Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS5840340 A
Publication typeGrant
Application numberUS 08/705,808
Publication dateNov 24, 1998
Filing dateAug 30, 1996
Priority dateJun 15, 1992
Fee statusLapsed
Also published asCA2138146A1, EP0642532A1, US5578323, US6413550, WO1993025583A2, WO1993025583A3
Publication number08705808, 705808, US 5840340 A, US 5840340A, US-A-5840340, US5840340 A, US5840340A
InventorsSam J. Milstein, Martin L. Kantor
Original AssigneeEmisphere Technologies, Inc.
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Oligopeptides with fragrance, cosmetics and dye
US 5840340 A
Abstract
Improved proteinoid carriers and methods for their preparation and use as oral delivery systems for pharmaceutical agents are described. The proteinoid carriers are soluble within selected pH ranges within the gastrointestinal tract and display enhanced stability towards at least one of photolysis or decomposition over time. The proteinoid carriers are prepared from proteinoids having between 2 and 20 amino acids and having a molecular weight of between about 250 and 2400 daltons.
Images(23)
Previous page
Next page
Claims(3)
What is claimed is:
1. A composition comprising:
(A) a cargo selected from the group consisting of a fragrance, a cosmetic agent and a dye encapsulated within,
(B) a microsphere or microcapsule carrier, said carrier comprising a proteinoid comprising
(i) at least one monomer selected from the group consisting of tyrosine and phenylalanine;
(ii) at least one monomer selected from the group consisting of glutamic acid, pyroglutamic acid, glutamine, and aspartic acid; and
(iii) optionally at least one monomer selected from the group consisting of lysine, arginine, and ornithine,
said proteinoid being soluble within a selected pH range.
2. The composition of claim 1, wherein said proteinoid is acid-soluble.
3. The composition of claim 1, wherein said proteinoid is base-soluble.
Description

This application is a division of application Ser. No. 08/076,803 filed Jun. 14, 1993, now U.S. Pat. No. 5,578,323, which is a continuation-in-part of U.S. application Ser. No. 07/920,346, filed Jul. 27, 1992, and issued as U.S. Pat. No. 5,443,841 on Aug. 22, 1995; which in turn is a continuation-in-part of Ser. No. 07/898,909, filed Jun. 15, 1992, now abandoned.

FIELD OF THE INVENTION

This invention relates to proteinoids and proteinoid carriers made from them. The proteinoid carriers releasably encapsulate active agents and have extended longer shelf life and/or photostability. Methods for the preparation of such proteinoid carriers are also disclosed.

BACKGROUND OF THE INVENTION

The available modes of delivery of pharmaceutical and therapeutic agents often are severely limited by chemical or physical barriers or both, which are imposed by the body. For example, oral delivery of many such agents would be the route of choice if not for the presence of chemical and physicochemical barriers such as extreme pH in the gut, exposure to powerful digestive enzymes, and impermeability of gastrointestinal membranes to the active ingredient. Among the numerous pharmacological agents which are known to be unsuitable for oral administration are biologically active peptides and proteins, such as insulin. These agents are rapidly destroyed in the gut by acid hydrolysis and/or by proteolytic enzymes.

A great deal of research has been devoted to developing effective oral drug delivery methods and systems for these vulnerable pharmacological agents. The proposed solutions have included:

(a) co-administration of adjuvants (such as resorcinols and non-ionic surfactants polyoxyethylene oleyl ether and n-hexadecyl polyethylene ether to increase the permeability of the intestinal walls; and

(b) co-administration of enzymatic inhibitors, such as pancreatic trypsin inhibitor, diisopropylfluorophosphate (DFF) and trasylol to avoid enzymatic degradation.

The use of such substances, in drug delivery systems, is limited however either because of:

(a) their inherent toxicity when employed at effective amounts;

(b) their failure to protect the active ingredient or promote its absorption;

(c) their adverse interaction with the drug.

Liposomes as drug delivery systems have also been described. They provide a layer of lipid around the encapsulated pharmacological agent. The use of liposomes containing heparin is disclosed in U.S. Pat. No. 4,239,754 and several studies have been directed to the use of liposomes containing insulin; e.g., Patel et al. (1976) FEBS Letters Vol. 62, page 60 and Hashimoto et al. (1979) Endocrinol. Japan, Vol. 26, page 337. The use of liposomes, however, is still in the development stage and there are continuing problems, including:

(a) poor stability;

(b) inadequate shelf life;

(c) limited to low MW (<30,000) cargoes;

(d) difficulty in manufacturing;

(e) adverse interactions with cargoes.

More recently, synthetic amino acid polymers or proteinoids, forming microspheres, have been described for encapsulating pharmaceuticals. For example, U.S. Pat. No. 4,925,673 (the '673 patent), the disclosure which is hereby incorporated by reference in its entirety, describes such microsphere constructs as well as methods for their preparation and use. The '673 patent also describes microspheres which encapsulate pharmaceutical agents for delivery into the gastrointestinal tract or into the blood.

While the proteinoid microspheres described in the '673 patent are useful for their intended purposes, the physicochemical properties of the proteinoid microspheres, such as light sensitivity, shelf life and the selectivity of their solubility in various portions of the gastrointestinal tract, could be improved. Additionally, there is a need in the art for microspheres that can encapsulate a broader range of active agents such as polar drugs.

The method employed in the '673 patent to prepare proteinoids produces a complex mixture of high molecular weight (MW) (>1000 daltons) and low MW (≦1000 daltons) peptide-like polymers which are difficult to separate. Moreover, the method produces a small amount of the low MW proteinoids which is the microsphere-forming fraction. Hence, an improved method of preparing of the proteinoids is also desired.

Accordingly, there is a need in the art for improved proteinoid carriers as well as improved methods for their preparation.

OBJECTS OF THE INVENTION

It is an object of this invention to provide proteinoids which forms proteinoid carriers as a delivery system with enhanced stability towards at least one of photodegradation and decomposition over time.

It is another object of the invention to provide a proteinoid that forms proteinoid carriers with more selective solubility under various conditions such as pH.

It is yet another object of the invention to provide proteinoid carriers encapsulating biologically active agents which are selectively releasable within particular portions of the gastrointestinal tract.

It is a further object of the invention to provide proteinoid carriers which promote the bioavailability of pharmaceutical agents which otherwise display poor absorption in the gastrointestinal tract.

It is yet a further object of the invention to provide an improved method for producing proteinoid carriers having particular characteristics and for improving yield of the desired proteinoid carriers.

It has been found that these objects and other advantages, which will be apparent from this specification, are achieved by the invention described below.

SUMMARY OF THE INVENTION

The present invention relates to improved proteinoid carriers and methods of making and use thereof.

Proteinoids of a MW ranging between about 250 and about 2400 daltons and of defined amino acids are useful in preparing proteinoid carriers with improved stability against photodegradation and/or decomposition. The proteinoids comprise a peptide polymer selected from the group consisting of:

(i) peptide polymers made from at least one first monomer selected from the group consisting of tyrosine and phenylalanine; and from at least one second monomer selected from the group consisting of glutamic acid, pyroglutamic acid, glutamine, and aspartic acid;

(ii) peptide polymers made from at least one first monomer selected from the group consisting of tyrosine and phenylalanine; and from at least one second monomer selected from the group consisting of glutamic acid, pyroglutamic acid, glutamine, and aspartic acid; and from at least one third monomer selected from the group consisting of lysine, arginine and ornithine, the proteinoid being a microsphere- and/or microcapsule-forming proteinoid and being soluble within a selected pH range.

The proteinoid molecules of the invention contain between about 2 and about 20 amino acid residues, preferably between about 2 and about 8 amino acid residues, and has a molecular weight which ranges between about 250 and about 2400 daltons, preferably between about 250 and about 600, and most preferably between about 250 and 400 daltons.

The proteinoid carriers are useful as delivery systems to releasably encapsulate and carry a broad range of cargoes including pharmaceutical agents, dye reagents and cosmetic ingredients. In particular, the proteinoid carriers are useful as oral delivery systems of sensitive pharmaceutical agents, which normally would not be administrable via the oral route, for selective release at targeted regions of the gastrointestinal tract.

DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates the molecular weight distribution as a function of monomer concentration of poly (Asp.Bz-co-Phe) polymer prepared by the NCA method as described in Example 3.

FIG. 2 illustrates the molecular weight distribution. of a function of monomer concentration of poly (Asp.Bz) polymer prepared by the DPPA method as described in Example 5.

FIG. 3 illustrates the effect of reaction time duration on yields of poly (Asp.Bz) polymer prepared by the DPPA method as described in Example 5.

FIG. 4 illustrates the effect of temperature of the molecular weight of poly (Asp.Bz) polymer prepared by the DPPA method as described in Example 5.

FIG. 5 illustrates the effect of changing the molar ratios of DPPA!/ M! on the molecular weight of poly (Asp.Bz) polymer by the DPPA method as described in Example 5.

FIG. 6 is a photograph of an x-ray film of the western immunoblot analysis, as described in Example 9, of purified murine mAb 9BG5 (2 μg, lane 1; 1 mg, lane 2; and 0.25 μg, lane 3); empty proteinoid carrier supernatant after encapsulating process (no mAb) (lane 4); empty proteinoid carrier pellet (lane 5); proteinoid carrier encapsulated mAb supernatant after encapsulating process (lane 6); and proteinoid carrier encapsulated mAb pellet. Lane MW contained standard molecular weight markers.

FIG. 7 is a photograph of an x-ray film of a western immunoblot analysis of samples described in Example 10.

FIGS. 8 (a-c) illustrate the levels of serum proteins which bound to immobilized reovirus type 3 and VL SH under ELISA conditions as described in Example 11. "Empty spheres" refers to animals orally administered empty proteinoid carriers (no mAb 9BG5); "spheres" refers to animals orally administered mAb 9BG5 encapsulated proteinoid carriers; "IV" refers to animals intravenously administered unencapsulated mAb 9BG5; and "oral" refers to animals orally administered unencapsulated mAb 9BG5.

FIG. 9 show mAb binding under conventional ELISA procedures using immobilized reovirus type 3 and VL SH proteins with serial dilutions of purified mAb in 0.85N citrate-0.5% gum (FIG. 9(a)) or phosphate buffered saline (FIG. 9 (b)) as described in Example 11.

