Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS5817154 A
Publication typeGrant
Application numberUS 08/520,389
Publication dateOct 6, 1998
Filing dateAug 29, 1995
Priority dateJul 9, 1993
Fee statusLapsed
Also published asUS5484915
Publication number08520389, 520389, US 5817154 A, US 5817154A, US-A-5817154, US5817154 A, US5817154A
InventorsPeter Gregory, Stephen James Reynolds, Raymond Lesley White
Original AssigneeZeneca Limited
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Process for treating stained fabrics with manganese phthalocyanines
US 5817154 A
Abstract
A substituted phthalocyanine in which at least one of the peripheral carbon atoms in the 1-16 positions of the phthalocyanine nucleus (MnPc) as shown in Formula (1) ##STR1## is linked via an oxygen atom or a sulphur atom to an organic radical, the remaining peripheral carbon atoms being unsubstituted or substituted by any combination of atoms or groups and sulphonated derivatives thereof. Compositions comprising one or more compounds of Formula (1) and their use as cleaning materials are also disclosed along with a process for removing stains and/or grime from fabrics using these
Images(5)
Previous page
Next page
Claims(8)
We claim:
1. A process for removing stains and/or grime from fabrics which comprises treating a stained fabric with a composition comprising at least one phthalocyanine compound selected from the group consisting of (a) a phthalocyanine in which at least one of the peripheral carbon atoms in the 1-16 positions of the phthalocyanine nucleus (MnPc) as shown in Formula (1): ##STR5## is linked via an oxygen atom or a sulphur atom to an organic radical, the remaining peripheral carbon atoms being unsubstituted or substituted by any combination of atoms or groups selected from the group consisting of --F, --Cl, --Br, --I, --SO3 H, --SO3 Na, SO3 K, SO3 Li and SO3 NH4 and (b) a phthalocyanine compound of the Formula (2):
MnPc(O--R)a Xb (SO3 A)d                Formula ( 2)
wherein:
MnPc is a phthalocyanine nucleus as defined in Formula (1);
each R independently is an organic radical;
each X independently is halogen or hydrogen; the O--R and X groups being attached to one or more of the 16 peripheral carbon atoms of the phthalocyanine nucleus;
A is selected from H, a metal, ammonium or substituted ammonium as described above;
a is from 4 to 16;
b is from 0 to 12;
d is an average value from 0.1 to 16; and a+b is from 1 to 16.
2. A process as claimed in claim 1 in which from 0 to 4 of the (O--R) groups in the phthalocyanine compound are (O--C1-10 -alkyl) and from 16 to 12 of the (O--R) groups are (O-phenyl), b is 0, a is 16 and d is from 1 to 16.
3. A process as claimed in claim 1 in which the phthalocyanine compound is of the Formula MnPc(O-phenyl)16.
4. . A process as claimed in claim 1 in which the phthalocyanine compound is of the Formula MnPc(O-phenyl)16 (SO3 Na)16.
5. A process as claimed in claim 1 in which the phthalocyanine compound is of the Formula MnPc(O-phenyl)14 (O-butyl)2.
6. A process as claimed in claim 1 in which the phthalocyanine compound is of the Formula MnPc(O-phenyl)14 (O-butyl)2 (SO3 NA)16.
7. A process as claimed in claim 1 in which the phthalocyanine compound is of the Formula MnPc(O-phenyl)15 (O-butyl).
8. A process as claimed in claim 1 in which the phthalocyanine compound is of the Formula MnPc(O-phenyl)15 (O-butyl) (SO3 Na)16.
Description

This is a division of U.S. application Ser. No. 08/268,578, filed Jul. 6, 1994, now U.S. Pat. No. 5,484,915.

This invention relates to certain poly-substituted phthalocyanine compounds and certain sulphonated derivatives thereof, to compositions containing such compounds, to the use of these compounds in detergent compositions and for generating singlet oxygen and to methods of preparing such compounds.

