Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS5786059 A
Publication typeGrant
Application numberUS 08/860,160
PCT numberPCT/EP1995/005083
Publication dateJul 28, 1998
Filing dateDec 21, 1995
Priority dateDec 21, 1994
Fee statusPaid
Also published asCA2208510A1, CN1063246C, CN1170445A, DE59508075D1, EP0799343A1, EP0799343B1, WO1996019607A1
Publication number08860160, 860160, PCT/1995/5083, PCT/EP/1995/005083, PCT/EP/1995/05083, PCT/EP/95/005083, PCT/EP/95/05083, PCT/EP1995/005083, PCT/EP1995/05083, PCT/EP1995005083, PCT/EP199505083, PCT/EP95/005083, PCT/EP95/05083, PCT/EP95005083, PCT/EP9505083, US 5786059 A, US 5786059A, US-A-5786059, US5786059 A, US5786059A
InventorsDierk Frank, Franz Thonnessen, Andreas Zimmermann
Original AssigneeHoechst Aktiengesellschaft
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Fiber web/aerogel composite material comprising bicomponent fibers, production thereof and use thereof
US 5786059 A
Abstract
The disclosure is a composite material having at least one layer of fiber web and aerogel particles, wherein the fiber web comprises at least one bicomponent fiber material, the bicomponent fiber material having lower and higher melting regions and the fibers of the web being bonded not only to the aerogel particles but also to each other by the lower melting regions of the fiber material, a process for its production and its use.
Images(4)
Previous page
Next page
Claims(14)
What is claimed is:
1. A composite material having at least one layer of fiber web and aerogel particles, wherein the fiber web comprises at least one bicomponent fiber material, the bicomponent fiber material having lower and higher melting regions and the fibers of the web being bonded not only to the aerogel particles but also to each other by the lower melting regions of the fiber material.
2. The composite material of claim 1, wherein the bicomponent fiber material has a core-sheath structure.
3. The composite material of claim 1, wherein the fiber web further comprises at least one simple fiber material.
4. The composite material of at least one of claims 1 to 3, wherein the linear density of the bicomponent fiber material is within the range from 2 to 20 dtex and the linear density of the simple fibers is within the range from 0.8 to 40 dtex.
5. The composite material of claim 1, wherein the proportion of aerogel particles in the composite material is at least 40% by volume.
6. The composite material of claim 1, wherein the aerogel is an SiO2 aerogel.
7. The composite material of claim 1, wherein the bicomponent fiber material, the simple fiber material and/or the aerogel particles comprise at least one IR opacifier.
8. The composite material of claim 1, wherein the aerogel particles have porosities above 60%, densities below 0.4 g/cm3 and a thermal conductivity of less than 40 mW/mK, preferably less than 25 mW/mK.
9. The composite material of claim 1, wherein the aerogel particles have hydrophobic surface groups.
10. The composite material of claim 1, wherein the fiber web is provided on one or both sides with at least one cover layer in each case, the cover layers being identical or different.
11. The composite material of claim 10, wherein the cover layers comprise plastics films, metal foils, metallized plastics films or preferably web layers composed of fine simple fibers and/or fine bicomponent fibers.
12. The composite material of claim 1 in the form of a panel or mat.
13. A process for producing a composite material as claimed in claim 1, which comprises sprinkling the aerogel particles into a fiber web comprising at least one bicomponent fiber material having lower and higher melting regions and thermally consolidating the resulting fiber composite at temperatures above the lower melting temperature and below the higher melting temperature with or without employment of pressure.
14. The use of a composite material as claimed in claim 1 for thermal insulation, acoustic insulation and/or as adsorption material for gases, vapors and liquids.
Description
DESCRIPTION

The present invention relates to a composite material having at least one layer of fiber web and aerogel particles, to a process for its production and to its use.

Aerogels, especially those having porosities above 60% and densities below 0.4 g/cm3, have a very low density, a high porosity and a low pore diameter and so an extremely low thermal conductivity and hence find application as thermal insulation materials, for example as described in EP-A-0 171 722.

