivotable in relation to the second biopsy collecting receptacle between an open position and a closed position;
(c) a cutting edge on said first biopsy collecting receptacle for cutting said tissue sample;
(d) a first electrode formed by a conductive coating on said first biopsy collecting receptacle and a second electrode formed by a conductive coating on said second biopsy collecting receptacle;
(e) a first insulating layer interposed between said first biopsy collecting receptacle and said first electrode and a second insulating layer between said second biopsy collecting receptacle and said second electrode;
(f) spacing means on said first and second biopsy collecting receptacles for electrically isolating said first electrode from said second electrode;
(g) a handle disposed at the proximal end of the tubular member, said handle being mechanically coupled to said first biopsy collecting receptacle; and
(h) means extending through said lumen for applying a voltage between said first and second electrodes.
7. The bipolar biopsy device of claim 6 wherein said first conductive coating includes metal traces and said second conductive coating includes metal traces.
8. The bipolar biopsy device of claim 6 wherein said first conductive coating has a thickness in the range of 1-5 mils and said second conductive coating has a thickness in the range of 1-5 mils.
9. The bipolar biopsy device of claim 6 wherein said first insulating layer is a first insulative coating on said first biopsy collecting receptacle and said second insulating layer is a second insulative coating on said second collecting receptacle.
10. The bipolar biopsy device of claim 9 wherein said first insulative coating has thickness in the range of 1-5 mils and said second insulative coating has thickness in the range of 1-5 mils.
11. A bipolar electrosurgical instrument for biopsy procedures comprising:
(a) first and second biopsy jaw members, each comprising a coated tissue collecting receptacle including a cutting edge, an intermediate electrically insulative coating on an exterior of said receptacle, and an electrically conductive coating on an exterior of said intermediate coating;
(b) means for pivotally joining said first and second biopsy jaw members together with their respective cutting edges facing one another;
(c) means coupled to at least one said first and second biopsy members for imparting a closing and opening like movement relative to the other of said first and second biopsy members;
(d) a spacing means for electrically isolating said first biopsy member from said second biopsy member; and
(e) means for applying a voltage between the electrically conductive coatings.
12. The bipolar electrosurgical instrument for biopsy procedures of claim 11 wherein said electrically conductive coating includes metal traces.
13. The bipolar electrosurgical instrument for biopsy procedures of claim 11 wherein said electrically conductive coating has a thickness in the range of 1-5 mils.
14. The bipolar electrosurgical instrument for biopsy procedures of claim 11 wherein said electrically insulative coating is ceramic.
15. The bipolar electrosurgical instrument for biopsy procedures of claim 11 wherein said electrically insulative coating has a thickness in the range of 1-5 mils.
16. A bipolar electrosurgical instrument for biopsy procedures comprising:
(a) an elongated tubular member having a proximal end, a distal end, and a lumen extending therebetween;
(b) first and second biopsy jaw members, each comprising a coated tissue collecting receptacle including a cutting edge, an intermediate insulating coating on an exterior of said receptacle, and a conductive coating on an interior of said intermediate coating;
(c) means pivotally joining first and second biopsy jaw members to the distal end of said elongated tubular member with their respective cutting edges facing one another;
(d) a handle affixed to the proximal end of said tubular member;
(e) means coupled with said handle and extending through said lumen for imparting a closing and opening movement to at least one of said first and second biopsy jaw members relative to the other;
(f) a spacing means for electrically isolating said first biopsy jaw member from said second biopsy member; and
(g) means extending through said lumen for applying a voltage between said conductive coatings.
17. The bipolar electrosurgical instrument for biopsy procedures of claim 16 wherein said conductive coating includes metal traces.
18. The bipolar electrosurgical instrument for biopsy procedures of claim 16 wherein said conductive coating has a thickness in the range of 1-5 mils.
19. The bipolar biopsy instrument for biopsy procedures of claim 16 wherein said insulating coating is a ceramic.
20. The bipolar electrosurgical instrument for biopsy procedures of claim 16 wherein said insulating coating has a thickness in the range of 1-5 mils.
Description

This is a Divisional of application Ser. No. 08/375,953, filed on Jan. 20, 1995, now U.S. Pat. No. 5,603,711.

I. FIELD OF THE INVENTION

This invention relates generally to a bipolar biopsy instrument, and more particularly to a bipolar biopsy instrument incorporating tissue specimen collecting receptacles with coagulation and mechanical cutting features, such that electrocoagulation and mechanical Cutting of the tissue specimen retained within the biopsy receptacles can be achieved without requiring an instrument exchange.

II. BACKGROUND OF THE INVENTION

Obtaining tissue samples for diagnostic purposes is a commonly performed surgical procedure known as a biopsy. Such a procedure requires two steps: cutting a tissue specimen and then retrieving the cut tissue specimen. Electrosurgical devices are well-known surgical instruments which have been used in biopsy procedures for coagulation the tissue removal site. Coagulation of the tissue occurs with electrocoagulating instruments including at least one conductive electrode. Radio frequency (RF) energy is conducted through this electrode to either a remote conductive body plate (monopolar) or to a second, closely spaced conductive electrode (bipolar). Current passing through the space between the two electrodes will coagulate the blood and other body fluids placed between them.

In bipolar electrosurgical instruments, the two electrodes are closely spaced to one another, usually at the distal end of an instrument handle. The return path is very short and only involves the tissue and fluids in a short path between the two electrodes. Electrosurgical devices can also cut tissue by applying a voltage across two electrodes causing an arc discharge which creates such a high heat energy that the cells comprising the tissue are desicated.

A bipolar electrosurgical biopsy instrument where the two tissue specimen collecting members mechanically cut the tissue specimen and are also electrically insulated from one another and comprise the bipolar electrodes for electrocoagulation are known. Metal-to-metal contact along sharpened edges of cutting electrode surfaces of a bipolar instrument can result in an electrical short. Furthermore, the attempt to use a rivet or a screw as the pivot point for the biopsy tissue specimen collecting receptacles is another area where short-circuiting is likely to occur. When such a short exists, the electrical current does not flow through the body or tissue to effect coagulation, but instead, follows the short circuit path from one electrode to another. Additionally, the histological integrity of the tissue specimen is not always maintained when electrodes are used for both cutting of the tissue specimen and coagulation of the removal site.

Certain bipolar instruments have been developed incorporating metal cutting surfaces which also act as electrodes. For example, bipolar scissors have been developed with blades at the distal tip performing coagulation and cutting of the tissue with a mechanical shearing action. The two blades are effectively insulated from one another, allowing them to function as bipolar electrodes for electrocoagulating small blood vessels in the surgical field. U.S. Pat. No. 5,352,222 discloses such a surgical scissors with bipolar coagulation features. While surgical scissors are utilized in a coagulation and cutting operation, a need exists for a single instrument to be used in biopsy procedures which require coagulation, cutting and intact removal of the tissue specimen. In the past, biopsy procedures often have required an exchange of instruments to perform these steps.