According to the present invention there is provided a substituted phthalocyanine in which at least one of the peripheral carbon atoms in the 1-16 positions of the phthalocyanine nucleus (MnPc), as shown in Formula (1): ##STR2## is linked via an oxygen atom or a sulphur atom to an organic radical hereinafter referred to as pendant organic radical, the remaining peripheral carbon atoms being unsubstituted or substituted by any combination of atoms or groups and sulphonated derivatives thereof. Preferred phthalocyanines are those which absorb electromagnetic radiation at a wavelength from 700 nm to 900 nm.

In the phthalocyanines of the present invention each of the pendant organic radicals linked via oxygen or sulphur to the phthalocyanine nucleus is independently selected from aromatic, heterocyclic, aliphatic and alicyclic radicals, such that any one phthalocyanine nucleus may carry two or more different organic radicals.

It is preferred that each pendant organic radical is independently selected from mono-and bi-cyclic aromatic and aliphatic radicals.

Preferred mono-and bi-cyclic aromatic and heterocyclic radicals are phenyl, naphthyl, especially naphth-2-yl, phenylene, especially 1,2-phenylene, pyridyl, thiophenyl, furanyl, quinolinyl, thiazolyl, benzothiazolyl and pyrimidyl each of which may be substituted.

Where the aromatic radical is 1,2-phenylene this is attached to the phthalocyanine nucleus via two oxygen atoms or via two sulphur atoms or via one oxygen and one sulphur atom. The two oxygen atoms or two sulphur atoms or one oxygen and one sulphur atom occupy the 1,2-positions of each phenylene radical and are preferably attached to the phthalocyanine nucleus via the 2-and 3-and/or 6-and 7-and/or the 10-and 11-andor the 14-and 15-positions or are preferably attached to the phthalocyanine nucleus via the 1-and 2-and/or 3-and 4-and/or 5-and 6-and/or 7-and 8-and/or 9-and 10-and/or 11-and 12-and/or 13-and 14-and/or 15-and 16-positions.

Where the aromatic radical is 1,2-phenylene it is preferably attached to the phthalocyanine nucleus via two oxygen atoms.

Where the pendant organic radical is an aliphatic or alicyclic radical it is preferred that is is selected from C1-20 -alkyl especially C1-10 -alkyl; C2-20 -alkenyl especially C3-10 -alkenyl and C4-8 -cycloalkyl especially cyclohexyl, each of which may be substituted.

Optional substituents for the pendant organic radicals are preferably selected from C1-20 -alkyl, especially C1-4 -alkyl; C1-20 -alkoxy, especially C1-4 -alkoxy; C2-20 -alkenyl, especially C2-4 -alkenyl; C1-20 -alkylthio, especially C1-4 -alkylthio; C1-20 -alkoxycarbonyl, especially C1-4 -alkoxycarbonyl; hydroxy C1-4 -alkoxy; aryl, especially phenyl; C1-4 - alkylaryl, especially benzyl; arylthio, especially phenylthio; halogen, especially fluoro, chloro and bromo; --CN; --NO2 ; --CF3 ; --SO3 A in which A is H, or a metal or ammonium ion or substituted ammonium ion; --COR2, --COOR2, --CONR2 R3, --SO2 R2, --SO2 NR2 R3, --NR2 R3 and --OR2 in which R2 and R3 are independently selected from --H; alkyl, especially C1-4 -alkyl; aryl, especially phenyl; and C1-4 -alkylaryl, especially benzyl.

A sub-group of phthalocyanines of the present invention preferably has from 8 to 16, more preferably from 12 to 16 and especially all 16 of the peripheral carbon atoms linked preferably via an oxygen or sulphur atom, more preferably an oxygen atom preferably to a pendant optionally substituted mono-and/or bi-cyclic aromatic radical and/or aliphatic radical more preferably phenyl and/or naphthyl and/or C1-10 -alkyl radical, more preferably a phenyl radical.

Examples of suitable atoms or groups which can be attached to any of the remaining peripheral carbon atoms of the phthalocyanine nucleus are hydrogen, halogen, sulphonate groups --SO3 A in which A is H, or a metal or ammonium ion or a substituted ammonium ion, and any of the pendant organic radicals described above and hereinafter represented by R. It is preferred that the atoms or groups attached to the remaining peripheral carbon atoms are selected from --H, --F, --Cl, --Br, --I, --SO3 H, --SO3 Na, --SO3 K, --SO3 Li and --SO3 NH4 or any combination thereof. It is especially preferred that these atoms or groups are --H, --Cl, --Br, --SO3 H, --SO3 Na or --SO3 NH4.