FIG. 10 illustrates levels of erythropoietin (EPO) detected in rat serum taken from rats administered proteinoid carrier encapsulated EPO (15 μg EPO/kg body weight) and encapsulated EPO (15 μg EPO/kg body weight) as described in Example 15.

FIG. 11 illustrates EPO serum levels in rats that were administered either erythropoietin (50 μg/kg) or encapsulated erythropoietin (50 μg/kg) directly into the proximal duodenum as described in Example 15. Serum erythropoietin levels were determined over time with a erythropoietin enzyme immunoassay kit.

FIG. 12 illustrates EPO serum levels in rats who were orally gavaged with either encapsulated or unencapsulated erythropoietin (100 μg/kg) or received a subcutaneous injection of either 2 μg/kg or 10 μg/kg as described in Example 15. Serum erythropoietin levels were determined over time with an erythropoietin enzyme immunoassay kit.

FIG. 13 illustrates serum calcium changes after oral administration of salmon calcitonin proteinoid carriers (0.25 mg calcitonin/kg body weight) in cynomolgus monkeys as described in Example 17. The results are expressed as absolute change in serum calcium from baseline values. The data represents means +/- SEM. ** Serum calcium levels significally different from baseline values.

FIG. 14 illustrates serum calcium changes following oral administration of salmon calcitonin proteinoid carriers (0.60 mg/kg body weight) in rats as described in Example 18. The results are expressed as absolute change in serum calcium from baseline values. The data represents means +/- SEM. ** Serum calcium levels significantly different compared to the control group at the corresponding time point.

FIG. 15 illustrates serum calcium changes after intraduodenal administration of salmon calcitonin or calcitonin proteinoid carriers (3 ug/kg body weight) in rats as described in Example 18. The results are expressed as absolute change in serum calcium from baseline values. The data represents means +/- SEM. ** Significantly different from the unencapsulated control group at the indicated time points.

FIG. 16 illustrates clotting times after oral administration of proteinoid carrier encapsulated Factor IX (FIX sph PO) and IV administration of FIX solution (FIX IV) as described in Example 20.

FIG. 17 illustrates clotting times after oral administration of proteinoid carrier encapsulated Factor IX (FIX sph PO) and FIX solution (FIX unencap PO) or IV administration of FIX solution (FIX IV) as described in Example 21.

FIG. 18 illustrates the percentage of intact alpha-interferon (IFN) remaining after incubating IFN and IFN proteinoid carriers in simulated gastric fluid (SGF).

FIG. 19 illustrates the percentage of intact IFN remaining after incubating IFN and IFN proteinoid carriers in 0.08N HCl.

FIG. 20 illustrates the percentage of intact IFN remaining after incubating IFN and IFN proteinoid carriers in simulated intestinal fluid (SIF).

FIG. 21 illustrates the clotting times in rats dosed with heparin or proteinoid/heparin, both in water. The data represents an average of 6 rats. The data represents means +/- SEM.

FIG. 22 illustrates clotting times in rats dosed ID with USP heparin or heparin proteinoid carriers, both in citric acid. Each time point is an average of 12 rats. The data represents means +/- SEM.

FIG. 23 illustrates clotting times in rats dosed orally with heparin-spiked empty proteinoid carriers or heparin proteinoid carriers. Each time point is an average of 12 rats. The data represents means +/- SEM.

FIG. 24 illustrates the average titers of rats immunized orally with M1 proteinoid carriers versus unencapsulated M1. Only responders in each group were averaged.

FIG. 25 illustrates HA-NA titers of rats immunized orally with HA-NA micropspheres versus unencapsulated HA-NA.

DETAILED DESCRIPTION OF THE INVENTION

All patents and literature references cited in this specification are hereby incorporated by reference in their entirety. In case of inconsistencies, the present description, including the definitions and interpretations, will prevail.

The instant invention arose from the discovery that proteinoids of a MW of between about 250 and about 2400 daltons and of defined amino acid composition can be obtained by modifying known reactions and selecting starting materials. These proteinoids form proteinoid carriers with surprisingly enhanced stability against at least one of photodegradation and decomposition over time. In addition, proteinoid carriers prepared from such proteinoids carry a broader range of pharmaceutical agents, including labile polypeptides such as insulin, alpha-interferon, calcitonin, antigens, e.g. influenza virus M1-protein, and Factor IX and display a selective releasability within various portions of the gastrointestinal tract, relative to prior art proteinoid microspheres.

The proteinoids of the invention comprise a peptide polymer selected from the group consisting of:

(i) peptide polymers made from at least one first monomer selected from the group consisting of tyrosine and phenylalanine; and from at least one second monomer selected from the group consisting of glutamic acid, pyroglutamic acid, glutamine, and aspartic acid;

(ii) peptide polymers made from at least one first monomer selected from the group consisting of tyrosine and phenylalanine; at least one second monomer selected from the group consisting of glutamic acid, pyroglutamic acid, glutamine, and aspartic acid; and from at least one third monomer selected from the group consisting of lysine, arginine and ornithine, the proteinoid being a microsphere- or microcapsule-forming proteinoid and being soluble within a selected pH range.

The proteinoid molecules of the invention contain between about 2 and about 20 amino acid residues, preferably between about 2 and about 8 amino acid residues, and have a molecular weight which ranges between 250 and about 2400 daltons, preferably between about 250 and about 600, and most preferably between about 250 and 400 daltons.

Proteinoid carriers prepared from the proteinoid molecules, in accordance with the present invention, display a selective solubility at specific acidic or basic pH ranges, depending on the choice and amount of the second and third monomers in the proteinoid.

Proteinoid carriers which are selectively soluble under alkaline pH environments, such as those found in the distal portion of the intestine, are prepared from base-soluble proteinoids. These proteinoids contain, as starting monomers in the reaction mixture, at least one second monomer selected from the group consisting of glutamic acid, glutamine, pyroglutamic acid, and aspartic acid. At a pH ranging between about 7.2 and about 11.0, the base-soluble proteinoid exists largely as the anion and is soluble. At a pH below about 7.0, the proteinoid is largely protonated and insoluble in water.

Similarly, proteinoid carriers which are selectively soluble under acidic pH environments, such as the stomach, are prepared from acid-soluble proteinoids. In this case, the proteinoid contain, as starting monomers in the proteinoid reaction mixture, at least one second monomer selected from the group consisting of glutamic acid, pyroglutamic acid, glutamine, and aspartic acid and at least one third monomer selected from the group consisting of lysine, arginine, and ornithine. At a pH ranging between about 1 and about 7, the base-soluble proteinoid exists largely as the cation and is soluble. At a pH above about 7.2, the proteinoid is largely unprotonated and insoluble in water.

The pH and the solubility characteristics of the acid-soluble proteinoid depends largely, but not exclusively, upon the pH and solubilty of the last amino acid added during the synthesis of the proteinoid. For instance, the incorporation of a basic amino acid, e.g., a third monomer, selected from the group consisting of lysine, arginine and ornithine in the acid-soluble proteinoid will result in the elevation of the pI (pH at the isoelectric point) of the proteinoid.

The proteinoids of the present invention are preparable by a thermal condensation reaction by heating mixtures of the appropriate amino acids under conditions described in the '673 patent. In contrast with the '673 patent procedures which use as many as eighteen amino acids, mixtures of two to five specific amino acids with at least one selected from each of the aforementioned groups yield proteinoids which form proteinoid carriers with selective solubility at particular pH ranges and at high yields.

In carrying out the thermal condensation reaction, it has now been discovered that inclusion of tetramethylene sulfone, an inert, high boiling,. polar solvent, maximizes the yield (>80%) of low MW proteinoids. Omission of solvent does not produce high yields of low MW proteinoids. Presumably this is due to the poor solubility of the amino acid monomers in these solvents and/or unavoidable side reactions between the monomers and the solvent under the reaction conditions.

In general, individual amino acids are added to a reaction flask containing tetramethylene sulfone (sulfolane) which has been heated to a temperature ranging between about 130 C. and about 200 C., preferably about 175 C. to 195 C., under an inert atmosphere of argon or nitrogen gas. After each addition, the solution is stirred for a period of time ranging between about 10 minutes and about 5 hours, depending on the amino acid type and the order of addition.

Upon heating mixtures of amino acids to temperatures of about 190 C. as described above, a reaction takes place and water, ammonia and carbon dioxide are produced as side-products. Water is removed from the reaction as formed and the reaction is terminated when water formation ceases. Thereafter, the proteinoid are precipitated out of the reaction solution by quenching with excess water, under vigorous stirring. After stirring for a period of about 1 hour, the proteinoids are collected by filtration, washed with water and dried under vacuum.

Chemical condensation methods which utilize derivatized amino acids are also useful for making the proteinoids of the present invention as they permit greater control of molecular weight. Such reactions are generally conducted at lower reaction temperature and with initiators. In particular, low MW proteinoids produced by the alpha-amino acid N-carboxyanhydride (NCA) method and the diphenylphosphoryl azide (DPPA) method (N. Nishi et al. (1991) Makromol. Chem., Vol.192, pages 1789-1798) were found to form proteinoid carriers having selected solubility within a particular pH range.

The NCA method involves the preparation of N-carboxyanhydrides of alpha-amino acid esters and their subsequent polymerization, using low MW amines as initiators. It has been discovered that non-NCA derived amino esters, e.g., α-methyl tyrosine ester, are effective initiators which are stable and soluble in many organic solvents such as tetrahydrofuran (THF). The use of amino acids as initiators, presumably due to their poor solubility in organic solvents and their low stability, are not known. The NCA reaction produces a high yield of proteinoids with high purity.

The DPPA method involves the direct condensation of benzyl esters of alpha-amino acids in the presence of DPPA and a low MW amine, followed by removal of the protective benzyl groups, contained in the proteinoid product, by alkaline hydrolysis. If catalytic hydrogenation is used in place of alkaline hydrolysis, low MW proteinoids of unexpected high purities and yields are obtained.

Proteinoids prepared by any of the above methods can be used immediately to microencapsulate an active pharmacological agent or the proteinoid can be concentrated or dried by conventional means and stored for future use.