A need, therefore, exists for a single bipolar electrosurgical biopsy device where the coagulating electrodes are in close proximity to the mechanical cutting surfaces (since they are both located on the tissue specimen collecting receptacles) and yet, isolates the tissue specimen from the electrodes to maintain histological integrity.

SUMMARY OF THE INVENTION

It is accordingly a principle object of the present invention to provide a bipolar electrosurgical biopsy instrument having a metal cutting edge located on the specimen collecting members of the biopsy device for the mechanical cutting of the tissue specimen with the outer surface of the specimen collecting members also acting as electrodes for coagulating the tissue.

Another object of the present invention is to provide a bipolar electrosurgical biopsy device having metal (stainless steel) biopsy specimen collecting members with metal cutting edges that are electrically insulated from the coagulating electrodes also contained on the metal biopsy specimen collecting members in close proximity to the metal cutting edge.

Yet another object of the present invention is to present a bipolar electrosurgical biopsy device that maintains histological integrity of the collected specimen after the application of coagulating energy.

Still another object of the present invention is to provide a bipolar biopsy device with coagulating and cutting features contained on the tissue specimen collecting members so as to avoid the need to switch between instruments during a biopsy procedure, thus making the biopsy procedure more efficient and easier to perform.

A further object of the present invention is to provide a bipolar biopsy device having a miniaturized distal tissue specimen collecting member that allows the instrument to be inserted through a cannula, a laparoscope or the working lumen of an endoscope.

The foregoing objects of the present invention are achieved by providing an instrument having two opposing stainless steel tissue specimen collecting biopsy members. In a first embodiment, the tissue specimen collecting biopsy members each comprise a cup-like receptacle with at least one of the cups being metal having a sharpened perimeter surface thereon. The cup-like receptacles are affixed by a non-conductive adhesive to the interior of a metal support, which is made to act as an electrode. That is to say, an electrically insulating bonding layer is disposed intermediate the tissue specimen collecting receptacle and a support therefor which functions as an electrode when energized.

In a second embodiment, at least one of the tissue specimen collecting receptacles is a conductive material such as stainless steel. An insulating layer coats the exterior of the stainless steel receptacle and then a conductive layer is coated on top of the insulating layer. The conductive layer is wired to a RF voltage source and acts as an electrode.

The biopsy instrument of both embodiments has the tissue collecting receptacles pivotally secured to the distal end of an elongated tube. An actuating link extends through the tube to a moveable portion of a handle so that when the handle is manipulated, the biopsy receptacles can be made to open and close relative to one another. Also, extending through the lumen from electrical terminals on the handle to the electrodes are conductors which permit a voltage to be applied between the two electrodes.

When the biopsy receptacles are closed around the tissue specimen to be coagulated, cut and retrieved, the metal cutting surfaces come in contact with each other after cutting through the tissue whereas a gap remains between the electrode supports or the electrode coatings to allow coagulation of the tissue therebetween when the electrode surfaces are energized. As the biopsy receptacles have a sharpened cutting edge and the sharpened cutting edge is insulated from the receptacles' electrode supports or the conductive coatings, there will be no short circuit between the electrode and the metal cutting surfaces as the device closes around the tissue to be cut and retained within the biopsy receptacle.

DESCRIPTION OF THE DRAWINGS

The foregoing features, objects, and advantages of the invention will be come apparent to those skilled in the art from the following detailed description of a preferred embodiment, especially when considered in conjunction with the accompanying drawings in which like numerals and the several views refer to corresponding parts.

FIG. 1 is a side elevation view of a biopsy device having two moveable biopsy tissue collecting members, the drawing being partially sectioned to illustrate the working elements of the embodiment;

FIG. 2 is a cross-section view along line 2--2 of FIG. 1;

FIG. 3 is an enlarged side elevation view of the distal portion of FIG. 1 with the drawing being partially sectioned;

FIG. 4 is a top view of the distal end with the drawing being partially sectioned;

FIG. 5 is a side elevational and partially cross-sectioned view of the bipolar biopsy device in accordance with an alternative handle construction;

FIG. 6 is a cross-sectional view taken along line 6--6 in FIG. 5;

FIG. 7 is an enlarged side elevational view of the distal portion of the bipolar biopsy device in accordance with an alternative biopsy tissue collecting member construction, the drawing being partially sectioned to illustrate the working elements of the alternative embodiment; and

FIG. 8 is a top view of the alternative embodiment with the figure being partially cross-sectioned.

DETAILED DESCRIPTION OF A PREFERRED EMBODIMENT

Referring to FIG. 1, the bipolar biopsy device is shown for use in endoscopic or other similar scope-type procedures. The biopsy device has an elongated tubular member 12 of a diameter and length sufficient for use in cooperation with a procedure performed using a scope type instrument. The tubular member 12 has a proximal end 14 affixed to a handle assembly 16, a distal end 18 containing the biopsy tissue collecting assembly 20, and a lumen 22 which extends for the entire length of tubular member 12. As shown in the cross-sectional view of FIG. 2, the tubular member 12 comprises a metal tube 24, such as stainless steel, coated over its exterior with an electrical insulator 26. The electrical insulator 26 is preferably a polymer such as TEFLONŽ. In addition to being an insulator, such a coating provides a lubricous surface which enhances its slidability through the lumen of an endoscope.

Press fit into the distal end 18 of the tubular member 12 is the biopsy tissue collecting assembly 20. The biopsy tissue collecting assembly 20 comprises a first jaw member 28 and a second jaw member 30 pivotally joined to each other by an insulated rivet or screw 31 which extends through aligned bores formed through the two jaw members 28 and 30. Both jaw members 28 and 30 are, thus, pivotally moveable with respect to each other.

Each biopsy jaw member 28 and 30 has an electrically conductive support 44 and 46 as shown in FIG. 2. Tissue specimen collecting cup like receptacles 32 and 34 are formed in the facing surfaces of the electrically conductive supports 44 and 46. The receptacles 32 and 34 are designed to contain cup shaped members therein. As shown in FIGS. 3 and 4, each receptacle 32 and 34 has a peripheral edge 36 and 38 sharpened for cutting the tissue specimen. Insulating layers 40 and 42 are disposed between the specimen collecting receptacles 32 and 34 and the electrically conductive supports 44 and 46 and act to bond each receptacle to its respective support. The insulating layers 40 and 42 can be made of any suitable insulating material and are preferably a non-conductive adhesive such as an epoxy adhesive. The electrically conductive supports 44 and 46 act as electrodes and are made of metal, preferably stainless steel. At least one of the receptacles 32 and 34 is made of metal, preferably stainless steel. The other may likewise be made of metal or other suitable material such as plastic. If it is not made of metal, it does not need a sharpened cutting edge, but may provide a surface for the opposing cutting edge to contact.