The sulphonated derivatives of the phthalocyanines used in the present invention carrying up to 50 SO3 A groups, preferably up to 40 SO3 A groups, more preferably up to 30 SO3 A groups and especially up to 16 SO3 A groups, which are attached directly to the phthalocyanine nucleus and/or to the pendant organic radicals are a preferred group of compounds for the present invention.

In a preferred sub-group of compounds the average number of SO3 A groups is preferably from 2 to 40 and more preferably from 2 to 30 and especially from 4 to 16. It is also preferred that for each pendant organic radical there is on average at least one SO3 A group, although each organic radical may carry none, one or more than one SO3 A group.

Where A is a metal ion it is preferably an alkali or alkaline earth metal ion, especially an alkali metal ion such as a sodium, potassium or lithium ion. Where A is an ammonium ion it is preferably NH+ 4 or a substituted ammonium ion which enhances the water-solubility of the compound or a substituted ammonium ion of the formula NQ+ 4 which enhances the alcohol solubility of the compound. Examples of suitable substituted ammonium ions which enhance the water solubility of the compound are mono, di, tri and tetra alkyl and hydroxyalkyl ammonium ions in which the alkyl groups preferably contain from 1 to 4 carbon atoms such as N+ (CH3)4 ; N+ (C2 H5)4 ; N+ (C2 H4 OH)4 ; NH+ 3 CH3 ; NH+ 2 (CH3)2 and NH+ (CH3)3.

In the substituted ammonium ion of the formula NQ+ 4 at least one Q is a fatty aliphatic group and any remaining Q groups are C1-4 -alkyl or H. The fatty aliphatic group represented by Q preferably contains from 4 to 16, more preferably from 7 to 12 and especially preferably 7 to 9 carbon atoms. Preferred fatty aliphatic groups are alkyl and alkenyl groups which have straight-or branched-chains. Preferred alkyl groups, represented by Q, containing 8 or 9 carbon atoms are, 3,5,5-trimethyl-hexyl, 1,1,3,3-tetramethylbutyl and 2-ethylhexyl. Examples of other suitable aliphatic chains are 1-ethyl-3-methylpentyl, 1,5-dimethylhexyl, 1-methylheptyl, 1,4-dimethylheptyl, 1,2,2-trimethylpropyl, 2-ethylbutyl, 1-propylbutyl, 1,2-dimethylbutyl, 2-methylpentyl, 1-ethylpentyl,, 1,4-dimethylpentyl, 1-methylhexyl, 3-methylhexyl, 1,3,3-trimethylbutyl, 1-methylnonyl. The substituted ammonium ion represented by A preferably has one fatty alkyl group as described above, the remaining groups being preferably H or C1-4 -alkyl, especially H or methyl. Especially preferred ammonium ions include 2-ethylhexylammonium, 1,1,3,3-tetramethylbutylammonium and 3,5,5-trimethylhexylammonium.

According to a further feature of the present invention there is provided a phthalocyanine compound of the Formula (2):

MnPc (O--R)a Xb (SO3 A)d               Formula ( 2)

wherein:

MnPc is a phthalocyanine nucleus as defined in Formula (1);

each R independently is an organic radical;

each X independently is halogen or hydrogen; the O--R and X groups being attached to one or more of the 16 peripheral carbon atoms of the phthalocyanine nucleus;

A is selected from H, a metal, ammonium or substituted ammonium as described above;

a is from 4 to 16;

b is from 0 to 12;

d is an average value from 0.1 to 16;

a+b is from 1 to 16.

In a phthalocyanine of Formula (2) each of the radicals denoted by R may be selected from any of the pendant organic radicals hereinbefore defined in relation to Formula (1) above.

In a phthalocyanine of Formula (2) each halogen denoted by X is preferably independently selected from --F, --Cl, --Br and --I and it is especially preferred that each halogen denoted by X is independently --Cl or --Br.