However, the high porosity also leads to low mechanical stability not only of the gel from which the aerogel is dried but also of the dried aerogel itself.

Aerogels in the wider sense, i.e. in the sense of "gel having air as dispersion medium", are produced by drying a suitable gel. The term "aerogel" in this sense embraces aerogels in the narrower sense, xerogels and cryogels. A dried gel is an aerogel in the narrower sense when the liquid of the gel has been removed at temperatures above the critical temperature and starting from pressures above the critical pressure. If, by contrast, the liquid of the gel is removed subcritically, for example through formation of a liquid-vapor boundary phase, the resulting gel is termed a xerogel. It is to be noted that the gels of the invention are aerogels, in the sense of gel having air as dispersion medium.

The shaping of the aerogel is completed during the sol-gel transition. Once the solid gel structure has formed, the external shape can only be altered through comminution, for example grinding, the material being too brittle for any other form of processing.

However, there are many applications for which it is necessary to use the aerogels in the form of certain shaped structures. In principle, shaping is possible during gelling. However, the diffusion-governed exchange of solvents which is typically necessary during production (see, for example, U.S. Pat. No. 4,610,863, EP-A 0 396 076 re aerogels; see, for example, WO 93/06044 re aerogel composite materials) and the similarly diffusion-governed drying would lead to uneconomically long production times. It is therefore sensible to carry out any shaping after the formation of the aerogel, i.e. after drying, without any significant applications-dictated change taking place to the internal structure of the aerogel.

There are many applications, for example the insulation of curved or irregularly shaped surfaces, requiring flexible panels or mats composed of an insulant.

DE-A 33 46 180 describes bending-resistant panels composed of pressed structures based on pyrogenic silica aerogel in conjunction with a reinforcement in the form of long mineral fibers. However, the pyrogenic silica aerogel is not an aerogel within the above meaning, since it is not produced by drying a gel and hence has a completely different pore structure; it is therefore mechanically more stable and can therefore be pressed without destroying the microstructure, but it has a higher thermal conductivity than typical aerogels within the above meaning. The surface of such pressed structures is very sensitive and therefore has to be hardened, for example through the use of a binder at the surface or has to be protected by lamination with a film. Furthermore, the resulting pressed structure is not compressible.

Furthermore, German patent application P 44 18 843.9 describes a mat composed of a fiber-reinforced xerogel. These mats have very low thermal conductivity because of the very high aerogel content, but their production takes a relatively long time because of the above-described diffusion problems. More particularly, the production of thicker mats is only sensibly possible by combining a plurality of thin mats and hence necessitates additional expense.

It is an object of the present invention to provide a granular aerogel composite material which has low thermal conductivity, is mechanically stable and makes it simple to produce mats or panels.

This object is achieved by a composite material having at least one layer of fiber web and aerogel particles, wherein the fiber web comprises at least one bicomponent fiber material, the bicomponent fiber material having lower and higher melting regions and the fibers of the web being bonded not only to the aerogel particles but also to each other by the lower melting regions of the fiber material. The thermal consolidation of the bicomponent fibers leads to a bond between the low melting parts of the bicomponent fibers and hence ensures a stable web. At the same time, the lower melting part of the bicomponent fibers bonds the aerogel particles to the fiber.

The bicomponent fibers are manufactured fibers which are composed of two firmly interconnected polymers of different chemical and/or physical constructions and which have regions having different melting points, i.e. lower and higher melting regions. The melting points of the lower and higher melting regions preferably differ by at least 10° C. The bicomponent fibers preferably have a core-sheath structure. The core of the fiber is a polymer, preferably a thermoplastic polymer, whose melting point is higher than that of the thermoplastic polymer which forms the sheath. The bicomponent fibers are preferably polyester/copolyester bicomponent fibers. It is further possible to use bicomponent fiber variations composed of polyester/polyolefin, e.g. polyester/polyethylene, or polyester/copolyolefin or bicomponent fibers having an elastic sheath polymer. However, it is also possible to use side-by-side bicomponent fibers.