As can be seen in FIGS. 1 and 3, the cutting edges 36 and 38 extend beyond the outer surface of the electrode supports 44 and 46. Thus, when the biopsy assembly is in the closed position, the sharpened cutting edges 36 and 38 contact each other, whereas an isolating space 48 exists between the two electrodes supports 44 and 46. Thus, when RF current is applied to the electrode supports the tissue which surrounds the area contained within the receptacles 32 and 34 is cauterized. The cutting edges 36 and 38 mechanically cut the tissue specimen and then the specimen is retained with the cavity 50 formed when the biopsy assembly 20 is in the closed position.

As is evident in FIGS. 3 and 4, the biopsy tissue collecting assembly 20 comprises, in addition to the biopsy members 28 and 30, an insulated base 100 having a proximal portion 102 and a distal portion 104. The distal portion 104 has a bore 106 therethrough which provides a frame to which the electrode supports 44 and 46 of jaw members 28 and 30 are pivotally attached, via the pivot pin or screw 31. The proximal portion 102 of the base 100 is preferably press fit within the tubular member 12 and has two parallel longitudinal bores 110 and 112 through which two rigidly electrically conductive rods 114 and 116, each preferably covered with a layer of electrical insulation, pass. With reference to FIGS. 1 and 2, it is seen that the two rods 114 and 116 extend through the lumen 22 of the tubular member 12.

Referring to FIGS. 1, 3 and 4, which show the distal portion of the instrument 10, the rods 114 and 116 are pivotally coupled to their respective biopsy jaw members 28 and 30 by respective rigid links 120 and 122. The distal ends of the rods 114 and 116 are turned laterally outwardly to fit through respective proximal pivot point openings 124 and 126 of the links 120 and 122 to thereafter form a rivet type connection. Situated at each of the proximal portions of the jaw members 28 and 30 are lateral projecting posts 128 and 130 which pass through distal pivot openings 132 and 134 of the links 120 and 122 and likewise form rivet type connections. The rigid links 120 and 122 thereby can pivot at each of their respective proximal and distal end portions.

Proximal to the base 100 within the tubular member 12 is disposed an insulator member 136 through which rods 114 and 116 pass. The insulator member 136 functions to electrically isolate the rods 114 and 116 from each other while mechanically acting to maintain them in a parallel, spaced-apart condition as they traverse the lumen 22. As seen in FIG. 1, the respective proximal end portions of the rods 114 and 116 extend out from the proximal end of the tubular member 12 and terminate in a electrical connector 140 contained on the handle assembly. External leads originating from an electrosurgical generator (not shown) as known in the art provides current to the connector 140 to thereby provide current to the rods 114 and 116, links 120 and 122 and electrode supports 44 and 46.

Disposed at the proximal end 14 of the tubular member 12 is the handle assembly 16 of the type commonly used in gastrointestinal endoscopic procedures. The handle assembly 16 has a stationary member 142 with a longitudinal slot 144 extending therein. A ring member 146, intended to receive a thumb of the operator, is located at the proximal end of the stationary member 142. The distal end of the stationary member contains two bores for receiving the rods 114 and 116 therethrough. A reciprocating spool member 148 forms the moveable member of the handle assembly 16. Spool 148 has two bores for receiving walls 150 and 152 defining the longitudinal slot 144 therethrough. The spool 148 is thus configured to reciprocate along these walls 150 and 152. The spool 148 additionally has bores for receiving the proximal ends of rods 114 and 116. The rods 114 and 116 extend through apertures in the distal end of the stationary member 142 into the longitundinal slit 144 and are secured to the spool 148. The rods 114 and 116 terminate in the electrical connector 140, also located in spool 148, which receives the external leads 138 from the electrosurgical generator.

As evident from FIG. 1, operation of the handle assembly 16 by sliding the spool 148 towards the distal end of the handle assembly translationally moves both of the rods 114 and 116, causing the biopsy jaw members 28 and 30 to close. Likewise, moving the spool 148 towards the proximal end of the handle assembly causing the biopsy jaw members 28 and 30 to open. Biopsy jaw members 28 and 30 are thereby pivotally opened and closed. In this manner, dual biopsy member movement is accomplished. If only a single jaw biopsy member movement is desired, it is understood that in such a known linkage arrangement only one biopsy member is joined to and pivotable by moving the moveable handle member of the handle assembly.

Referring to FIGS. 5 and 6, a slightly modified version of the handle embodiment of FIG. 1 is shown. The ceramic insulator-spacer 136 of FIG. 1 is replaced by an elongated double lumen tube 200, which is preferably formed from nylon or another lubricous polymer and which extends through the lumen 22 of the tubular member 12 substantially the entire length thereof. The double lumen extends through a bore formed in the proximal end of the stationary handle member and into the spool member to the electrical Connector. FIG. 7 shows a cross-sectional view taken through the barrel in the double lumen tube 200. The push rods 114 and 116 extend individually through the separate lumens 202 and 208 and thus remain electrically isolated from one another. In addition to providing this electrical isolation, the double lumen tube 200 also supports the push rods 114 and 116 along substantially their entire length to prevent any bowing thereof when the push rods are in compression upon actuation of the biopsy device. As such, the biopsy jaw members 28 and 30 are made to open and close in a more controlled fashion, thereby improving the "feel" of the device.

An alternative arrangement of the biopsy cup assembly 222 is shown in FIGS. 7 and 8. Biopsy jaw members 250 and 252 consist of two tissue specimen collecting cup shaped receptacles 254 and 256 with edges 258 and 260 honed for cutting. The tissue specimen collecting receptacles 254 and 256 are preferably made of a metal such as stainless steel. The exterior of each receptacle 254 and 256 is coated with an insulating material such as ceramic, glass, a high temperature plastic, or another nonconductive material. These coatings 262 and 264 are preferably 1-5 mils thick. Conductive coatings 266 and 268 are deposited or otherwise placed over the insulative coatings 262 and 264, respectively. These conductive coatings 266 and 268 are preferably metal traces which are paste-printed or electro-plated onto the insulative nonconductive material of coatings 262 and 264. These metal traces can be composites, silver, gold, palladium, platinum, or other metal suitable for use on medical instruments. The conductive coating 266 and 268 are preferably 1-5 mils thick. As with the first embodiment, only one of the receptacles needs to have the sharpened cutting edge. The remaining cup shaped receptacle need not be made of metal and can be of any suitable material such as plastic.