When a+b is <16 the remainder of the 16 peripheral carbon atoms, not carrying a group O--R or X, may carry a sulphonate group --SO3 A or a group represented by R. It is however preferred that the sum of a+b is 16. It is also preferred that a is 4, 8, 12 or 16.

In phthalocyanines of Formula (2) the metal ion denoted by A is preferably an alkali or alkaline earth metal ion and more preferably is selected from lithium, sodium and potassium ion. It is especially preferred that A is a sodium or an ammonium ion or hydrogen.

In the phthalocyanines of Formula (2) it is preferred that from 0 to 4 of the (O--R) groups are (O--C1-10 -alkyl) and from 16 to 12 of the (O--R) groups are (O-phenyl) or (O-naphthyl), that b is 0 and that a is 16 and that d is from 1 to 16.

Especially preferred compounds of the present invention are MnPc(O-phenyl)16, MnPc(O-Phenyl)16 (SO3 Na)16, MnPc(O-phenyl)14 (O-butyl)2 and MnPc(O-phenyl)14 (O-butyl)2 (SO3 Na)16, MnPc(O-phenyl)15 (O-butyl), MnPc(O-phenyl)15, (O-butyl) (SO3 Na)16.

The phthalocyanines of Formula (1) and Formula (2) may be prepared by the following methods:

(a) by reaction of a 1,2-dicyanobenzene of Formula (4): ##STR3## wherein: z is selected from chloro, bromo and iodo;

e is an integer from 0 to 3;

f is an integer from 1 to 4; and

e+f is equal to 4

with a compound R--OH whereby up to 4 of the groups, Z, are replaced by R--O groups to form a compound of Formula (5): ##STR4## wherein: z is as described above;

R is as described above for compounds of Formula (2)

g is as integer from 0 to 3;

h is an integer from 0 to 3;

i is an integer from 1 to 4; and

g+h+i is equal to 4.

followed by reaction of one or more 1,2-dicyanobenzene compounds of formula (5), or a combination of one or more compounds of Formula (5) and 1,2-dicyanobenzene, with an appropriate metal or metal salt optionally in an inert liquid at an elevated temperature to form a phthalocyanine of Formulae (1) or (2). The presence of at least one equivalent of 1,2-dicyanobenzene is required for the preparation of a compound of Formula (2) where X is H and b is 13, 14 or 15; or (b) by reaction at elevated temperatures of a compound of Formula (6):

MnPcZ.sub.(a+b)                                            Formula ( 6)

in which MnPc, Z, a and b are as described above with a compound, R--OH, in a polar organic medium preferably in the presence of an acid binder.

The reactions are more fully described in UK patent numbers 1,489,394 and 2,200,650, German patent number 2,455,675 and European patent application number Al 0,484,027.

In reactions of type (b) the polar organic medium which may or may not be a liquid at ambient temperature and which may only partially dissolve the reactants, preferably has a boiling point from 80 C. to 300 C., more preferably from 150 C. to 200 C. The polar organic medium is preferably inert or may act to catalyse the reaction. It is preferred that the polar organic medium is selected from N-methyl-2-pyrrolidone, dimethylformamide, methylcyclohexanol, octanol, benzyl alcohol, nitrobenzene and quinoline. It is especially preferred that in reactions of type (b) that the polar organic medium is dimethylformamide or N-methyl-2-pyrrolidone.

In reactions of type (b) the acid binder is preferably selected from alkali metal hydroxides and carbonates. It is preferred that the acid binder is lithium, sodium or potassium hydroxide, it is especially preferred that the acid binder is potassium hydroxide.

The sulphonated phthalocyanines of Formula (2) can be prepared by sulphonating a precursor of a phthalocyanine of Formula (2) in which d is 0, using sulphuric acid which may contain excess SO3 (oleum). The strength of acid may vary within wide limits from 1% sulphuric acid up to 30% oleum. It is preferred that the strength of acid is from 50% sulphuric acid up to 30% oleum, it is especially preferred that the strength of acid is from 98% sulphuric to 30% oleum. The reaction temperature may vary from -10 C. to 60 C. depending on the extent of sulphonation required. Sulphonation may be performed in an inert liquid.