The fiber web may further comprise at least one simple fiber material which becomes bonded to the lower melting regions of the bicomponent fibers in the course of thermal consolidation.

The simple fibers are organic polymer fibers, for example polyester, polyolefin and/or polyamide fibers, preferably polyester fibers. The fibers can be round, trilobal, pentalobal, octalobal, ribbony, like a Christmas tree, dumbbell-shaped or otherwise star-shaped in cross section. It is similarly possible to use hollow fibers. The melting point of these simple fibers should be above that of the lower melting regions of the bicomponent fibers.

To reduce the radiative contribution to thermal conductivity, the bicomponent fibers, i.e. the high and/or low melting component, and optionally the simple fibers can be blackened with an IR opacifier such as, for example, carbon black, titanium dioxide, iron oxides or zirconium dioxide or mixtures thereof. For coloration, the bicomponent fibers and also optionally the simpler fibers can also be dyed.

The diameter of the fibers used in the composite should preferably be smaller than the average diameter of the aerogel particles to ensure the binding of a high proportion of aerogel in the fiber web. Very thin fiber diameters make it possible to produce mats which are very flexible, whereas thicker fibers, having greater bending stiffness, lead to bulkier and more rigid mats.

The linear density of the simple fibers should preferably be between 0.8 and 40 dtex, and the linear density of the bicomponent fibers should preferably be between 2 and 20 dtex.

It is also possible to use mixtures of bicomponent fibers and simple fibers composed of different materials, having different cross sections and/or different linear densities.

To ensure good consolidation of the web, on the one hand, and good adhesion of the aerogel granules, on the other, the weight proportion of bicomponent fiber should be between 10 and 100% by weight, preferably between 40 and 100% by weight, based on the total fiber content.

The volume proportion of the aerogel in the composite material should be as high as possible, at least 40%, preferably above 60%. However, to ensure that the composite has some mechanical stability, the proportion should not be above 95%, preferably not above 90%.

Suitable aerogels for the compositions of the invention are those based on metal oxides which are suitable for the sol-gel technique (C. J. Brinker, G. W. Scherer, Sol-Gel-Science, 1990 chapters 2 and 3), such as, for example, silicon or aluminum compounds or those based on organic substances which are suitable for the sol-gel technique, such as melamine-formaldehyde condensates (U.S. Pat. No. 5,086,085) or resorcinol-formaldehyde condensates (U.S. Pat. No. 4,873,218). They can also be based on mixtures of the abovementioned materials. Preference is given to using aerogels comprising silicon compounds, especially SiO2 aerogels, very particularly preferably SiO2 xerogels. To reduce the radiative contribution to thermal conductivity, the aerogel may comprise IR opacifier such as, for example, carbon black, titanium dioxide, iron oxides, zirconium dioxide or mixtures thereof.

In addition, the thermal conductivity of aerogels decreases with increasing porosity and decreasing density. This is why aerogels having porosities above 60% and densities below 0.4 g/cm3 are preferred. The thermal conductivity of the aerogel granules should be less than 40 mW/mK, preferably less than 25 mW/mK.

In a preferred embodiment, the aerogel particles have hydrophobic surface groups. This is because--if a later collapse of the aerogels due to condensation of moisture in the pores is to be avoided--it is advantageous for the inner surface of the aerogels to be equipped with covalently held hydrophobic groups which will not become detached under the action of water. Preferred groups for durable hydrophobicization are trisubstituted silyl groups of the general formula --Si(R)3, particularly preferably trialkyl- and/or triaryl-silyl groups, where each R is independently of the others a nonreactive, organic radical such as C1 -C18 -alkyl or C6 -C14 -aryl, preferably C1 -C6 -alkyl or phenyl, especially methyl, ethyl, cyclohexyl or phenyl, which may be additionally substituted by functional groups. Trimethylsilyl groups are particularly advantageous to obtain durable hydrophobicization of the aerogel. These groups can be introduced as described in WO 94/25149 or by gas phase reaction between the aerogel and, for example, an activated trialkylsilane derivative, such as, for example, a chlorotrialkylsilane or a hexaalkyldisilazane (compare R. ller, The Chemistry of Silica, Wiley & Sons, 1979).