The proteinoids of the invention are purified as follows: crude proteinoids are slurried with water at room temperature, e.g. 25 C. While at this temperature, the pH of the slurry is adjusted to about pH 8 using an aqueous alkaline solution, e.g. 40% sodium hydroxide and 10% sodium bicarbonate solutions for an acid-soluble proteinoid. For a base-soluble proteinoid, the slurry is adjusted to an acidic pH with an aqueous acidic solution, e.g. 10% acetic acid solution. The mixture is then filtered and the filter cake washed with a volume of water. The washes and filtrate are then combined and evaporated to dryness in vacuo to afford proteinoids. If necessary, this process can be repeated until proteinoids of a desired purity level are obtained.

If desired, the proteinoid may be further purified by fractionating on a column containing solid supports which include silica gel or alumina, using methanol or propanol as mobile phase; ion exchange resin using water as the mobile phase; reverse phase column supports using trifluoroacetic acid/acetonitrile mixtures as mobile phase. The proteinoids may also be purified by extraction with a lower alcohol such as propanol or butanol to remove low molecular weight contaminants.

Proteinoid carriers are made from purified proteinoids as follows: proteinoids are dissolved in deionized water at a concentration ranging between about 75 and about 200 mg/ml, preferably about 100 mg/ml, at a temperature between about 25 C. and about 60 C., preferably about 40 C. Particulates remaining in the solution may be filtered out by conventional means such as gravity filtration over filter paper.

Thereafter, the proteinoid solution, maintained at a temperature of about 40 C., is mixed with an aqueous acid solution (also at about 40 C.) having an acid concentration ranging between about 1N and about 2N, preferably about 1.7N. The resulting mixture is further incubated at 40 C. for a period of time effective for microsphere and microcapsule formation as observed by light microscopy. In practicing this invention, the preferred order of addition is adding the proteinoid solution to the aqueous acid solution.

Suitable acids include any acid which does not (a) adversely effect the proteinoid, e.g., chemical decomposition; (b) interfere with microsphere or microcapsule formation; (c) interfere with microsphere or microcapsule encapsulation of cargo; and (d) adversely interact with the cargo. Preferred acids for use in this invention include acetic acid, citric acid, hydrochloric acid, phosphoric acid, malic acid and maleic acid.

In practicing the invention, a proteinoid carrier stabilizing additives are preferably incorporated into the aqueous acid solution or into the proteinoid solution, prior to the microsphere or microcapsule formation process. The presence of such additives promotes the stability and dispersibility of the proteinoid carriers in solution.

The additives may be employed at a concentration ranging between about 0.1 and 5% (W/V), preferably about 0.5% (W/V). Suitable, but non-limiting, examples of stabilizing additives include gum acacia, gelatin, polyethylene glycol, and polylysine.

Thereafter, the proteinoid carriers may be used immediately or may be stored at 4 C. or lyophilized and stored under desiccant at room temperature or below.

Under the aforementioned conditions, the proteinoid molecules form spherical proteinoid carriers comprising proteinoid microcapsules and proteinoid microspheres of less than 10 micron diameter. As defined herein, a "microsphere" is spherical homogeneous mesh work structure having no discrete inner chamber. A "microcapsule" refers to a spherical structure having a proteinoid wall which forms a hollow or chamber. If the proteinoid carriers are formed in the presence of a soluble material, e.g., a pharmaceutical agent in the aforementioned aqueous acid solution, this material is believed to be encapsulated within the hollows of the microcapsules and confined within the proteinoid wall defined by the spherical structure or entrapped within the matrix of proteinoid molecules in the microsphere structure. In this way, one can encapsulate or entrap pharmacologically active materials such as peptides, proteins, and polysaccharides as well as charged organic molecules, e.g., quinolones or antimicrobial agents, having poor bioavailability by the oral route. The amount of pharmaceutical agent which may be encapsulated or entrapped by the proteinoid carrier is dependent on a number of factors which include the concentration of agent in the encapsulating solution.

The proteinoid carriers of the invention are pharmacologically harmless and do not alter the physiological and biological properties of the active agent. Furthermore, the encapsulation process does not alter the pharmacological properties of the active agent. While any suitable pharmacological agent can be encapsulated within proteinoid carriers, it is particularly valuable for delivering agents which otherwise would be destroyed or rendered less effective by conditions encountered in the animal body before it reaches its target zone and which are poorly absorbed in the gastrointestinal tract.

The proteinoid carriers of the invention are particularly useful for the oral administration of certain pharmacological agents, e.g., small peptide hormones, which, by themselves, pass slowly or not at all through the gastro-intestinal mucosa and/or are susceptible to chemical cleavage by acids and enzymes in the gastrointestinal tract. Non-limiting examples of such agents include human or bovine growth hormone, interferon and interleukin-II, calcitonin, atrial natriuretic factor, antigens, monoclonal antibodies, and Factor IX, a vitamin K-dependent blood coagulation proenzyme.

The choice of a particular proteinoid for use in encapsulating or entrapping a pharmacological agent depends on a number of factors which include:

(1) the acidity or basicity of the agent;

(2) the targeted area for release in the gastrointestinal tract;

(3) the solubility of the drug at certain pH ranges;

(4) efficiency of encapsulation;

(5) interaction of drug with proteinoid.

For example, proteinoids made from glutamic acid, aspartic acid, tyrosine, and phenylalanine are especially suitable for encapsulating polysaccharides like heparin.

In addition to selective pH solubility, the particle size of the proteinoid carrier plays an important role in determining release of the active agent in the targeted area of the gastrointestinal tract. Proteinoid carriers having diameters between about ≦0.1 microns and about 10 microns, preferably between about 5.0 microns and about 0.1 microns, and containing encapsulated or entrapped active agents are sufficiently small to effectively release the active agent at the targeted area within the gastrointestinal tract. Large proteinoid carriers (>10 microns) tend to be less effective as oral delivery systems.

The size of the proteinoid carriers formed by contacting proteinoids with water or aqueous solution containing active agents can be controlled by manipulating a variety of physical or chemical parameters, such as the pH, osmolarity or salt content of the encapsulating solution, and the choice of acid used in the encapsulating process.

By tailoring both the solubility characteristics of a proteinoid and the particle size of the proteinoid carriers, active agent bearing proteinoid carriers can be produced from base-soluble proteinoids which are stable in the highly acidic stomach (normal pH of from about 2 to about 6), but which dissolve in the distal portion of the intestines. Such systems are suitable for oral administration of peptide hormones, e.g., insulin, and polysaccharides, e.g., heparin, which otherwise would be quickly destroyed in the GI tract. They also are suitable for protecting the stomach from gastric irritants, such as aspirin. When such aspirin-containing proteinoid carriers are orally administered, they pass through the gastrointestinal mucosa and release the aspirin far more rapidly than conventional enterically coated aspirin, which first must traverse the stomach and then must enter the bloodstream from the intestine after the enteric coating has dissolved.

It also is possible to produce systems from acid-soluble proteinoids which are stable under weakly basic conditions (pH of about 8), but which release active agent under acidic conditions (pH of about 2 to 5). Such systems are suitable for the intravenous administration of pharmacological agents such as calcium regulators and redox carrier systems for dopamine or gamma-aminobutyric acid.

The proteinoid carriers of the invention may be orally administered alone as solids in the form of tablets, pellets, capsules, and granulates suitable for suspension in liquids such as edible oils. Similarly, the proteinoid carriers can be formulated into an orally administrable composition containing one or more physiologically compatible carriers or excipients. These compositions may contain conventional ingredients such as gelatin, polyvinylpyrrolidone and fillers such as starch and methyl cellulose.

The proteinoid carriers of the invention may also be administered by injection.

The following examples are illustrative of the invention but are not intended to limit the scope of the invention.

EXAMPLE 1 Preparation of a Base-Soluble Proteinoid by a Thermal Condensation Reaction

750 ml of tetramethylene sulfone was heated to 190 C. in an inert nitrogen atmosphere in a 4 liter flask with stirring. 294 g of glutamic acid was added and the mixture was heated for one-half hour. 266 g of aspartic acid was added and the mixture heated as rapidly as possible to 190 C. and held there for 15 minutes. 362 g of tyrosine was added and the mixture heated at 190 C. for 3 hours. 330 g of phenylalanine was added and the mixture heated at 190 C. for 1.5 hours. The hot melt was then poured into 5 liters of water with vigorous stirring. After stirring for about 1 hour, the mixture was filtered and the filtrate discarded. The cake was reslurried in 5 liters of water, filtered and the cake was again reslurried in 5 liters of water. The pH of the slurry (at 25 C.) was adjusted to 8 using 40% sodium hydroxide solution. The mixture was filtered and the cake washed with a small amount of water. The washes and filtrate are combined and evaporated to dryness in vacuo to give Glu/Asp/Tyr/Phe proteinoid.

Appendices A, B, and C describe examples of other proteinoids prepared by the thermocondensation method.

EXAMPLE 2 Preparation of an Acid-Soluble Proteinoid by a Thermal Condensation Reaction

750 ml of tetramethylene sulfone is heated to 190 C. in an inert nitrogen atmosphere in a 4 liter flask with stirring. 294 g of glutamic acid is added and the mixture is heated for one-half hour. 362 g of tyrosine is added and the mixture is heated at 190 C. for 3 hours. 330 g of phenylalanine is added and the mixture is heated at 190 C. for 1.5 hours. 266 g of arginine is added and the mixture is heated for an additional 1.5 hours. The hot melt is then poured into 5 liters of water with vigorous stirring. After stirring for about 1 hour, the mixture is filtered and the filtrate is discarded. The cake is reslurried in 5 liters of water, filtered and the cake is again reslurried in 5 liters of water. The pH of the slurry (at 25 C.) was adjusted to 5 using 10% acetic acid solution. The mixture is filtered and the cake is washed with a small amount of water. The washes and filtrate are combined and evaporated to dryness in vacuo to give proteinoid.

Appendices A, B, and C describe examples of other proteinoids prepared by the thermocondensation method.

EXAMPLE 3 Preparation of Proteinoids by the NCA Method Using Amine Initiator

This example illustrates the NCA method for preparing copolypeptides consisting of Asp.Bz, Glu.Bz, Phe, and Tyr components. The NCA monomers of these amino acids were prepared according to the reported method.

The reactions were carried out in tetrahydrofuran (THF) or in dichloromethane using benzylamine (BzNH2) or 4-methylbenzyl amine (MeBzNH2) as initiator at room temperature ( M!=10%) The characterization of the resulting copolymers was performed by 1 H NMR and GPC. The results obtained are listed in Table 1.