As the concentration of the sulphuric acid or the oleum is increased at a fixed reaction temperature, more sulphonic acid groups are introduced into the phthalocyanine. Similarly as the reaction temperature is increased at a particular acid strength, more sulphonic acid groups are introduced into the phthalocyanine.

In the sulphonation reaction a preferred acid is 10% oleum and a preferred reaction temperature is from -10 C. to 40 C., especially from 10 C. to 25 C.

The phthalocyanines can be sulphonated directly on the Pc nucleus, particularly when any of the 1-16 positions in unsubstituted (i.e. the 1-16 peripheral carbon atoms carry a hydrogen atom) or on any of the pendant organic groups R or R1, or on both the Pc nucleus and the pendant organic groups.

The manganese phthalocyanines of the present invention may be conveniently prepared from the corresponding dihydrogen analogues by reaction with manganese acetate in aqueous media. The methods of preparation of these phthalocyanine compounds forms a further feature of the present invention.

According to a further feature of the present invention there is provided a process for removing stains and/or grime from fabrics which comprises treating a stained fabric with a composition comprising at least one compound of Formula (1) or Formula (2).

According to a further feature of the present invention there is provided a composition comprising a phthalocyanine of Formula (1) in which at least one of the peripheral carbon atoms in the 1-16 positions of the peripheral carbon atoms is linked via an oxygen or a sulphur atom to an organic radical the remaining peripheral carbon atoms being unsubstituted or substituted by any combination of atoms or groups and sulphonated derivatives thereof or a phthalocyanine of Formula (2).

According to a further feature of the present invention there is provided the use of compositions described above as a cleaning material.

The compositions may be aqueous compositions and may further comprise detergents widely available in washing and cleaning technology such as soap or synthetic detergents, other commonly available detergent additives such as soil suspending agents, optical brightening agents, sud or foam control agents, perfume, surfactants such as alkyl sulphonates, paraffin sulphonates and alkylbenzene sulphonates, ethoxylated alcohols or betaines, and alkaline detergency builders such as sodium carbonate, silicate, orthophosphates and polyphosphates.

The process for removing stains and/or grime is preferably carried out at temperatures from 10 C. to 80 C., more preferably from 20 C. to 60 C. and especially from 35 C. to 45 C. Suitable process times for stain and/or grime removal are typically from 5 minutes to 5 hours, preferably from 10 minutes to 1 hour.

The aqueous composition preferably contains from 0.0005 g to 1.0 g per liter of compounds of Formula (1) or Formula (2), more preferably from 0.001 g/l to 0.1 g/l.

The efficacy of the stain removal process generally depends on the concentration of compounds of Formula (1) or Formula (2) in the wash solution the process temperature and the process time. The process is generally more effective with higher concentrations of compounds of Formula (1) or Formula (2) at higher process temperatures and with longer process times.

According to a further feature of the present invention there is provided a process for the generation of singlet oxygen by irradiation in the presence of oxygen of a substituted phthalocyanine, in which at least one of the peripheral carbon atoms in the 1-16 positions of the phthalocyanine nucleus (MnPc), as shown in Formula (1) is linked via an oxygen atom to an organic radical, the remaining peripheral carbon atoms being unsubstituted or substituted by any combination of atoms or groups and sulphonated derivatives thereof with electromagnetic radiation of wavelength from 650 to 900 nm. Suitable sources of electromagnetic radiation includes sunlight and lasers with emissions in the 650-900 nm region.

Singlet oxygen has a greater energy than ground-state, triplet oxygen. The singlet and triplet states of oxygen are distinguished by the singlet state having two electrons of anti-parallel spins and the triplet state having an uncoupled pair of electrons with parallel spins. The singlet oxygen is also distinguished from triplet oxygen because it is a highly reactive species with a lifetime from a few microseconds to several hundred microseconds. During its lifetime singlet oxygen has the potential to react before being deactivated. The reactivity of the singlet oxygen may be utilised in a wide range of applications which include photobleaching, photodeodorising, photodynamic therapy (PDT), treatment of visible stains on a range of material surfaces, surfaces include fabric, cement, stone, brick, glass, etc., biocidal, degradation of plastics, paper and pulp bleaching, environmental clean-up, anti-microbial action on fibers, incorporation into various products for example in fabrics as deodorisers, into paints or film treatments to destroy micro-organisms or contaminants, into cement products, glass products and paints to confer self-cleaning properties, sterilising swimming pools and as a surface treatment to prevent yellowing/discoloration of paper. For photobleaching and photodeodorising application the present phthalocyanines can be incorporated into detergent formulations which are used in a wide range of cleaning applications.