The size of the grains depends on the application of the material. However, to bind a high proportion of aerogel granules, the particles should be greater than the fiber diameter, preferably greater than 30 μm. To obtain high stability, the granules should not be coarse; the granules should preferably be less than 2 cm.

To achieve high aerogel volume proportions, it is preferably possible to use granules having a bimodal particle size distribution. Other suitable distributions can be used as well.

The fire class of the composite is determined by the fire class of the aerogel and of the fibers. To obtain an optimum fire class for the composite, low-flammability fiber types should be used, for example Trevira CSŪ.

If the composite material consists exclusively of the fiber web which comprises the aerogel particles, mechanical stress on the composite material can cause aerogel granules to break or to become detached from the fiber, so that fragments may fall out of the web.

For certain applications, it is therefore advantageous for the fiber web to be provided on one or both sides with at least one cover layer in each case, the cover layers being identical or different. The cover layers can be adhered either in the course of the thermal consolidation via the low melting component of the bicomponent fiber or by means of some other adhesive. The cover layer can be for example a plastics film, preferably a metal foil or a metallized plastics film. Furthermore, each cover layer can itself consist of a plurality of layers.

Preference is given to a fiber web/aerogel composite material in the form of mats or panels which has an aerogel-comprising fiber web as middle layer and on both sides a cover layer each, at least one of the cover layers comprising web layers composed of a mixture of fine, simple fibers and fine bicomponent fibers, and the individual fiber layers being thermally consolidated within and between themselves.

The choice of bicomponent fibers and of simple fibers for the cover layer is subject to the same remarks as the choice of fibers for the fiber web holding the aerogel particles. To obtain a highly impenetrable cover layer, however, both the simple fibers and the bicomponent fibers should have diameters less than 30 μm, preferably less than 15 μm.

To obtain greater stability or impenetrability for the surface layers, the web layers of the cover layers can be needled.

It is a further object of the present invention to provide a process for producing the composite material of the invention.

The composite material of the invention can be produced for example by the following process:

To produce the fiber web, staple fibers are used in the form of commercially available flat or roller cards. While the web is laid according to the processes familiar to the person skilled in the art, the granular aerogel is sprinkled in. Incorporation of the aerogel granules into the fiber assembly should be very uniform. Commercially available sprinklers ensure this.

When cover layers are used, the fiber web can be laid onto one cover layer while the aerogel is sprinkled in and, after completion of this operation, the top cover layer is applied.

If cover layers composed of a finer fiber material are used, initially the lower web layer is laid from fine fibers and/or bicomponent fibers, and optionally needled, according to known processes. The aerogel-comprising fiber assembly is applied on top as described above. For a further, upper cover layer, it is possible to proceed as for the lower web layer and on fine fibers and/or bicomponent fibers to lay a layer and optionally needle it.

The resulting fiber composite is thermally consolidated at temperatures between the melting temperature of the sheath material and the lower of the melting temperatures of simple fiber material and high melting component of the bicomponent fiber, with or without employment of pressure. The pressure is between atmospheric pressure and the compressive strength of the aerogel used.

The entire processing operations can preferably be carried out continuously on equipment known to the person skilled in the art.

The panels and mats of the invention are useful as thermal insulation materials because of their low thermal conductivity.

In addition, the panels and mats of the invention can be used as acoustic absorption materials directly or in the form of resonance absorbers, since they have a low sound velocity and, compared with monolithic aerogels, a higher sound damping capacity. This is because, in addition to the damping provided by the aerogel material, additional damping occurs due to air friction between the pores in the web material, depending on the permeability of the fiber web. The permeability of the fiber web can be varied by varying the fiber diameter, the web density and the size of the aerogel particles. If the web comprises additional cover layers, these cover layers should permit ingress of the sound into the web and not lead to a substantial reflection of the sound.