As shown in Table 1, proteinoids having Asp and/or Glu as the second monomers and Phe and/or Tyr as the first monomers were obtained in high yield from the polymerization initiated with BzNH2 at the ratio of M!/ I!=5 (No. 2-1 to 2-7).

The GPC curve (FIG. 1) for poly(Asp.Bz-co-Phe), from which a polydispersity of 1.91 was determined. Similar molecular weight distributions were observed for other copolymers.

Polydispersity is defined herein as the molecular weight distribution of a sample. The distribution is assigned a numerical value derived from the molecular weight (MW) divided by the molecular number (Mn). The polydispersity value for a homopolymer is 1 because the molecular weight is equal to the molecular number. Any polymer with a polydispersity value of 1 is considered to have a very narrow distribution. A polymer with polydispersity value of 1.6 to 1.7 is considered to have medium distribution. A polymer with a polydispersity value of 2.0-2.1 is considered to have a broad distribution.

The homopolymerization of the NCA of Asp.Bz and the copolymerizations of the NCAs of Asp.Bz, Glu.Bz, Phe, and Tyr were also carried out using MeBzNH2 as initiator (No. 2-11, 2-15, and 2-16). Similar results were obtained for reactions initiated by BzNH2.

              TABLE 1______________________________________COPOLYMERIZATION OF NCAs INITIATED WITH AMINESSTORED AT ROOM TEMPERATURE FOR 4 DAYSPOLYM. COMONOMER   INITIATOR  SOL-  YIELDNO.    COMPOSITION ( M!/ I!)  VENT  (%)   MW______________________________________2-1    Asp-Glu-Phe-Tyr              BzNH2 (5:1)                         THF   84.1   830  (1:1:1:1)2-2    Asp-Phe (1:1)              BzNH2 (5:1)                         THF   70.9   7302-3    Asp-Tyr (1:1)              BzNH2 (5:1)                         THF   88.6  10002-4    Asp-Tyr (2:1)              BzNH2 (5:1)                         THF   89.3  10502-5    Glu-Tyr (1:1)              BzNH2 (5:1)                         THF   84.9   8702-6    Glu-Phe-Tyr BzNH2 (5:1)                         CH2 Cl2                               68.8   790  (2:1:1)2-7    Glu-Phe-Tyr BzNH2 (5:1)                         CH2 Cl2                               53.7  1000  (1:1:1) 2-11  Asp         MeBzNH2 (5:1)                         THF   88.3   870 2-15  Asp-Glu-Phe-Tyr              MeBzNH2 (5:1)                         THF   76.4  (1:1:1:1) 2-16  Asp-Glu-Phe-Tyr              MeBzNH2 (5:1)                         THF   76.4   630  (1:1:1:1)______________________________________
EXAMPLE 4 Preparation of Proteinoids by the NCA Method Using α-Methyl Tyrosine Ester as Initiator

This example illustrates the method of conducting NCA polymerizations, using α-methyl tyrosine ester (Tyr.Me) as the initiator. The reaction conditions are essentially the same as described in Example 3 except tetrahydrofuan (THF) solvent was used. The results are listed in Table 2.

              TABLE 2______________________________________PROTEINOID SYNTHESIS BY NCA INITIATED WITH AMINOACIDS STORED AT ROOM TEMPERATURE FOR 4 DAYSPOLYM. COMONOMER   INITIATOR  SOL-  YIELDNO.    COMPOSITION ( M!/ I!)  VENT  (%)   MW______________________________________ 2-8   Asp-Glu-Phe Tyr.Me (1:1)                         CH2 Cl2                               100   450  (1:1:1) 2-9   Asp-Glu-Phe Tyr.Me (3:1)                         CH2 Cl2                               71.4  450  (1:1:1)2-10   Asp-Glu-Phe Tyr.Me (5:1)                         CH2 Cl2                               68.0  730  (1:1:1)2-12   Asp         Tyr.Me (1:1)                         THF   100   4602-13   Glu-Tyr (1:1)              β-Ala (2:1)                         THF   67.4  480              Suc.An (2:1)                         (reflux)2-14   Asp         Tyr.Me (6:1)                         THF   91.8  8902-17   Phe         Tyr.Me (1:1)                         THF   73.0  ND2-18   Tyr         Tyr.Me (1:1)                         THF   65.7  ND2-19   Phe         Tyr.Me (5:1)                         THF   78.3  ND2-20   Tyr         Tyr.Me (5:1)                         THF   63.3  ND______________________________________

It was found that the initiation by Tyr.Me is very fast (No. 2-17 to 2-20) and all the NCA has been converted after 2 hours. From GPC data, it was observed that the molecular weight of the polymer increased with increasing ratio of M!/ Tyr.Me! and the polydispersity is quite narrow. The existence of a Tyr.Me residue in the polymers was confirmed by 1 H NMR spectra. In conclusion, Tyr.Me is a novel and effective initiator for the polymerization of amino acid NCA's.

Sample No. 2-13 represents a polymerization initiated with β-alanine and terminated with succinic anhydride. As β-alanine is insoluble in most organic solvents, the reaction was carried out in refluxing THF. As a result, the polydispersity of the polymer obtained was broader than that of the polymers initiated by Tyr.Me.

EXAMPLE 5 Preparation of Proteinoids by the DPPA Method (#1)

This is an example of a direct polycondensation of Asp.Bz in the presence of DPPA and triethylamine (TEA) as a base under various polymerization conditions ((a), (b), (c), and (d)). The molecular weight of the polymers, as well as polydispersity, was evaluated in each case by GPC. The polymers were characterized by IR and NMR spectroscopy.

Asp.Bz was prepared by the esterification of L-aspartic acid as follows: L-aspartic acid (26.6 g, 0.2 mole) was suspended in 300 ml of freshly distilled benzyl alcohol in a 500 ml round bottom flask, followed by addition of 45 ml of concentrated hydrochloric acid (12N). The mixture was heated up to 60 C. under vigorous stirring for 30 minutes. Thereafter, the reaction solution cooled to room temperature. Triethyl amine (about 56 ml) was added to neutralize (to a pH of about 7) the solution. The crude product was collected by filtration, washed with ethanol and acetone, dried in vacuo, and crystallized twice from hot water. 18 g of product was obtained (% yield=44%). M.pt=217 C.

Commercial DPPA was used without further purification. TEA was distillated before use. Solvents for polymerization were purified by conventional methods. The direct polycondensation of Asp.Bz was carried out by stirring a dimethyl formamide (DMF) solution of the monomer in the presence of DPPA and TEA. The mixture was stirred for 1 h at 0-10 C. followed by stirring at room temperature for two days. The resulting polymer was precipitated in a large amount of water, collected by filtration, and then dried in vacuo.

a. Effect of Monomer Concentration

Listed in Table 3 are the results for the polymerization of Asp.Bz in DMF at room temperature for two days. Poly(Asp.Bz)s were obtained from these direct polycondensations in high yield.

The molecular weight of the polymers was found to be dependent on the concentration of the monomer M!. Low molecular weight polymers with broad distribution were obtained from a low M! (FIG. 2, curve A, m=0.025). On the other hand, when M! was greater than 0.2 g/mL, a polymer with a bimodal molecular weight distribution was obtained (FIG. 2, curve B). The lower molecular weight oligomers (-1000) may be due to an intramolecular termination between the terminal amino and the β-carboxylic groups. After several reprecipitations from THF/methanol, a polymer with a higher molecular weight (Mn =22,000) and narrow polydispersity (Mw /Mn =1.68) was successfully isolated from the polymer mixture prepared at M!=1 g/mL. The separation was also performed using GPC column with Bio-Beads.

              TABLE 3______________________________________EFFECT OF THE MONOMER CONCENTRATION ON POLYMERI-ZATION OF Asp.Bz BY DPPA IN DMF AT ROOM TEMPERATURE: DPPA!/ M! = 1.3;  TEA!  M! = 2.3 M! (g/ml)    YIELD (%)     Mn  10-3(G)                            MW /Mn______________________________________0.025    71.5.sup.(a)  1.4       4.150.033    74.7.sup.(a)  1.0       3.500.05     67.2.sup.(a)  1.1       5.110.10     63.2.sup.(b)  0.91      3.700.20     85.4.sup.(b)  16.3 (60.7),                            1.84, 1.13                  1.0 (39.3)0.50     86.5.sup.(b)  11.0 (59.4),                            2.22, 1.08                  0.92 (40.6)1.0      97.6.sup.(b)  15.1 (71.4,                            1.81, 1.05                  0.88 (28.6)______________________________________ .sup.(a) The polymer was collected by centrifugation after polymerization for 2 days; .sup.(b) The polymer was collected by filtration after polymerization for 2.5 days. .sup.(c) The values in parentheses are molar percentages.

b. Effect of Reaction Time and Temperature

The yield of the resulting polymer increased with the reaction time: 75% conversion in 5 h and 95% in 4 days (FIG. 3, curve A). The molecular weight of the resulting polymer also increased with time in the initial phase (up to 4 h) and then became almost constant (FIG. 3). The polymerization decreased with increasing temperature (FIG. 4, curve B). Polymers obtained at 60 and 80 C. were of yellow color and insoluble in THF but soluble in DMF and DMSO. This may be due to the formation of an imide ring which has been reported to occur during thermal polycondensations of aspartic acid.

C. Effect of Molar Ratios DPPA!/ M! and TEA!/ M!

The dependence of the yield and the molecular weight of the polymer on the molar ratios of DPPA!/ M!, as well as TEA!/ M!, was investigated (Table 4). The highest yield was obtained at a DPPA!/ M! of 1.3 and a TEA!/ M! of 2.3 (FIG. 5). These observations are in agreement with the results reported by Nishi et al. Higher molecular weight products were obtained in the range of DPPA!/ M!=1.3-2.0 and TEA!/ M!=2.0-3.0, respectively.