The phthalocyanine compounds of the present invention promote the formation of singlet oxygen under the influence of electromagnetic radiation, particularly in the 700-800 nm region and are capable of promoting singlet oxygen formation in localised areas.

Measurement of triplet oxygen yields after laser excitation and singlet oxygen emission yields allows calculation of singlet oxygen generating efficiency (S). The experimental details for these measurements are more fully described in Gorman et al, Journal of the American Chemical Society 1987!, 109, 3091; Gorman et al, Journal of the American Chemical Society 1989!, 111, 1876 and Gorman et al, Photochemistry and Photobiology 1987! 45(2), 215.

The invention is further illustrated by the following examples in which all parts and percentages are by weight unless otherwise indicated.

EXAMPLE 1 Preparation of hexadeca(phenoxy)manganesephthalocyaninehexadeca (sulphonic acid sodium salt)

(i) Preparation of 1,2-dicyano-3,4.5.6-tetraphenoxybenzene

A mixture of 1,2-dicyano-3,4,5,6-tetrachlorobenzene (50 parts), phenol (106 parts), potassium carbonate (104 parts) and dimethylformamide (200 parts) was stirred and heated at 70 C. for 2 hours before pouring into water (500 parts). The aqueous mixture was extracted with chloroform (2300 parts). The chloroform extract was washed with a 5% aqueous solution of sodium hydroxide (2250 parts) and then with water (2250 parts). The chloroform extract was dried over anhydrous magnesium sulphate, filtered and the chloroform was removed by distillation under reduced pressure to leave a brown oil. The brown oil was dissolved in hot butan-1-ol and allowed to cool slowly. 1,2-Dicyano-3,4,5,6-tetraphenoxybenzene (62.2 parts, 67%) was obtained as a pale yellow solid m.p. 149-151 C.

(ii) Preparation of hexadeca(phenoxy) dilithium phthalocyanine

Lithium (0.42 parts) was dissolved in butan-1-ol (50 parts) with stirring at 100 C. over 4 hours before adding 1,2-dicyano-3,4,5,6-tetra phenoxy)benzene (10 parts). The reaction mixture was stirred at 120 C. for 30 minutes. The solution was cooled and a green solid was collected by filtration. The sold was washed with methanol (350 parts) and dried to give hexadeca(phenoxy)dilithium phthalocyanine (5.5 parts) m.p. >250 C.

(iii) Preparation of hexadeca(phenoxy) dihydrophthalocyanine

A mixture of hexadeca(phenoxy) dilithium phthalocyanine (3.0 parts) and toluene (100 parts) was stirred at 20 C. and p-toluene sulphonic acid (1.14 parts) was added slowly. The reaction mixture was stirred at 20 C. for 30 minutes before adding activated carbon and filtering through Claracel flo filter aid. After filtering the solution was passed through a silica gel column washing with toluene. The solvent was removed by distillation under reduced pressure to leave a green solid. The solid was stirred in methanol (50 parts), filtered off and washed with water and dried to give hexadeca(phenoxy) dihydrophthalocyanine (2.68 parts) m.p. >250 C.

(iv) Preparation of hexadeca(phenoxy) dihydrophthalocyaninehexadeca (sulphonic acid sodium salt

The phthalocyanine (1 part) from iii) above was added to 10% oleum (2 parts) at 0 C. over 15 minutes. The mixture was allowed to warm to 20 C. and was stirred for 3 hours before pouring into a mixture of ice and water (100 parts). The resulting solution was neutralised to pH 7 using 48% sodium hydroxide solution before dialysing in Visking tubing and evaporating to give hexadeca(phenoxy) dihydrophthalocyaninehexadeca(sulphonic acid sodium salt).