The biopsy tissue collecting assembly 222 of the second embodiment comprises, in addition to the biopsy members, an insulated frame 270 having a proximal portion 272 and a distal portion consisting of two side members 274 and 276. Each side member has a bore, 278 and 280, aligned with bores 282 and 284 located on the proximal end of the biopsy tissue collecting recepticals 250 and 252. A pivot pin 286 for enabling the receptacles 250 and 252 to be pivotably moveable with respect to each other extends through bores 282 and 284 on the receptacles 250 and 252 and bores 278 and 280 on the side members 274 and 276 of the insulated frame 270. The side members 274 and 276 thus provide a support to which the biopsy tissue collecting receptacles 250 and 252 are attached. The proximal portion 272 of frame 270 has a tubular configuration and is press fit into the distal end 286 of the tubular member 288.

The mechanism used to open and close the biopsy receptacles 250 and 252 of this embodiment incorporates a single, nonconductive push rod 290 and corresponding linkage, although any actuation mechanism which results in dual or single pivotal movement of the tissue specimen collecting receptacle is acceptable. The single push rod 290 extends from the spool 148 through the tubular member 288. The distal end of the single push rod 290 has a bore 292. Two links 294 and 296 are situated on opposing sides of the distal end and each has a bore, 298 and 300 respectively, aligned with the rod bore 292. A pivot pin 302 extends through bores 292, 298 and 300, pivotally securing the links 294 and 296 to the push rod 290.

Biopsy tissue collecting receptacle 250 has a bore 304 on its proximal end 251 which is aligned with a bore 306 on link 294. A pivot pin 308 extends therethrough and pivotally secures the biopsy receptacle 250 to the link 294. Likewise, biopsy tissue collecting receptacle 252 has a bore 310 on its proximal 253 end which is aligned with a bore 314 on link 296. A pivot pin 312 extends through these two bores to pivotally secure the biopsy receptacle 252 to the link 296. When the spool 148 is moved towards the distal end, the push rod 290 also moves towards the distal end. This causes links 294 and 296 to open at their distal ends which opens the biopsy receptacles 250 and 252. When rod 290 is moved towards the proximal end, the links 294 and 296 close, which in turn closes the biopsy receptacles 250 and 252.

Two conductive wires also extend through the tubular member 222 from the electrical connector located on the handle assembly to the conductive coatings 266 and 268 located on the tissue collecting receptacles 250 and 252. A first conductive wire 318 extends through the tubular member 222 to the conductive coating 268. The conductive wire 318 has an insulative covering to keep the wire electrically isolated and preventing any short circuiting. Likewise, a second conductive wire 320 extends through the tubular member to conductive coating 266 and it also has an insulative covering to electrically isolate the wire and prevent any short circuiting. In this embodiment it is preferable to use a triple lumen tube 322 which extends through the tubular member 222. The rod 190 and conductive wires 318 and 320 can extend through their individual lumens electrically isolated from each other and further to support them along their length.

The conductive coatings 266 and 268 cover only a portion of the insulative coatings 262 and 264 in order to create an isolating space 276. Thus, when the biopsy members are in the closed position and the sharpened cutting edges 258 and 260 have cut the tissue specimen to be retained within cavity 278, the application of RF current to the two conductive coatings 266 and 268 results in the cauterization of the tissue, vessels and the like located within the gap 276 and bridging the electrodes.