              TABLE 4______________________________________EFFECT OF THE MOLAR RATIOS OF DPPA AND TEA ONPOLYMERIZATION OF Asp.Bz IN DMF AT ROOM TEMPERATURE: M! = 0.50 g/ml            YIELD M!/DPPA   M!/ TEA! (%)     Mn  10-3(a)                                 MW /Mn______________________________________0.5    2.3       16.3    0.81         4.091.0    2.3       69.6    3.1 (45.4), 0.39 (54.6)                                 2.58, 1.481.3    2.3       86.5    11.0 (59.4), 0.92 (40.6)                                 2.22, 1.081.5    2.3       69.4    15.9 (34.2), 0.83 (65.8)                                 1.77, 1.212.0    2.3       64.3    13.1 (58.3), 0.89 (41.7)                                 1.87, 1.091.3    1.5       58.4    6.0 (39.3), 0.63 (60.7)                                 2.43, 1.371.3    2.0       78.3    13.3 (64.3), 0.92 (35.7)                                 1.87, 1.191.3    2.0       74 6    13.6 (54.8), 0.83 (35.2)                                 1.98, 1.181.3    3.5       65.0    8.3 (60.0), 0.80 (40.0)                                 2.70, 1.10______________________________________ .sup.(a) The values in parentheses are molar percentages

d. Effect of Solvent

A comparison of the polymerizations in different solvents is shown in Table 5. It can be seen from this table that the yield and the molecular weight of the polymer are influenced by the solvents used. Higher yields were obtained in DMF while higher molecular weights were obtained in THF and in bulk. On the other hand, the polymerization in dioxane gave a lower molecular weight product, and therefore is preferred.

              TABLE 5______________________________________EFFECT OF THE SOLVENTS ON POLYMERIZATION OFAsp.Bz AT ROOM TEMPERATURE FOR 2 DAYS M!/ DPPA! = 1.3,  M!/ TEA! = 2.3,  M! = 0.50 g/mlSOLVENT   YIELD (%) Mn  10-3(b)                              MW /Mn______________________________________DMF       86.5      11.0 (59.4), 0.92 (40.6)                              2.22, 1.08DMSO      70.6      11.5 (78.9), 1.05 (21.1)                              1.87, 1.13THF       49.9      29.6 (74.6, 1.14 (25.4)                              1.31, 1.13ACETONITRILE     71.1      20.3 (79.3), 1.05 (20.7)                              1.65, 1.14DIOXANE   70.5       4.7 (68.5), 0.82 (31.5)                              3.80, 1.13NONE.sup.(a)     61.2      29.8 (82.8), 0.86 (17.2)                              1.32, 1.16______________________________________ .sup.(a) Bulk polymerization. .sup.(b) The values in parentheses are molar percentages.
EXAMPLE 6 Preparation of Proteinoids by the DPPA Method (#2)

Copolymerizations of Asp.Bz with other amino acid monomers such as γ-benzyl glutamate (Glu.Bz), β-alanine (Ala), Phenylalanine (Phe), and O-benzyl tyrosine (Tyr.OBz) in the presence of DPPA were carried out using the same procedure as that for the homopolymerization of Asp.Bz (Example 5). Random copoly(amino acids) were obtained in high yield (>77%) as shown in Table 6. This indicates that the copolymerization of amino acids using DPPA is a useful approach to copolypeptide synthesis. Bimodal molecular weight distributions were also observed in these cases similarly to the homopolymerization of Asp.Bz.

              TABLE 6______________________________________COPOLYMERIZATION OF α-AMINO ACIDS IN THE PRESENCE OFDPPA AS CONDENSING AGENT IN DMF AT ROOMTEMPERATURE FOR 2 DAYSPOLYM.  COMONOMER        YIELDNO.     COMPOSITION      (%)     Mw                                  MW /Mn______________________________________Co.1DPPA   Asp.Bz-Glu.Bz    97.4    15900,                                  1.76,   (1:1)                    1080  1.13Co.2DPPA   Asp.Bz-β-Ala                    91.2    1590  1.18   (1:1)Co.3DPPA   Asp.Bz-Phe       89.7    13700,                                  1.89   (1:1)                    800   1.25Co.4DPPA   Asp.Bz-Tyr.OBz   87.3    9000, 1.78,   (1:1)                    1000  1.17Co.5DPPA   Asp.Bz-Glu.Bz.Phe.Tyr.OBz                    92.5    16800,                                  1.66,   (1:1:1:1)                960   1.14______________________________________
EXAMPLE 7 Reductive Debenzylation of Proteinoids Produced by the DPPA Method

The example illustrates a preferred method for the removal of benzyl protective groups in poly(Asp.Bz) and poly(Glu.Bz) by catalytic hydrogenation.

The hydrogenation of the polymers was carried out according to the following procedure: To a solution of the polymer in THF/methanol (1:1, v/v), Pd on active carbon (10%) was added in the amount of 1/10 of the polymer weight. After the replacement of air by nitrogen, hydrogen gas was introduced into the system and maintained with a balloon. The reaction mixture was stirred at room temperature overnight. After removing the catalyst by filtration and concentrating the solution, the mixture was poured into a large amount of petroleum ether to precipitate the polymer. The polymer obtained was then dried in vacuo.

The completion of the hydrogenation was confirmed by 1 H NMR of the polymer. In most cases, useful water-soluble polymers were produced. The hydrogenation is an effective and clean procedure for benzyl group removal.

EXAMPLE 8 Preparation of Empty Proteinoid carriers with Glu, Asp, Tyr, Phe Proteinoid

This Example illustrates a method for the preparation and cleaning of empty proteinoid carriers.

Procedure

1. Reagents:

a. Proteinoid powder prepared as described in Example 1

b. Anhydrous citric acid (USP)

c. Gum acacia NF

d. Deionized water

e. Glatial acetic acid

2. Equipment:

a. Ph meter

b. Water bath, 40 C.

3. Preparation of Solutions:

a. Proteinoid solution--Dissolve 100 mg proteinoid in 1 ml deionized water (or multiples thereof). Filter through a Whatman #1 filter paper (if necessary) and keep at 40 C. in a water bath. This is solution A.

b. 1.7N citric acid with 0.5% acacia--Dissolve 5 g of acacia and 109 g of citric acid in 1 liter deionized water. Incubate at 40 C. This is solution B.

4. Preparation of Proteinoid carriers:

a. Add all of solution A to solution B rapidly in one step while swirling solution B by hand, in a 40 C. water bath.

EXAMPLE 9 Preparation of Murine IgG Monoclonal Antibody-Containing Proteinoid Carrier

This experiment describes encapsulation of anti-reovirus monoclonal antibody (mAb) 9BG5, an mAb directed against the sigma-1 gene product (Hemaglutinin, HA3) of the Reovirus Type 3. HA3 binds to the cell surface receptor for Reovirus type 3, and mAb 9GB5 interferes with viral binding to the receptor.

Mouse IgG monoclonal antibody 9BG5 was prepared and purified as described W. V. Williams et al. (1991) J. Biol. Chem., Vol. 266(8), pages 5182-5190, as well as references cited therein, using a purified Reovirus type 3 preparation (W. V. Williams et al. (1988) Proc. Natl. Acad. Sci. U.S.A, Vol. 85, pages 6488-6492). The purified 9BG5 used in this Example had a protein concentration of 1.5 mg/ml in phosphate buffered saline (pH 7.2).

Proteinoid carriers encapsulating mAb 9BG5 were prepared having final concentrations of Glu/Asp/Tyr/Phe proteinoid (1:1:1:1 mole ratio of Glu, Asp,Tyr, and Phe in the reaction mixture) 50 mg/ml, mAb 0.7 mg/ml and gum arabic 0.5% in 0.85N citric acid. Empty proteinoid carriers were prepared to contain the same final concentrations, except mAb was omitted. Aliquots (0.5 ml), in duplicate, of both mAb and empty proteinoid carriers preparations were centrifuged at 5000 RPM. Pellets and supernatants were frozen prior to analysis by Western blotting to determine antibody encapsulation efficiency.

FIG. 6 is an x-ray film of a Western blot analysis of purified mAb 9BG5, empty proteinoid carriers (no mAb added), and proteinoid carriers containing 9BG5. The analysis was done by immunoblotting with anti-mouse IgG which specifically reacted with mAb 9BG5. The lanes correspond to the following:

______________________________________Lane    Sample______________________________________1       2 μg 9BG5 mAb2       1 μg 9BG53       0.25 μg 9BG5MW      molecular weight markers4       Empty proteinoid carrier supernatant after encapsula-   tion5       Empty proteinoid carrier pellet6       mAb containing supernatant after encapsulation7       mAb containing protein carrier pellet______________________________________

The data indicates that the 9BG5 proteinoid carriers contained about 40% of the mAb in the pellet and the remaining 60% did not incorporate in the proteinoid carriers and was left in the supernatant. The empty proteinoid carriers did not contain antibody in the supernatant or the pellet as was expected.

The relative mobility (molecular weight) of the pure mAb is slightly different than the mAb in the proteinoid carriers. This is most likely due to different salt concentrations in the samples, because the encapsulation process employed 0.8M salt solution.

EXAMPLE 10 Effect of Additives on Stability of Proteinoid Carriers with Encapsulated Murine mAb 9BG5

Various proteinoid carrier formulations were screened, with or without additives, to determine optimal carrier-forming conditions and concentrations of mAb required for carrier formation.

The mAb 9BG5 preparations used to prepare the encapsulated proteinoid carriers had a protein concentration of approximately 2 mg/ml in phosphate buffered saline.

Final proteinoid concentration was 50 mg/ml and 5% (w/w) gum acacia ("gum") or gelatin ("gel"). All proteinoid carriers were prepared in 0.85N citric acid. Empty carriers were included for use as controls, and they were prepared in the same manner with the omission of mAb. Duplicate (0.5 ml) aliquots of proteinoid carrier suspension were centrifuged at 5000 RPM. Pellets and supernatants were frozen in dry ice prior to analysis.

Table 7 lists samples that were prepared.

              TABLE 7______________________________________                         FINAL PROTEINSAMPLE PROTEINOID   ADDITIVE  (mg/ml)______________________________________1      326          Gum       03      326          Gel       05      334          Gum       07      334          Gel       0 9, 10 326          Gum       0.511, 12 326          Gum       0.2513     326          Gel       0.2515, 16 334          Gum       0.2517, 18 334          Gel       0.25______________________________________

In order to test resistance to freeze and thawing on the integrity of the proteinoid carriers containing mAb, one of each pair of duplicate pellets were washed by gentle resuspension in 0.25 ml of 0.85N citric acid. The pellets were then analyzed next to the unwashed pellets to test whether any mAb was lost in the washing.