(v) Preparation of hexadeca(phenoxy)manganesephthalocyanine hexadeca (sulphonicacid sodium salt

The phthalocyanine (1 part) from iv) above was dissolved in water (10 parts) and manganese acetate (0.047 parts) in water (1 part) was added. The reaction mixture was stirred at ambient temperature overnight. The reaction mixture was evaporated to leave hexadeca(phenoxy)manganese phthalocyanine hexadeca(sulphonic acid sodium salt) as an organge-brown solid λmax(water) =789 nm.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US4318883 *Feb 15, 1980Mar 9, 1982Ciba-Geigy CorporationProcess for combating micro-organisms, and novel phthalocyanine compounds
US4368053 *Feb 20, 1981Jan 11, 1983Ciba-Geigy CorporationFabric conditioning compositions containing phthalocyanine substituted with quaternary ammonium group-containing sulphonamide photoactivator
US4497741 *Dec 1, 1982Feb 5, 1985Ciba-Geigy CorporationWater-soluble zinc and aluminium phthalocyanines
US4648992 *Feb 11, 1985Mar 10, 1987Ciba-Geigy CorporationWater-soluble phthalocyanine compounds
US5270463 *Jul 1, 1991Dec 14, 1993Mitsui Toatsu Chemicals, IncorporatedHalogenated alkoxyphthalocyanines
US5280114 *Jul 12, 1991Jan 18, 1994Mitsui Toatsu Chemicals, IncorporatedHalogenation of alkoxyphthalocyanine
US5282896 *Aug 16, 1991Feb 1, 1994Toyo Ink Manufacturing Co., Ltd.Process for producing phthalocyanine pigment composition containing highly halogenated different-metalo-phthalocyanine
US5296162 *Mar 2, 1992Mar 22, 1994Mitsui Toatsu Chemicals, IncorporatedNear infrared absorbers and display/recording materials using the same
US5484915 *Jul 6, 1994Jan 16, 1996Zeneca LimitedSulphonated manganese phthalocyanines and compositions thereof
US5516899 *Jul 20, 1994May 14, 1996Zeneca LimitedPhthalocyanines
USH477 *Aug 21, 1985Jun 7, 1988United States Of AmericaMonolayer-forming substituted phthalocyanine compounds and method of preparation thereof
EP0142369A2 *Nov 14, 1984May 22, 1985TECHNICON INSTRUMENTS CORPORATION(a Delaware corporation)Quaternized Phthalocyanin derivatives
EP0484018A2 *Oct 18, 1991May 6, 1992Zeneca LimitedPhthalocyanine compounds useful as an infrared absorber
EP0484027A1 *Oct 21, 1991May 6, 1992Zeneca LimitedPolysubstituted phthalocyanines
GB2200650A * Title not available
JP3519419A * Title not available
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
EP1428859A1 *Dec 9, 2003Jun 16, 2004Fuji Photo Film Co., Ltd.Production process of metal phthalocyanine compound
Classifications
U.S. Classification8/137, 510/281, 540/140, 540/131, 540/139, 540/122
International ClassificationD06M13/256, C11D7/32, D06M13/02, D06M13/50, C09B47/06, D06M13/248, C07D487/22, C09B47/067
Cooperative ClassificationC09B47/063, C09B47/0675
European ClassificationC09B47/06E, C09B47/067E
Legal Events
DateCodeEventDescription
Sep 28, 2001ASAssignment
Owner name: AVECIA LIMITED, ENGLAND
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SYNGENTA LIMITED;REEL/FRAME:012302/0096
Effective date: 20010608
Apr 23, 2002REMIMaintenance fee reminder mailed
Oct 7, 2002LAPSLapse for failure to pay maintenance fees
Dec 3, 2002FPExpired due to failure to pay maintenance fee
Effective date: 20021006
Sep 29, 2005ASAssignment
Owner name: AVECIA LIMITED, ENGLAND
Free format text: CORRECT ASSIGNEE ADDRESS AT 012302/0096;ASSIGNOR:SYNGENTA LIMITED;REEL/FRAME:016835/0967
Effective date: 20010608