This invention has been described herein in considerable detail in order to comply with the patent statutes and to provide those skilled in the art with the information needed to apply the novel principles and to construct and use such specialized components as are required. However, it is to be understood that the invention can be carried out by specifically different equipment and devices, and that various modifications, both as to the equipment and details and operating procedures, can be accomplished without departing from the scope of the invention itself.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US4953559 *Nov 14, 1988Sep 4, 1990Consiglio Nazionale Delle RicercheCatheter for endocardial biopsy, which can also be used for identifying the point of origin of ventricular arrhythmia
US5217458 *Apr 9, 1992Jun 8, 1993Everest Medical CorporationBipolar biopsy device utilizing a rotatable, single-hinged moving element
US5295990 *Sep 11, 1992Mar 22, 1994Levin John MTissue sampling and removal device
US5352222 *Mar 15, 1994Oct 4, 1994Everest Medical CorporationSurgical scissors with bipolar coagulation feature
US5482054 *Jun 24, 1994Jan 9, 1996Symbiosis CorporationEdoscopic biopsy forceps devices with selective bipolar cautery
EP0593929A1 *Sep 23, 1993Apr 27, 1994United States Surgical CorporationSurgical biopsy forceps apparatus
FR2355521A1 * Title not available
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US6024744 *Aug 27, 1997Feb 15, 2000Ethicon, Inc.Combined bipolar scissor and grasper
US6030384 *May 1, 1998Feb 29, 2000Nezhat; CamranBipolar surgical instruments having focused electrical fields
US6123701 *Oct 8, 1998Sep 26, 2000Perfect Surgical Techniques, Inc.Methods and systems for organ resection
US6136014 *Sep 1, 1998Oct 24, 2000Vivant Medical, Inc.Percutaneous tissue removal device
US6152924 *Sep 24, 1999Nov 28, 2000Parins; David J.Bipolar biopsy forceps
US6162220 *Apr 30, 1999Dec 19, 2000Perfect Surgical Techniques, Inc.Bipolar surgical instruments having focused electrical fields
US6358268Mar 6, 2000Mar 19, 2002Robert B. HuntSurgical instrument
US6451018Jun 9, 2000Sep 17, 2002Sherwood Services AgLaparoscopic bipolar electrosurgical instrument
US6464704Jun 20, 2001Oct 15, 2002Sherwood Services AgBipolar electrosurgical instrument with replaceable electrodes
US6471709Nov 24, 1999Oct 29, 2002Vivant Medical, Inc.Expandable ring percutaneous tissue removal device
US6506208Oct 9, 2001Jan 14, 2003Robert B. HuntSurgical instrument
US6511480Oct 22, 1999Jan 28, 2003Sherwood Services AgOpen vessel sealing forceps with disposable electrodes
US6514252Jul 19, 2001Feb 4, 2003Perfect Surgical Techniques, Inc.Bipolar surgical instruments having focused electrical fields
US6540695Dec 28, 2000Apr 1, 2003Senorx, Inc.Biopsy anchor device with cutter
US6659105Jan 27, 1999Dec 9, 2003Senorx, Inc.Tissue specimen isolating and damaging device and method
US6669696Feb 26, 2002Dec 30, 2003Karl Storz Gmbh & Co. KgBipolar medical instrument
US6676658Jun 18, 2001Jan 13, 2004Senorx, Inc.Tissue specimen isolating and damaging device and method
US6682528Sep 17, 2002Jan 27, 2004Sherwood Services AgEndoscopic bipolar electrosurgical forceps
US6726686Apr 1, 2002Apr 27, 2004Sherwood Services AgBipolar electrosurgical instrument for sealing vessels
US6749610Aug 15, 2002Jun 15, 2004Kirwan Surgical Products, Inc.Electro-surgical forceps having fully plated tines and process for manufacturing same
US7135020 *Apr 6, 2001Nov 14, 2006Sherwood Services AgElectrosurgical instrument reducing flashover
US7326209 *Jul 16, 2003Feb 5, 2008Pentax CorporationBipolar high frequency treatment tool for endoscope
US7470272 *Jun 30, 2004Dec 30, 2008Medtronic, Inc.Device and method for ablating tissue
US7641651Jul 28, 2005Jan 5, 2010Aragon Surgical, Inc.Devices and methods for mobilization of the uterus
US7651467Sep 2, 2004Jan 26, 2010Senorx, IncDilation devices and methods for removing tissue specimens
US7655007Feb 2, 2010Covidien AgMethod of fusing biomaterials with radiofrequency energy
US7678111Nov 29, 2005Mar 16, 2010Medtronic, Inc.Device and method for ablating tissue
US7686804Jan 10, 2006Mar 30, 2010Covidien AgVessel sealer and divider with rotating sealer and cutter
US7686827Oct 21, 2005Mar 30, 2010Covidien AgMagnetic closure mechanism for hemostat
US7708735Jul 19, 2005May 4, 2010Covidien AgIncorporating rapid cooling in tissue fusion heating processes
US7722607Nov 8, 2006May 25, 2010Covidien AgIn-line vessel sealer and divider
US7744615Jul 18, 2006Jun 29, 2010Covidien AgApparatus and method for transecting tissue on a bipolar vessel sealing instrument
US7753909Apr 29, 2004Jul 13, 2010Covidien AgElectrosurgical instrument which reduces thermal damage to adjacent tissue
US7766910Nov 9, 2006Aug 3, 2010Tyco Healthcare Group LpVessel sealer and divider for large tissue structures
US7771425Feb 6, 2006Aug 10, 2010Covidien AgVessel sealer and divider having a variable jaw clamping mechanism
US7776036Mar 13, 2003Aug 17, 2010Covidien AgBipolar concentric electrode assembly for soft tissue fusion
US7776037Jul 7, 2006Aug 17, 2010Covidien AgSystem and method for controlling electrode gap during tissue sealing
US7789878Sep 29, 2006Sep 7, 2010Covidien AgIn-line vessel sealer and divider
US7794461Mar 24, 2009Sep 14, 2010Aragon Surgical, Inc.Method and apparatus for surgical electrocautery
US7799026Nov 13, 2003Sep 21, 2010Covidien AgCompressible jaw configuration with bipolar RF output electrodes for soft tissue fusion
US7799028Sep 26, 2008Sep 21, 2010Covidien AgArticulating bipolar electrosurgical instrument
US7803156Mar 8, 2006Sep 28, 2010Aragon Surgical, Inc.Method and apparatus for surgical electrocautery
US7811283Oct 8, 2004Oct 12, 2010Covidien AgOpen vessel sealing instrument with hourglass cutting mechanism and over-ratchet safety
US7819872Sep 29, 2006Oct 26, 2010Covidien AgFlexible endoscopic catheter with ligasure
US7828798Mar 27, 2008Nov 9, 2010Covidien AgLaparoscopic bipolar electrosurgical instrument
US7837685Jul 13, 2005Nov 23, 2010Covidien AgSwitch mechanisms for safe activation of energy on an electrosurgical instrument
US7846158May 5, 2006Dec 7, 2010Covidien AgApparatus and method for electrode thermosurgery