The samples were analyzed by conventional Western blotting as described in Example 9. Pellets were dissolved in sodium dodecyl sulfate with 0.05N NaOH and analyzed under reducing conditions (breaks up the mAb into 50 kDa and 25 kDa bands). Aliquots (50 μl) of supernatants were analyzed under non-reducing conditions (expected intact 150 kDa mAb). This was done to determine differentially whether the mAb left behind is denatured or intact.

As can be seen from the X-ray film from the Western Blots (FIG. 7), pellets of samples 9 and 10, and 11 and 12 contain between 5 and 10 μg of mAb. The washed samples did not lose any significant amount of mAb, suggesting that the proteinoid carriers remained intact after freeze-thawing.

The supernatants of samples 9 and 11 had no significant amount of mAb, indicating that unincorporated material was lost during preparation.

Sample 17 had some mAb encapsulated which was lost after washing (see number 18). This sphere preparation was not resistant to freeze-thawing. Additionally, a band at a MW of 150 kDa for sample 17 supernatants indicates that a significant amount of mAb is left behind after proteinoid carrier formation.

Based on these results, it appears that the mAb remains intact and therefore the encapsulating procedure does not degrade it. The empty proteinoid carrier controls did not produce any bands, as expected because they have no mAb.

EXAMPLE 11 Efficacy of Encapsulated Murine IgG Monoclonal Antibody

In this Experiment, a mAb 9BG5 proteinoid carrier preparation and unencapsulated mAb 9BG5 were evaluated in rats. The mAb 9BG5 (1 mg/ml), prepared as described in Example 9, was encapsulated in Glu/Asp/Tyr/Phe proteinoid (1:1:1:1 mole ratio of Glu, Asp,Tyr, and Phe in the reaction mixture) protein carrier formulation with gum arabic. The mAb proteinoid carriers suspension contained 0.25 mg/ml mAb and 50 mg/ml proteinoid in 0.85N citric acid 0.5% gum. Empty proteinoid carriers were prepared similarly, but did not contain mAb. Since 30% of the mAb was found to be encapsulated, the mAb proteinoid carriers were estimated to contain 0.075 mg/ml mAb and this value was used to determine dosages. The mAb proteinoid carriers were examined microscopically and appear to be a fairly homogeneous preparation.

For animal dosing, appropriate aliquots of proteinoid carriers were centrifuged at 5000 RPM for 15 minutes, and pellets were resuspended in 1.0 ml of 0.85N citric acid-0.5% gum.

A purified mAb solution (0.95 mg/ml mAb in 0.85N citric acid-0.5% gum) was used for oral gavage. This solution was prewarmed to 40 C. prior to administration. For IV administration, a purified mAb solution (1 mg/ml mAb in phosphate buffer saline) was used.

The amounts and administration routes employed in the experiment are as follows:

1. Empty proteinoid carriers (no mAb): 1 ml aliquot containing 50 mg empty proteinoid carriers by oral gavage (rats # 2312 and 2313).

2. mAb 9BG5 proteinoid carriers: 3.7 mg mAb/kg body weight of rat by oral gavage (rat # 2287, 2288, 2290, and 2291).

3. unencapsulated mAb 9GB5: 0.73 mg/ kg body weight of rat by intravenous administration (rats #2292, 2293, and 2311).

4. unencapsulated mAb 9BG5: 3.7 mg/kg body weight of rat by oral gavage (rats #2314 and 2315).

Baseline blood samples (1 ml aliquots) were withdrawn from each rat just prior to dosing ("0" time). After dosing, blood samples were drawn at 1 h, 6 h and 24 h. The blood samples were processed immediately and sera were stored frozen at -20 C.

Thawed serum taken from the experimental animals were analyzed by conventional ELISA techniques, in triplicate, using purified reovirus type 3 and VL SH dimeric peptides immobilized in multi-well plates (W. V. Williams et al (1991) J. Biol. Chem., Vol. 266(8), pages 5182-5190). Control plates included wells having no immobilized reovirus and VL SH peptides to which mAb (1 mg/ml) was added. VL SH peptide (W. V. Williams et al. ibid, Table 1) is a synthetic variant of VL peptide, the latter which corresponds to a portion of the light chain variable CDR II region of 87.92.6 antibody. The 87.92.6 antibody displays idiotypic and anti-idiotypic behavior towards reovirus type 3 receptor and mAb 9BG5, respectively (W. V. Williams et al. ibid). The bound protein content of each well were measured by standard protein methods, e.g., Lowry method, and the results for each multi-well plate are shown in FIGS. 8(a-c), respectively.

FIGS. 8 (a-c) illustrate the levels of serum proteins which bound to immobilized reovirus type 3 and VL SH as detected by measurement of protein concentration. These Figures show that the serum levels of bound proteins, after 24 hours post-dosing, were highest for animals orally administered mAb proteinoid carriers and animals administered unencapsulated mAb by the IV route. Lower levels of bound serum proteins were found in animals orally adminstered uncapsulated mAb. Serum taken from the animals receiving empty proteinoid carriers (no mAb) showed non-specific serum IgG protein binding, as expected, under the assay conditions.

FIG. 9 show mAb binding under conventional ELISA procedures using immobilized reovirus type 3 and VL SH proteins. Serial dilutions of mAb treated with 0.85N citrate-0.5% gum (FIG. 9(a) or phosphate buffered saline (FIG. 9 (b) were employed. The Figures show that the bound protein levels were higher for mAb in citrate buffer than for mAb in phosphate. Without being bound by any theory of operation for this invention, it is believed that the binding enhancement may be due to changes in the three dimensional conformation resulting from citrate-protein binding.

In summary, serum levels of mAb, as reflected by the absorbance of bound proteins, were greater in animals receiving encapsulated mAb by the oral route-or unencapsulated mAb by the IV route, than an animal receiving orally administered unencapsulated mAb.

EXAMPLE 12 Preparation of Proteinoid Carrier Containing Heparin

This Example describes a method for the preparation and cleaning of heparin proteinoid carriers.

Procedure

1. Reagents:

a. Proteinoid powder prepared as described in Example 1

b. Heparin

c. Anhydrous citric acid (USP)

d. Gum acacia NF

e. Deionized water

f. Desiccant

g. Liquid nitrogen

2. Equipment:

a. Magnetic stirrer

b. Buret

C. Microscope

d. Clinical centrifuge

e. Dialysis membrane tubing (Spectrum 6, 10 mm, 50,000 M.W. Cutoff)

f. pH meter

g. Lyophilizer (Labconco #75035)

h. Lyophilizing flasks (150-300 mL)

i. Rotating shell freezer

j. Isopropanol/dry ice bath or liquid N2

k. Mortar and pestle

l. Storage containers (500 mL)

m. Eppendorf pipet (0-100 uL)

n. Plastic closures for dialysis tubing (Spectrum)

o. 2 mL syringe with 0.45 um Acrodisk

3. Preparation of Solutions:

a. Proteinoid Solution A* (80 mg/ml):

Dissolve 160 mg proteinoid in 1 ml of deionized water. Using a 2 ml syringe fitted with a 0.45 um Acrodisk, the proteinoid solution was filtered into a 10 ml test tube and kept at 40 C.

b. Solution B (1.7N citric acid with 1% gum):

Dissolve 10 g of gum acacia and 109 g of citric acid in 1 liter of deionized water.

c. Solution C (Heparin solution):

Dissolve heparin in Solution B at 150 mg/mL and keep at 40 C.

4. Preparation of Proteinoid carriers:

a. Add all of solution A to solution C quickly while swirling solution C slowly, by hand, in a 40 C. water bath.

5. Dialysis of Heparin Proteinoid carriers:

It has been found the presence of citric acid in the encapsulated proteinoid carriers interferes with a subsequent lyophilization process. Hence, proteinoid carrier encapsulates prepared with citric acid solutions are preferably dialyzed against 5% acetic acid solution for at least two hours with at least four changes of the dialysis solution to remove citric acid by an exchange process. Thus,

a. Transfer the suspension with a syringe (no needle) to dialysis tubing and seal with plastic closures. Tubing should be no more than 70% full.

b. Discard any amorphous material sedimented and/or aggregated on the surface.

c. Dialyze the proteinoid carrier suspension against acetic acid solution (using 20 mL of acetic acid solution per ml of proteinoid carrier suspension) while stirring the acetic acid solution with a magnetic stirrer.

d. Replace the acetic acid solution every hour. Continue dialyzing for a total of 3 hours.

6. Lyophilization:

a. Add one part of 50% trehalose (Sigma Chemical Co., St. Louis, Mo., USA) into nine parts of dialyzed proteinoid carrier solution. Flash freeze proteinoid carriers in a freeze-drying flask using the shell freezer adjusted to rotate at ca. 190 rpm and immersed in a liquid nitrogen bath.

b. Freeze dry for 24 hours or until dry as evidenced by lack of self-cooling.

c. Record weight of dry proteinoid carriers.

d. Grind to a fine powder with mortar and pestle.

e. Transfer proteinoid into an amber container, seal with desiccant, and store at room temperature.

7. Resuspension:

a. Weigh the lyophilized powder and calculate the amount of proteinoid in the powder.

b. Add aqueous 0.85N citric acid into the lyophilized powder at 40 C. The final concentration of proteinoid in solution is 80 mg/ml.

EXAMPLE 13 Preparation of Insulin-Containing Proteinoid Carrier

This Example illustrates a method for the preparation of insulin proteinoid carriers.

Procedure

1. Reagents:

a. Proteinoid powder

b. Anhydrous citric acid (USP)

c. Gelatin (USP)

d. Porcine insulin (Novo Nordisk)

e. Deionized water (USP)

2. Equipment:

a. Water bath

b. 0.2 micron Acrodisk filter

c. Sterile syringe (10 cc)

d. Glass or plastic vessel of appropriate volume for desired amount of proteinoid carrier solution.

3. Preparation of Solutions:

a. 1.7N citric acid with 5.0% gelatin:

Dissolve 109 mg anhydrous citric acid and 50 mg gelatin per 1 ml of deionized water at desired volume** and incubate in water bath at 40 C. until gelatin is completely dissolved. This may be prepared and stored at 40 C. for later use.

b. Insulin solution:

Dissolve 12 mg insulin per 1 ml of 1.7N citric acid with 5% gelatin at 40 C. at desired volume.

c. Proteinoid solution:

Dissolve 100 mg proteinoid per 1 ml deionized water at room temperature and desired volume. Using syringe and 0.2 micron Acrodisk, filter the solution to ensure a clear liquid and incubate in a water bath at 40 C. See Section 5b.