The panels and mats of the invention are also useful as adsorption materials for liquids, vapors and gases because of the porosity of the web and especially the high porosity and specific surface area of the aerogel. Specific adsorption can be achieved through modification of the aerogel surface.

The invention will now be more particularly described by way of example.

EXAMPLE 1

50% by weight of Trevira 290, 0.8 dtex/38 mm hm and 50% by weight of PES/co-PES bicomponent fibers of the type Trevira 254, 2.2 dtex/50 mm hm were used to lay a fiber web having a basis weight of 100 g/m2. During laying, a granular hydrophobic aerogel based on TEOS and having a density of 150 kg/m3 and a thermal conductivity of 23 mW/mK and also particle sizes 1 to 2 mm in diameter was sprinkled in.

The resulting web composite material was thermally consolidated at 160° C. for 5 minutes and compressed to a thickness of 1.4 cm.

The volume proportion of the aerogel in the consolidated mat was 51%. The resulting mat had a basis weight of 1.2 kg/m2. It was readily bendable and also compressible. Its thermal conductivity was found to be 28 mW/mK, measured by a plate method conforming to DIN 52 612 Part 1.

EXAMPLE 2

50% by weight of Trevira 120 staple fibers having a linear density of 1.7 dtex, length 38 mm, spun-dyed black and 50% by weight of PES/co-PES bicomponent fibers of the type Trevira 254, 2.2 dtex/50 mm hm were used to lay initially a web which served as lower cover layer. This cover layer had a basis weight of 100 g/m2. On top, as middle layer, a fiber web was laid with a basis weight of 100 g/m2 from

50% by weight of Trevira 292, 40 dtex/60 mm hm and 50% by weight of PES/co-PES bicomponent fibers of the type Trevira 254, 4.4 dtex/50 mm hm. During laying, a granular hydrophobic aerogel based on TEOS and having a density of 150 kg/m3 and a thermal conductivity of 23 mW/mK and also particle sizes 2 to 4 mm in diameter was sprinkled in. This aerogel-comprising fiber web was covered with a cover layer constructed in the same way as the lower cover layer.

The resulting composite material was thermally consolidated at 160° C. for 5 minutes and compressed to a thickness of 1.5 cm. The volume proportion of the aerogel in the consolidated mat was 51%.

The resulting mat had a basis weight of 1.4 kg/m2. Its thermal conductivity was found to be 27 mW/mK, measured by a plate method conforming to DIN 52612 Part 1.