US7846161Sep 29, 2006Dec 7, 2010Covidien AgInsulating boot for electrosurgical forceps
US7857812Dec 18, 2006Dec 28, 2010Covidien AgVessel sealer and divider having elongated knife stroke and safety for cutting mechanism
US7862565May 10, 2006Jan 4, 2011Aragon Surgical, Inc.Method for tissue cauterization
US7877852Sep 19, 2008Feb 1, 2011Tyco Healthcare Group LpMethod of manufacturing an end effector assembly for sealing tissue
US7877853Sep 19, 2008Feb 1, 2011Tyco Healthcare Group LpMethod of manufacturing end effector assembly for sealing tissue
US7879035Nov 8, 2006Feb 1, 2011Covidien AgInsulating boot for electrosurgical forceps
US7887535Aug 17, 2004Feb 15, 2011Covidien AgVessel sealing wave jaw
US7887536Aug 19, 2009Feb 15, 2011Covidien AgVessel sealing instrument
US7896878Mar 12, 2009Mar 1, 2011Coviden AgVessel sealing instrument
US7909823Jan 17, 2006Mar 22, 2011Covidien AgOpen vessel sealing instrument
US7922718Oct 12, 2006Apr 12, 2011Covidien AgOpen vessel sealing instrument with cutting mechanism
US7922953Sep 28, 2006Apr 12, 2011Covidien AgMethod for manufacturing an end effector assembly
US7931649Feb 14, 2007Apr 26, 2011Tyco Healthcare Group LpVessel sealing instrument with electrical cutting mechanism
US7935052Feb 14, 2007May 3, 2011Covidien AgForceps with spring loaded end effector assembly
US7942874May 10, 2006May 17, 2011Aragon Surgical, Inc.Apparatus for tissue cauterization
US7947041Aug 19, 2009May 24, 2011Covidien AgVessel sealing instrument
US7951149Oct 17, 2006May 31, 2011Tyco Healthcare Group LpAblative material for use with tissue treatment device
US7951150Feb 22, 2010May 31, 2011Covidien AgVessel sealer and divider with rotating sealer and cutter
US7951165Aug 18, 2003May 31, 2011Boston Scientific Scimed, Inc.Endoscopic medical instrument and related methods of use
US7955332Sep 21, 2005Jun 7, 2011Covidien AgMechanism for dividing tissue in a hemostat-style instrument
US7963965May 10, 2007Jun 21, 2011Covidien AgBipolar electrosurgical instrument for sealing vessels
US8016827Oct 9, 2008Sep 13, 2011Tyco Healthcare Group LpApparatus, system, and method for performing an electrosurgical procedure
US8034052Nov 1, 2010Oct 11, 2011Covidien AgApparatus and method for electrode thermosurgery
US8070746May 25, 2007Dec 6, 2011Tyco Healthcare Group LpRadiofrequency fusion of cardiac tissue
US8123743Jul 29, 2008Feb 28, 2012Covidien AgMechanism for dividing tissue in a hemostat-style instrument
US8128624May 30, 2006Mar 6, 2012Covidien AgElectrosurgical instrument that directs energy delivery and protects adjacent tissue
US8142473Oct 3, 2008Mar 27, 2012Tyco Healthcare Group LpMethod of transferring rotational motion in an articulating surgical instrument
US8147489Feb 17, 2011Apr 3, 2012Covidien AgOpen vessel sealing instrument
US8162973Aug 15, 2008Apr 24, 2012Tyco Healthcare Group LpMethod of transferring pressure in an articulating surgical instrument
US8192433Aug 21, 2007Jun 5, 2012Covidien AgVessel sealing instrument with electrical cutting mechanism
US8197479Dec 10, 2008Jun 12, 2012Tyco Healthcare Group LpVessel sealer and divider
US8197633Mar 15, 2011Jun 12, 2012Covidien AgMethod for manufacturing an end effector assembly
US8211105May 7, 2007Jul 3, 2012Covidien AgElectrosurgical instrument which reduces collateral damage to adjacent tissue
US8221416Sep 12, 2008Jul 17, 2012Tyco Healthcare Group LpInsulating boot for electrosurgical forceps with thermoplastic clevis
US8235992Sep 23, 2008Aug 7, 2012Tyco Healthcare Group LpInsulating boot with mechanical reinforcement for electrosurgical forceps
US8235993Sep 24, 2008Aug 7, 2012Tyco Healthcare Group LpInsulating boot for electrosurgical forceps with exohinged structure
US8236025Sep 23, 2008Aug 7, 2012Tyco Healthcare Group LpSilicone insulated electrosurgical forceps
US8241282Sep 5, 2008Aug 14, 2012Tyco Healthcare Group LpVessel sealing cutting assemblies
US8241283Sep 17, 2008Aug 14, 2012Tyco Healthcare Group LpDual durometer insulating boot for electrosurgical forceps
US8241284Aug 14, 2012Covidien AgVessel sealer and divider with non-conductive stop members
US8251996Sep 23, 2008Aug 28, 2012Tyco Healthcare Group LpInsulating sheath for electrosurgical forceps
US8257352Sep 7, 2010Sep 4, 2012Covidien AgBipolar forceps having monopolar extension
US8257387Aug 15, 2008Sep 4, 2012Tyco Healthcare Group LpMethod of transferring pressure in an articulating surgical instrument
US8267935Apr 4, 2007Sep 18, 2012Tyco Healthcare Group LpElectrosurgical instrument reducing current densities at an insulator conductor junction
US8267936Sep 23, 2008Sep 18, 2012Tyco Healthcare Group LpInsulating mechanically-interfaced adhesive for electrosurgical forceps
US8277447Nov 18, 2009Oct 2, 2012Covidien AgSingle action tissue sealer
US8292888Apr 22, 2002Oct 23, 2012Tyco Healthcare Group LpBipolar or ultrasonic surgical device
US8298228Sep 16, 2008Oct 30, 2012Coviden AgElectrosurgical instrument which reduces collateral damage to adjacent tissue
US8298232Oct 30, 2012Tyco Healthcare Group LpEndoscopic vessel sealer and divider for large tissue structures
US8303582Sep 15, 2008Nov 6, 2012Tyco Healthcare Group LpElectrosurgical instrument having a coated electrode utilizing an atomic layer deposition technique
US8303586Feb 10, 2009Nov 6, 2012Covidien AgSpring loaded reciprocating tissue cutting mechanism in a forceps-style electrosurgical instrument
US8317726Jun 15, 2010Nov 27, 2012Boston Scientific Scimed, Inc.Biopsy forceps assemblies
US8317787Aug 28, 2008Nov 27, 2012Covidien LpTissue fusion jaw angle improvement
US8333765Jun 4, 2012Dec 18, 2012Covidien AgVessel sealing instrument with electrical cutting mechanism
US8348948Jul 29, 2010Jan 8, 2013Covidien AgVessel sealing system using capacitive RF dielectric heating
US8361071Aug 28, 2008Jan 29, 2013Covidien AgVessel sealing forceps with disposable electrodes
US8361072Nov 19, 2010Jan 29, 2013Covidien AgInsulating boot for electrosurgical forceps
US8366709Dec 27, 2011Feb 5, 2013Covidien AgArticulating bipolar electrosurgical instrument
US8382754Jan 26, 2009Feb 26, 2013Covidien AgElectrosurgical forceps with slow closure sealing plates and method of sealing tissue
US8394095Jan 12, 2011Mar 12, 2013Covidien AgInsulating boot for electrosurgical forceps