4. Preparation of Proteinoid carriers:

a. Proteinoid solution and insulin solution are combined at equal volumes sufficient to produce the final desired volume of proteinoid carriers.

b. Rapidly add the filtered proteinoid solution to the insulin solution at 40 C. while simultaneously and constantly swirling the insulin solution to ensure a thorough mixing.

EXAMPLE 14 Procedure for Preparation of Erythropoietin Containing Proteinoid Carriers

Encapsulation of human erythropoietin (EPO) in proteinoid carriers was performed in the same manner described in Example 13. EPO was obtained from Genetic Institute (Cambridge, Mass., USA, now available from Amgen Corp., Thousand Oaks, Calif., USA). A solution of Gln/Asp/Tyr/Phe (1:1:1:1 mole ratio of Gln, Asp, Tyr, and Phe in the proteinoid reaction mixture) proteinoid and a 150 ug/mL EPO solution in 1.7N citric acid with 1% gum was used in preparing the EPO-containing proteinoid carrier.

EXAMPLE 15 Evaluation of Erythropoietin-Containing Proteinoid Carrier

In this Example, an EPO-containing protein carrier, prepared as described in Example 14, was evaluated in rats. An EPO experimental synopsis is given below.

Rats weighing 150-200 grams are anesthetized with ketamine (8.5 mg/kg) and thorazine 3.75 mg/kg) with intramuscular injection. The rat is then administered either unencapsulated erythropoietin or encapsulated erythropoietin by oral gavage. In brief, an 8 French Nelaton catheter is inserted down the esophagus of the rat until the 10 cm mark on the catheter is even with the incisors. The test or control solution is drawn up into a syringe and attached to the catheter. Holding the animal upright, the solution is expressed into the stomach of the rat. The experimental results are summarized in FIGS. 10-12.

______________________________________ERYTHROPOIETIN EXPERIMENTAL SYNOPSISBatch  Dose      Rats Responding                          Comments______________________________________Control  15 μg/kg            0/4           Fasted 15 hours.251 < 3K  15 μg/kg            0/4           Access to bedding.254 < 3K  15 μg/kg            2/4           GavagedControl  15 μg/kg            0/2251 < 3K  15 μg/kg            0/2           Fasted 36 hours.254 < 3K  15 μg/kg            1/4           5% sucrose.270K   15 μg/kg            1/3           No bedding.270G   15 μg/kg            3/3           Gavaged.Control  15 μg/kg            1/5           Fasted 24 hours.264CP  15 μg/kg            1/4           Access to bedding.270G   15 μg/kg            1/6           Gavaged.Control  10 μg/kg            0/5           Fasted 24 hours.270G   10 μg/kg            3*/6          No bedding.Control  30 μg/kg            0/3           Fasted 24 hours.Control  60 μg/kg            1/4           No bedding.270G   30 μg/kg            1/3           Direct injection270G   60 μg/kg            1/4           into the stomach.Control  50 μg/kg            0/3Control +  50 μg/kg            0/4           Direct injectionPepsin270G   50 μg/kg            2/4           into the intestine.270G + 50 μg/kg            0/4PepsinControl  100 μg/kg            1/5           Multiple Dosing270G   100 μg/kg            1/5           (5 dosing intervalsI.V.   50 μg/kg            2/2           at t 1/2)S.C.   50 μg/kg            2/2           Gavage by stomach                          tube.______________________________________ *Rats were foaming at nostrils.

FIG. 10 illustrates levels of etythropoietin (EPO) detected in rat serum taken from rats administered Gln/Asp/Tyr/Phe proteinoid carrier encapsulated EPO (15 μg EPO/kg body weight) and encapsulated EPO (15 μg EPO/kg body weight) at t=0.5, 1, and 2 hours. Serum erythropoietin levels were determined over time with an erythropoietin enzyme immunoassay kit (Amgen, Thousand Oaks, Calif., USA). The results show that EPO serum levels in rats dministered erythropoietin proteinoid carriers were relatively higher at all time points compared to rats (control) which received unencapsulated material. At t=2 hours, the EPO levels remained at approximately 300 pg/mL serum in rats administered erythropoietin proteinoid carriers while the control rats had undetectable EPO levels.

FIG. 11 illustrates EPO serum levels in rats that were administered either erythropoietin (50 μg/kg) or Gln/Asp/Tyr/Phe proteinoid (1:1:1:1 mole ratio of Gln, Asp,Tyr, and Phe in the reaction mixture) proteinoid carrier encapsulated erythropoietin (50 μg/kg) directly into the proximal duodenum. Serum erythropoietin levels were determined over time with the aforementioned erythropoietin enzyme immunoassay kit. The results show that EPO serum levels in rats administered erythropoietin proteinoid carriers steadily increased at a rate of approximately 50 pg/mL per hour over a range of two hours. In contrast, rats (control) which received unencapsulated EPO had EPO levels peaked at 100 pg/mL at 1 hour following administration and steadily decreased to about 50 pg/mL at the end of 2 hours.

FIG. 12 illustrates EPO serum levels in rats who were orally gavaged with either Gln/Asp/Tyr/Phe proteinoid (1:1:1:1 mole ratio of Gln, Asp,Tyr, and Phe in the reaction mixture) proteinoid carrier encapsulated or unencapsulated erythropoietin (100 μg/kg); or received a subcutaneous injection of either 2 μg/kg or 10 μg/kg. Serum erythropoietin levels were determined over time with the aforementioned erythropoietin enzyme immunoassay kit. The results show that EPO serum levels in rats (#640-645) orally administered erythropoietin proteinoid carriers were relatively higher up to t=2 hours, compared to rats (EPO) which received unencapsulated material.

The results obtained in this Example provide evidence that proteinoid encapsulation markedly improved the oral bioavailability of EPO.

EXAMPLE 16 Preparation of Calcitonin-Containing Proteinoid Carrier

Encapsulation of salmon calcitonin in proteinoid proteinoid carriers was performed in the same manner described in Example 13. Calcitonin, a peptide hormone which acts predominantly on bone to lower serum calcium concentration, was obtained from Sandoz (Basil, Switzerland). Calcitonin proteinoid carriers were prepared by mixing a 1:1 volume ratio of a 100 mg/ml aqueous solution of Gln/Asp/Tyr/Phe proteinoid (1:1:1:1 mole ratio of Gln, Asp, Tyr, and Phe used in the proteinoid reaction mixture) and a 150 ug/mL calcitonin solution in 1.7N citric acid solution with 1% gum acacia, as described in Example 13. The efficiency of calcitonin encapsulation was approximately 40%. Calcitonin concentration was determined directly by HPLC after dissolving the calcitonin proteinoid carriers in 60% aqueous acetonitrile.

EXAMPLE 17 Evaluation of Calcitonin-Containing Proteinoid Carriers in Monkeys

In this Example, the calcitonin proteinoid carriers, prepared as described in Example 16, were evaluated in cynomolgus monkeys. Male cynomolgus monkeys weighing 4-5 kg were fasted overnight, anesthetized (approximately 10 mg/kg ketamine HCl) and placed into a primate restraint chair for dosing and blood sampling. A single oral dose of calcitonin proteinoid carriers (0.25 mg/kg body weight) was administered to each of four monkeys by nasogastric gavage. The dosage was based on the body weight taken on the morning of dosing. Blood samples were collected from saphenous vein catheters at hourly intervals, starting at t=0 prior to administration of the proteinoid carriers, and hourly, from 1 to 7 hours post-dose for serum calcium determination. The hypocalcemic response following oral calcitonin administration was used as an index of pharmacological response. Serum calcium concentrations were quantitated by a conventional O-cresolphthalein complexone method.

FIG. 13 demonstrates the response obtained in cynomolgus monkeys following naso-gastric gavage of microencapsulated calcitonin. Significant changes from baseline serum calcium concentration were observed. Six hours following dosing, serum calcium concentrations decreased by 13 μg/ml. A significant pharmacological response was still apparent seven hours after the administration of calcitonin proteinoid carriers.

EXAMPLE 18 Evaluation of Calcitonin-Containing Proteinoid Carriers in Rats

In this Example, the calcitonin proteinoid carriers prepared in accordance with Example 16 are evaluated in fasted male Spraque Dawley rats weighing 100-150 g. Calcitonin proteinoid carriers and calcitonin were administered by either oral gavage or intraduodenal injection. The rats are divided into the following groups:

1. calcitonin proteinoid carriers: 60 ug calcitonin/kg body weight by oral gavage (3 rats);

2. calcitonin proteinoid carriers: 3 ug calcitonin/kg body weight by intraduodenal gavage (3 rats);

3. calcitonin: 60 ug calcitonin/kg body weight by oral gavage (3 rats) (Control).

4. calcitonin: 3 ug calcitonin/kg body weight by intraduodenal gavage (3 rats) (Control).

Oral gavage dosing of rats is performed. Calcitonin proteinoid carriers are prepared immediately prior to dosing and Groups 1 and 2 each receive an appropriate dosage of the proteinoid carrier suspension. Groups 3 and 4 receive the unencapsulated calcitonin (no proteinoid carriers). Approximately 0.5 ml of blood is serially withdrawn from the tail artery of each rat just prior to dosing (11011 time) and 1 h, 2 h and 3 h post-dosing. Serum from the blood samples are stored at -20 C. for serum calcium concentration determination.

FIG. 14 is the serum concentration-time curve for orally administered microencapsulated calcitonin and unencapsulated calcitonin in rats. Experimental results in rats demonstrate a significant increase in pharmacological response (i.e., decreasing serum calcium levels) when proteinoid encapsulated calcitonin is compared to the unencapsulated vehicle control group. One hour after dosing, serum calcium concentrations decreased 23 μg/ml in the rats receiving encapsulated calcitonin compared to a decrease of only 6.5 μg/ml in the control group. Furthermore, the responses were dose-dependent (data not shown).