The mat was readily bendable and compressible. The mat did not shed any aerogel granules even after bending.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US4808202 *Nov 23, 1987Feb 28, 1989Unitka, Ltd.Adsorptive fiber sheet
US5221573 *Dec 30, 1991Jun 22, 1993Kem-Wove, Inc.Batt of fibers containing cured binder and adsorbent
US5256476 *Nov 16, 1992Oct 26, 1993Kuraray Chemical Co., Ltd.Deodorizing
US5271780 *Nov 12, 1992Dec 21, 1993Kem-Wove, IncorporatedAdsorbent textile product and process
DE3346180A1 *Dec 21, 1983Aug 29, 1985Gruenzweig Hartmann GlasfaserRigid thermal insulating body
EP0269462A2 *Nov 27, 1987Jun 1, 1988Unitika Ltd.Adsorptive sheet
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US6481649Nov 1, 1999Nov 19, 2002Cabot CorporationMethod for granulating aerogels
US6620355Nov 1, 1999Sep 16, 2003Cabot CorporationMethod for compacting aerogels
US6677034Sep 4, 1998Jan 13, 20041 . . . LimitedAerogels, piezoelectric devices, and uses therefor
US6825260Dec 5, 2000Nov 30, 2004Cabot CorporationNanoporous interpenetrating organic-inorganic networks
US6887563 *Nov 26, 2002May 3, 2005Cabot CorporationComposite aerogel material that contains fibres
US7118801 *Nov 10, 2003Oct 10, 2006Gore Enterprise Holdings, Inc.Powder or a putty aerogel particles and polytetrafluoroethylene binder with a thermal conductivity of less than or equal to 25 mW/m K at atmospheric conditions; may be formed into tapes or composites, e.g., by bonding between two outer layers such as container walls without dusting or loss of properties
US7160366Jan 16, 2004Jan 9, 2007Mast Carbon International Ltd.Filter element
US7226243May 5, 2004Jun 5, 2007Aspen Aerogels, Inc.Load-bearing, lightweight, and compact super-insulation system
US7226969May 5, 2006Jun 5, 2007Gore Enterprise Holdings, Inc.Aerogel/PTFE composite insulating material
US7238311May 5, 2006Jul 3, 2007Gore Enterprise Holdings, Inc.Aerogel/PTFE composite insulating material
US7342793 *Jan 20, 2005Mar 11, 2008Gore Enterprise Holdings, Inc.Aerogel/PTFE composite insulating material
US7349215May 5, 2006Mar 25, 2008Gore Enterprise Holdings, Inc.Aerogel/PTFE composite insulating material
US7468205Jan 22, 1998Dec 23, 2008Cabot CorporationMultilayer composite materials with at least one aerogel-containing layer and at least one other layer, process for producing the same and their use
US7470725Mar 26, 2001Dec 30, 2008Cabot CorporationOrganically modified aerogels, processes for their preparation by surface modification of the aqueous gel, without prior solvent exchange, and subsequent drying, and their use
US7504346May 18, 2006Mar 17, 2009Aspen Aerogels, Inc.Aerogel composite with fibrous batting
US7621299Oct 3, 2003Nov 24, 2009Cabot CorporationMethod and apparatus for filling a vessel with particulate matter
US7635411Dec 15, 2004Dec 22, 2009Cabot CorporationAerogel containing blanket
US7641954Oct 3, 2003Jan 5, 2010Cabot CorporationInsulated panel and glazing system comprising the same
US7754121Apr 5, 2007Jul 13, 2010Gore Enterprise Holdings, Inc.Aerogel/PTFE composite insulating material
US7868083Jan 11, 2008Jan 11, 2011Gore Enterprise Holdings, Inc.Aerogel/PTFE composite insulating material
US8021583Nov 9, 2009Sep 20, 2011Cabot CorporationAerogel containing blanket
US8075716 *Jan 11, 2000Dec 13, 2011Lawrence Livermore National Security, LlcProcess for preparing energetic materials
US8118177Dec 26, 2008Feb 21, 2012Sellars Absorbent Materials, Inc.Non-woven webs and methods of manufacturing the same
US8214980 *Jan 11, 2010Jul 10, 2012Aspen Aerogels, Inc.Methods of manufacture of secured aerogel composites
US8281857Dec 5, 2008Oct 9, 20123M Innovative Properties CompanyMethods of treating subterranean wells using changeable additives
US8353344Dec 11, 2008Jan 15, 20133M Innovative Properties CompanyFiber aggregate