US8394096Mar 12, 2013Covidien AgOpen vessel sealing instrument with cutting mechanism
US8425504Nov 30, 2011Apr 23, 2013Covidien LpRadiofrequency fusion of cardiac tissue
US8454602May 4, 2012Jun 4, 2013Covidien LpApparatus, system, and method for performing an electrosurgical procedure
US8469956Jul 21, 2008Jun 25, 2013Covidien LpVariable resistor jaw
US8469957Oct 7, 2008Jun 25, 2013Covidien LpApparatus, system, and method for performing an electrosurgical procedure
US8469993Feb 17, 2004Jun 25, 2013Boston Scientific Scimed, Inc.Endoscopic instruments
US8486107Oct 20, 2008Jul 16, 2013Covidien LpMethod of sealing tissue using radiofrequency energy
US8496656Jan 16, 2009Jul 30, 2013Covidien AgTissue sealer with non-conductive variable stop members and method of sealing tissue
US8523890Sep 12, 2012Sep 3, 2013Covidien LpBipolar or ultrasonic surgical device
US8523898Aug 10, 2012Sep 3, 2013Covidien LpEndoscopic electrosurgical jaws with offset knife
US8535312Sep 25, 2008Sep 17, 2013Covidien LpApparatus, system and method for performing an electrosurgical procedure
US8540711Jul 11, 2007Sep 24, 2013Covidien AgVessel sealer and divider
US8551088Apr 1, 2009Oct 8, 2013Applied Medical Resources CorporationElectrosurgical system
US8551091Mar 30, 2011Oct 8, 2013Covidien AgVessel sealing instrument with electrical cutting mechanism
US8562598Apr 1, 2009Oct 22, 2013Applied Medical Resources CorporationElectrosurgical system
US8568411Mar 31, 2009Oct 29, 2013Applied Medical Resources CorporationElectrosurgical system
US8568444Mar 7, 2012Oct 29, 2013Covidien LpMethod of transferring rotational motion in an articulating surgical instrument
US8574229May 2, 2007Nov 5, 2013Aesculap AgSurgical tool
US8579894Apr 1, 2009Nov 12, 2013Applied Medical Resources CorporationElectrosurgical system
US8591506Oct 16, 2012Nov 26, 2013Covidien AgVessel sealing system
US8597296Aug 31, 2012Dec 3, 2013Covidien AgBipolar forceps having monopolar extension
US8597297Aug 29, 2006Dec 3, 2013Covidien AgVessel sealing instrument with multiple electrode configurations
US8623017Jul 23, 2009Jan 7, 2014Covidien AgOpen vessel sealing instrument with hourglass cutting mechanism and overratchet safety
US8623276Feb 9, 2009Jan 7, 2014Covidien LpMethod and system for sterilizing an electrosurgical instrument
US8636734Apr 11, 2008Jan 28, 2014Senorx, Inc.Tissue specimen isolating and damaging device and method
US8636761Oct 9, 2008Jan 28, 2014Covidien LpApparatus, system, and method for performing an endoscopic electrosurgical procedure
US8641713Sep 15, 2010Feb 4, 2014Covidien AgFlexible endoscopic catheter with ligasure
US8647341Oct 27, 2006Feb 11, 2014Covidien AgVessel sealer and divider for use with small trocars and cannulas
US8668689Apr 19, 2010Mar 11, 2014Covidien AgIn-line vessel sealer and divider
US8672859Oct 23, 2012Mar 18, 2014Boston Scientific Scimed, Inc.Biopsy forceps assemblies
US8679114Apr 23, 2010Mar 25, 2014Covidien AgIncorporating rapid cooling in tissue fusion heating processes
US8696662Feb 6, 2007Apr 15, 2014Aesculap AgElectrocautery method and apparatus
US8696667Aug 9, 2012Apr 15, 2014Covidien LpDual durometer insulating boot for electrosurgical forceps
US8728072Feb 6, 2007May 20, 2014Aesculap AgElectrocautery method and apparatus
US8734443Sep 19, 2008May 27, 2014Covidien LpVessel sealer and divider for large tissue structures
US8740901Jan 20, 2010Jun 3, 2014Covidien AgVessel sealing instrument with electrical cutting mechanism
US8764748Jan 28, 2009Jul 1, 2014Covidien LpEnd effector assembly for electrosurgical device and method for making the same
US8784417Aug 28, 2008Jul 22, 2014Covidien LpTissue fusion jaw angle improvement
US8795274Aug 28, 2008Aug 5, 2014Covidien LpTissue fusion jaw angle improvement
US8845665Aug 15, 2013Sep 30, 2014Covidien LpBipolar or ultrasonic surgical device
US8852228Feb 8, 2012Oct 7, 2014Covidien LpApparatus, system, and method for performing an electrosurgical procedure
US8858554Jun 4, 2013Oct 14, 2014Covidien LpApparatus, system, and method for performing an electrosurgical procedure
US8882766Jan 24, 2006Nov 11, 2014Covidien AgMethod and system for controlling delivery of energy to divide tissue
US8898888Jan 26, 2012Dec 2, 2014Covidien LpSystem for manufacturing electrosurgical seal plates
US8915910Apr 1, 2009Dec 23, 2014Applied Medical Resources CorporationElectrosurgical system
US8939973Nov 27, 2013Jan 27, 2015Covidien AgSingle action tissue sealer
US8945125Sep 10, 2010Feb 3, 2015Covidien AgCompressible jaw configuration with bipolar RF output electrodes for soft tissue fusion
US8945126Nov 27, 2013Feb 3, 2015Covidien AgSingle action tissue sealer
US8945127Jan 23, 2014Feb 3, 2015Covidien AgSingle action tissue sealer
US8968314Sep 25, 2008Mar 3, 2015Covidien LpApparatus, system and method for performing an electrosurgical procedure
US9023043Sep 23, 2008May 5, 2015Covidien LpInsulating mechanically-interfaced boot and jaws for electrosurgical forceps
US9028493Mar 8, 2012May 12, 2015Covidien LpIn vivo attachable and detachable end effector assembly and laparoscopic surgical instrument and methods therefor
US9039694Oct 20, 2011May 26, 2015Just Right Surgical, LlcRF generator system for surgical vessel sealing
US9095347Sep 18, 2008Aug 4, 2015Covidien AgElectrically conductive/insulative over shoe for tissue fusion
US9107672Jul 19, 2006Aug 18, 2015Covidien AgVessel sealing forceps with disposable electrodes
US9113898Sep 9, 2011Aug 25, 2015Covidien LpApparatus, system, and method for performing an electrosurgical procedure
US9113903Oct 29, 2012Aug 25, 2015Covidien LpEndoscopic vessel sealer and divider for large tissue structures
US9113905Jun 20, 2013Aug 25, 2015Covidien LpVariable resistor jaw
US9113940Feb 22, 2012Aug 25, 2015Covidien LpTrigger lockout and kickback mechanism for surgical instruments
US9144455Jun 6, 2011Sep 29, 2015Just Right Surgical, LlcLow power tissue sealing device and method
US9149323Jan 25, 2010Oct 6, 2015Covidien AgMethod of fusing biomaterials with radiofrequency energy
US9192431Jul 23, 2010Nov 24, 2015Ethicon Endo-Surgery, Inc.Electrosurgical cutting and sealing instrument
US9198717Feb 2, 2015Dec 1, 2015Covidien AgSingle action tissue sealer