US8388807Feb 8, 2011Mar 5, 2013International Paper CompanyPartially fire resistant insulation material comprising unrefined virgin pulp fibers and wood ash fire retardant component
US8596361Dec 5, 2008Dec 3, 20133M Innovative Properties CompanyProppants and uses thereof
US8628834May 19, 2008Jan 14, 2014Cabot CorporationFilling fenestration units
US8632623May 1, 2009Jan 21, 2014New Jersey Institute Of TechnologyAerogel-based filtration of gas phase systems
US8663427Apr 7, 2011Mar 4, 2014International Paper CompanyAddition of endothermic fire retardants to provide near neutral pH pulp fiber webs
US8685206Jan 28, 2013Apr 1, 2014International Paper CompanyFire retardant treated fluff pulp web and process for making same
US8828162Oct 19, 2010Sep 9, 20143M Innovative Properties CompanyPorous supported articles and methods of making
CN102807358BJul 13, 2012Mar 12, 2014中国科学院研究生院Flexible aerogel block and preparation method thereof
EP2338853A2Dec 14, 2010Jun 29, 2011Paroc Oy AbMineral wool composite material and method for manufacturing it
EP2340930A1Dec 14, 2010Jul 6, 2011Paroc Oy AbMineral fibre composite product and method for manufacturing it
EP2617761A1Oct 4, 2004Jul 24, 2013Gore Enterprise Holdings, Inc.Aerogel/PTFE composite insulating material
WO2002052086A2 *Dec 21, 2001Jul 4, 2002Aspen Aerogels IncAerogel composite with fibrous batting
WO2006052581A2 *Nov 2, 2005May 18, 2006Cottonwood Mfg IncFiber insulation blanket and method of manufacture
WO2006065904A1 *Dec 12, 2005Jun 22, 2006Cabot CorpAerogel containing blanket
WO2008129281A2 *Apr 21, 2008Oct 30, 2008Parasol Panel Systems LlpInsulating panel
WO2010068254A2Dec 8, 2009Jun 17, 2010Cabot CorporationInsulation for storage or transport of cryogenic fluids
WO2011066209A2Nov 22, 2010Jun 3, 2011Cabot CorporationAerogel composites and methods for making and using them
WO2013144444A1Mar 26, 2013Oct 3, 2013Paroc Oy AbInsulating composite product comprising mineral wool and material with superior insulating properties
WO2014004366A1Jun 24, 2013Jan 3, 2014Cabot CorporationFlexible insulating structures and methods of making and using same
Classifications
U.S. Classification428/68, 428/75, 442/364, 442/375, 428/367, 428/373, 442/365
International ClassificationD04H1/54, D04H13/00, D04H1/4374, D04H1/541, D04H1/55, D04H1/413, D04H1/435, B32B5/16, B32B5/02, D01F8/04
Cooperative ClassificationD04H1/55, D04H1/413, D04H13/00, D04H1/54, D04H1/435, D04H1/541, D04H1/4374
European ClassificationD04H1/541, D04H1/4374, D04H13/00, D04H1/413, D04H1/435, D04H1/55, D04H1/54
Legal Events
DateCodeEventDescription
Dec 22, 2009FPAYFee payment
Year of fee payment: 12
Dec 28, 2005FPAYFee payment
Year of fee payment: 8
Jun 27, 2003ASAssignment
Owner name: CABOT CORPORATION, MASSACHUSETTS
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HOECHST RESEARCH & TECHNOLOGY DEUTSCHLAND GMBH & CO. KG;REEL/FRAME:013782/0968
Effective date: 19980723
Owner name: HOECHST RESEARCH & TECHNOLOGY DEUTSCHLAND GMBH, GE
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HOECHST AKTIENGESELLSCHAFT;REEL/FRAME:013835/0668
Effective date: 19980101
Owner name: CABOT CORPORATION TWO SEAPORT LANE, SUITE 1300 (FO
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HOECHST RESEARCH & TECHNOLOGY DEUTSCHLAND GMBH & CO. KG /AR;REEL/FRAME:013782/0968
Owner name: HOECHST RESEARCH & TECHNOLOGY DEUTSCHLAND GMBHFRAN
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HOECHST AKTIENGESELLSCHAFT /AR;REEL/FRAME:013835/0668
Owner name: CABOT CORPORATION,MASSACHUSETTS
Owner name: HOECHST RESEARCH & TECHNOLOGY DEUTSCHLAND GMBH,GER
Dec 28, 2001FPAYFee payment
Year of fee payment: 4
Jun 19, 1997ASAssignment
Owner name: HOECHST AKTIENGESELLSCHAFT, GERMANY
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:FRANK, DIERK;THONNESSEN, FRANZ;ZIMMERMANN, ANDREAS;REEL/FRAME:008633/0365
Effective date: 19970520