US9216012Jul 6, 2012Dec 22, 2015Senorx, IncMethods and apparatus for securing medical instruments to desired locations in a patient's body
US9247988Jul 21, 2015Feb 2, 2016Covidien LpVariable resistor jaw
US20020052601 *Sep 25, 2001May 2, 2002Goldberg S. NahumSystem and method for performing plate type radiofrequency ablation
US20020165541 *Apr 22, 2002Nov 7, 2002Whitman Michael P.Bipolar or ultrasonic surgical device
US20030032956 *Sep 13, 2002Feb 13, 2003Lands Michael JohnLaparoscopic bipolar electrosurgical instrument
US20030144605 *Jan 23, 2002Jul 31, 2003Senorx, Inc.Biopsy anchor device with cutter
US20040019352 *Jul 16, 2003Jan 29, 2004Pentax CorporationBipolar high frequency treatment tool for endoscope
US20040087943 *Apr 6, 2001May 6, 2004Dycus Sean T.Vessel sealer an divider
US20040116924 *Apr 6, 2001Jun 17, 2004Dycus Sean T.Vessel sealer and divider
US20040147925 *Dec 15, 2003Jul 29, 2004Buysse Steven PBipolar electrosurgical instrument for sealing vessels
US20040176762 *Apr 6, 2001Sep 9, 2004Lawes Kate R.Electrosurgical instrument reducing flashover
US20040193153 *Apr 5, 2002Sep 30, 2004Sartor Joe DonMolded insulating hinge for bipolar instruments
US20040204709 *Jan 13, 2004Oct 14, 2004Senorx, Inc.Tissue specimen isolating and damaging device and method
US20040225288 *Apr 7, 2004Nov 11, 2004Buysse Steven PaulBipolar electrosurgical instrument for sealing vessels
US20040243125 *Jan 22, 2002Dec 2, 2004Sean DycusVessel sealer and divider
US20040260198 *Feb 17, 2004Dec 23, 2004Elliott RothbergEndoscopic instruments
US20050004570 *Apr 29, 2004Jan 6, 2005Chapman Troy J.Electrosurgical instrument which reduces thermal damage to adjacent tissue
US20050021026 *Apr 28, 2004Jan 27, 2005Ali BailyMethod of fusing biomaterials with radiofrequency energy
US20050033354 *Aug 5, 2004Feb 10, 2005Scimed Life Systems, Inc.Endoscopic surgical instrument
US20050038462 *Sep 2, 2004Feb 17, 2005Senorx, Inc.Dilation devices and methods for removing tissue specimens
US20050043758 *Aug 18, 2003Feb 24, 2005Scimed Life Systems, Inc.Endoscopic medical instrument and related methods of use
US20050107785 *Sep 29, 2004May 19, 2005Dycus Sean T.Vessel sealer and divider having elongated knife stroke and safety for cutting mechanism
US20050113826 *Sep 2, 2004May 26, 2005Johnson Kristin D.Vessel sealing instrument with electrical cutting mechanism
US20050113828 *Nov 20, 2003May 26, 2005Chelsea ShieldsElectrically conductive/insulative over-shoe for tissue fusion
US20050119655 *Nov 17, 2004Jun 2, 2005Moses Michael C.Open vessel sealing instrument with cutting mechanism
US20050186440 *Feb 19, 2004Aug 25, 2005Karlheinz HausmannFlame retardant surface coverings
US20050283149 *Jun 7, 2005Dec 22, 2005Thorne Jonathan OElectrosurgical cutting instrument
US20060052777 *Sep 9, 2004Mar 9, 2006Dumbauld Patrick LForceps with spring loaded end effector assembly
US20060161150 *Feb 16, 2006Jul 20, 2006Keppel David SElectrosurgical electrode having a non-conductive porous ceramic coating
US20060189981 *Feb 21, 2006Aug 24, 2006Dycus Sean TVessel sealer and divider
US20060271037 *May 25, 2005Nov 30, 2006Forcept, Inc.Assisted systems and methods for performing transvaginal hysterectomies
US20060271041 *May 10, 2006Nov 30, 2006Joseph EderMethod for Tissue Cauterization
US20070005061 *Jun 30, 2005Jan 4, 2007Forcept, Inc.Transvaginal uterine artery occlusion
US20070027450 *Jul 28, 2005Feb 1, 2007Forcept, Inc.Devices and methods for mobilization of the uterus
US20070129726 *Feb 6, 2007Jun 7, 2007Eder Joseph CElectrocautery method and apparatus
US20070208341 *Feb 12, 2007Sep 6, 2007Kirwan Surgical Products, Inc.Electro-surgical forceps having fully copper-plated tines and process for manufacturing same
US20070213711 *Mar 8, 2006Sep 13, 2007Joseph EderMethod and apparatus for surgical electrocautery
US20070244538 *Jun 22, 2007Oct 18, 2007Eder Joseph CTransvaginal Uterine Artery Occlusion
US20070265613 *Apr 3, 2007Nov 15, 2007Edelstein Peter SethMethod and apparatus for sealing tissue
US20080064982 *Jun 15, 2007Mar 13, 2008Brett NowlinTissue sample protecting cauterizing biopsy forceps
US20080287828 *Apr 23, 2008Nov 20, 2008Fred BurbankBiopsy anchor device with cutter
US20090082766 *Sep 19, 2008Mar 26, 2009Tyco Healthcare Group LpTissue Sealer and End Effector Assembly and Method of Manufacturing Same
US20090138013 *Jan 7, 2009May 28, 2009Thorne Jonathan OElectrosurgical tool with moveable electrode that can be operated in a cutting mode or a coagulation mode
US20090182323 *Mar 24, 2009Jul 16, 2009Aragon Surgical, Inc.Electrocautery method and apparatus
US20090182333 *Jul 16, 2009Joseph EderMethod and Apparatus for Surgical Electrocautery
US20100198106 *Feb 18, 2008Aug 5, 2010Multi Biopsy Sampling Co. ApsBiopsy forceps for taking one or more samples
USD499181May 15, 2003Nov 30, 2004Sherwood Services AgHandle for a vessel sealer and divider
USD649249Feb 15, 2007Nov 22, 2011Tyco Healthcare Group LpEnd effectors of an elongated dissecting and dividing instrument
USD680220Jan 12, 2012Apr 16, 2013Coviden IPSlider handle for laparoscopic device
USD748259Dec 29, 2014Jan 26, 2016Applied Medical Resources CorporationElectrosurgical instrument
USRE36795 *Oct 3, 1996Jul 25, 2000Everest Medical CorporationSurgical scissors with bipolar coagulation feature
USRE44834Dec 7, 2012Apr 8, 2014Covidien AgInsulating boot for electrosurgical forceps
WO2000044295A1 *Jan 25, 2000Aug 3, 2000Senorx IncTissue specimen isolating and damaging device and method
WO2001015614A1 *Aug 18, 2000Mar 8, 2001Bacher UweBipolar medical instrument
WO2008033593A1 *Jun 18, 2007Mar 20, 2008Boston Scient Scimed IncTissue sample protecting cauterizing biopsy forceps
WO2008101497A1 *Feb 18, 2008Aug 28, 2008Multi Biopsy Sampling Co ApsBiopsy forceps for taking one or more samples
Classifications
U.S. Classification606/51, 600/564
International ClassificationA61B18/14, A61B18/00, A61B10/06, A61B10/00
Cooperative ClassificationA61B18/1445, A61B10/06, A61B2018/126, A61B10/02, A61B2018/1861, A61B2018/00083
European ClassificationA61B10/06, A61B18/14F2
Legal Events
DateCodeEventDescription
Nov 20, 2001REMIMaintenance fee reminder mailed
Apr 29, 2002LAPSLapse for failure to pay maintenance fees
Jun 25, 2002FPExpired due to failure to pay maintenance fee
Effective date: 20020428