The results of intraduodenal injection of encapsulated or unencapsulated calcitonin in rats is shown in FIG. 15. The results demonstrate a time-dependent decrease in serum calcium levels for the encapsulated preparation. The control group showed no response. One hour after intraduodenal administration, serum calcium levels in the calcitonin proteinoid carrier group decreased by 18 μg/ml, whereas unencapsulated calcitonin was unchanged. These results indicate that transmembrane transport of calcitonin is enhanced by proteinoid encapsulation.

The results obtained in this Example and in Example 17 provide evidence that proteinoid encapsulation markedly improves the oral bioavailability of calcitonin. The data also indicate that the oral drug delivery system is not species-dependent.

EXAMPLE 19 Preparation and Evaluation of Factor IX-containing Proteinoid Carrier

Factor IX is a vitamin K-dependent blood coagulation proenzyme, MW 56 kD. Factor IX deficiency, known as hemophilia B, occurs in approximately 1 out of every 25,000 males. To date, treatment of this disorder is accomplished by intravenous administration of Factor IX, although a recent report details efforts to supplement by subcutaneous injection (Thompson (1986) Blood, Vol. 67(3), pages 565-572).

Encapsulation of Factor IX (FIX) in proteinoid carriers was performed, following the procedure described in Example 13, by mixing (1:1 v/v) 100 mg/mL of Glu/Asp/Tyr/Phe proteinoid (1:1:1:1 mole ratio of Glu, Asp, Tyr, and Phe used in the proteinoid reaction mixture) in deionized water and an aqueous solution of FIX. Two proteinoid carrier suspensions were prepared and evaluated in vivo separately as described in Examples 20 and 21.

FIX proteinoid carrier suspension A contained 50 mg/ml of proteinoid and 500 U/ml FIX (FIX is available from the American Red Cross, Rockville, Md., USA) solution containing 4% acetic acid, 2% gum acacia, 0.2% PEG 14 (available from Union Carbide, Danbury, Conn., USA), 14 mM CaCl2, final pH 3.81.

The second suspension, FIX proteinoid carrier suspension B, contained 50 mg/ml proteinoid and 116 U/ml FIX solution containing 3.8% acetic acid, 1.5% gum acacia, 0.15% PEG 14, 11 mM CaCl2, final pH 4.58.

The stability of FIX proteinoid carrier preparations was assessed over a short time course in vitro. The protein carriers encapsulating FIX were examined by optical microscopy and laser light scattering. Aliquots of proteinoid carrier suspension were withdrawn every 30 minutes for 1.5 hours, FIX proteinoid carriers were isolated by centrifugation at 4500g and dissolved in activated partial thromboplastin time (APTT) assay buffer (0.05M histidine-0.01M NaCl-0.1% bovine serum albumin-0.01% TWEEN-40, pH 7.47) to release soluble FIX and proteinoid. Quantitation of FIX activity by APTT employed both FIX standards (0.025, 0.05, and 0.1 U/ml) and "empty" proteinoid carrier suspension as control. APTT assay kits are commercially available, e.g. Sigma Diagnostics (St. Louis, Mo., USA).

Based on the above analysis, it was determined that FIX proteinoid carriers of greater stability are obtained by encapsulating FIX at a higher pH, e.g., pH 4.9. Furthermore, the efficiency of encapsulation is approximately 20% of available FIX units and activity levels remain constant for at least 1.5 hours when FIX proteinoid carrier pellets are stored at about 4 C.

EXAMPLE 20 Evaluation of FIX-Containing Proteinoid Carriers (A) in Rats

In this Example, FIX proteinoid carrier suspension A, prepared as described in Example 19, were evaluated in male Sprague Dawley rats (ave. weight 300 g). Appropriate aliquots of suspension were centrifuged at 4500g to pellet the FIX protein carriers, which were subsequently resuspended in the same buffer for animal dosing. The rats are divided into two groups as follows:

1. Oral FIX proteinoid carriers (FIX sph PO): 2709 U FIX/kg body weight by intragastric gavage (4 rats);

2. Intravenous FIX (no proteinoid carriers) (FIX IV): 200 U/kg body weight by intravenous injection. 32 rats received 0.7 ml FIX in 0.11 NaCl-0.02M sodium citrate, pH 6.85 by tail vein injection.

The FIX proteinoid carrier suspension and solution are prepared immediately prior to dosing. One ml of blood was withdrawn from each rat just prior to dosing ("0" time) and 1 h, 2 h and 4 h (post-dosing), a citrate anticoagulant was added to the blood, and plasma from the blood samples were stored at -70 C.

Plasma samples were assayed by a modified APTT assay using FIX coagulated deficient plasma (assay kit is available from Ortho Diagnosis (Raritan, N.J., USA). Changes in clotting times were calculated by subtracting individual baseline (0 hr) values from subsequent clotting time values. The data shown in FIG. 16 are the mean values for a given group. Values below baseline indicate the presence of exogenous FIX.

As shown in FIG. 16, significant amounts of FIX was delivered to blood via oral administration of FIX proteinoid carriers. The relative plasma level is lower in the FIX proteinoid carriers group, however the dimunition in clotting time at 0.5, 1.0 and 2.0 hours is notable. This is achieved by oral dosing with approximately 14 times the IV dose. Moreover, these results are particularly interesting since Factor IX is an acid labile protein whose half-life is approximately less than one hour at 37 C. at pH 5.0. The FIX proteinoid carriers in this experiment were at pH 3.81 and encapsulated 14.8% of the available FIX units during preparation. The results support that FIX proteinoid carriers remain viable in the GI tract to facilitate delivery.

EXAMPLE 21 Evaluation of FIX-Containing Proteinoid Carriers (B) in Rats

In this Example, FIX proteinoid carrier suspension B, prepared as described in Example 19, were evaluated in male Sprague Dawley rats (ave. weight 300 g). Resuspended FIX proteinoid carriers were prepared as described in Example 20. The rats are divided into two groups as follows:

1. Oral FIX proteinoid carriers (FIX sph PO): 1006U FIX/kg body weight by intragastric gavage (5 rats).

2. Intravenous FIX (no proteinoid carriers) (FIX IV): 185 U/kg body weight by intravenous injection. 3 rats received 0.3 ml FIX in 0.11 NaCl-0.02M sodium citrate, pH 6.85 by tail vein injection.

3. Oral FIX (no proteinoid carriers) (FIX unencap PO): 2760U FIX/kg body weight by intragastric gavage. 4 rats received 1.0 ml of FIX in saline solution containing 3.8% acetic acid, pH 6.85.

The FIX proteinoid carrier suspension and solutions were prepared immediately prior to dosing. Plasma samples were obtained and assayed as described in Example 20. Changes in clotting times were calculated by subtracting individual baseline (0 hr) values from subsequent clotting time values. The data shown in FIG. 17 are the mean values for a given group. Values below baseline indicate the presence of exogenous FIX. The FIX proteinoid carriers, prepared at pH 4.58, encapsulated 23.1% of the FIX units.

As shown in FIG. 17, at oral dose levels of only 5 times that of the IV dose, significant oral delivery was observed. In addition, native FIX (pH 6.85) dosed at 15 times the IV dose level resulted in no detectable levels of exogenous FIX in the plasma.

Thus, the results shown in this Example and in Example 20 support that oral delivery of FIX can be accomplished via the use of FIX proteinoid carriers. These proteinoid carriers appear to adequately protect FIX during transit through the GI tract and deliver FIX to the blood stream.

EXAMPLE 22 Preparation of Alpha-Interferon (IFN)-Containing Proteinoid Carrier

In this Example, a study was undertaken to evaluate the protective capability of proteinoid carriers on enzymatic degradation under simulated gastrointestinal conditions. The in vitro stability of IFN in proteinoid carriers was examined in simulated gastric fluid (SGF) containing pepsin in 0.08N HCl and simulated intestinal fluid (SIF) containing pancreatin in phosphate buffer. The reagents and stability assay procedure are described in the "United States Pharmacopocia" (Vol. XXII, 1990, pages 1788 and 1789).

Preparation of IFN-containing proteinoid carriers

Encapsulation of IFN in proteinoid carriers was performed in the same manner described in Example 13. Alpha-IFN is available from a number of commercial sources. One commercial IFN product includes Roferon-A (Hoffman LaRoche). IFN proteinoid carriers were prepared with an aqueous solution of Glu/Asp/Tyr/Phe proteinoid (1:1:1:1 mole ratio of Glu, Asp, Tyr and Phe used in the proteinoid reaction mixture), and an IFN solution containing 1.7N citric acid solution with 5- gelatin. The IFN proteinoid carrier suspension contained 80 mg/ml proteinoid, 600 ug/ml IFN, 0.6N citric acid, and 2.5% gelatin, pH 3.0.

Stability of IFN proteinoid carriers in SGF

SGF (2 ml) was added into 1 ml of IFN proteinoid proteinoid carrier suspension. The solution was incubated at 40 C. with shaking, and aliquots were taken serially after SGF addition as described in the "U.S. Pharmacocopia" (ibid). An equal volume of stopper solution (pepstatin A in phosphate buffer, was added to each aliquot immediately after sampling to stop the enzymatic degradation and to open the proteinoid carriers. The IFN concentration in all samples was then determined by HPLC. As a comparison, the stability of IFN alone in SGF was evaluated. The experiment were performed as described above, without the proteinoid carriers. As another control, the stability of IFN proteinoid carriers was evaluated in 0.08N HCl.

Stability of IFN-containing proteinoid carriers in SIF

SIF (2 ml) was added into 1 ml IFN proteinoid carriers. The solution was incubated at 40 C. with shaking and samples were taken serially as described in the "United States Pharmacocopia" (ibid). An equal volume of stopper solution (aprotinin and trypsin/chymotrypsin inhibitor in phosphate buffer) was added to each aliquot immediately after sampling to stop the enzymatic degradation. The IFN concentration was analyzed by HPLC.

To study the study the stability of IFN alone in SIF, 600 ug of IFN was dissolved in 0.85N citric acid or 0.01M phosphate buffer. SIF (2 ml) was added to 1 ml IFN solution. The solution was sampled and analyzed as described above.

Results and Discussion

(a) Protective Effects of Proteinoid carriers in SGF

As shown in FIG. 18, after 1 hour of SGF incubation, approximately 50% of IFN remained intact. After incubation in SGF for 6 hours, approximately 20% of IFN was not degraded. As expected, IFN alone (in the absence of proteinoid carriers), was found to be completely destroyed by pepsin in SGF within 20 minutes.

Another control was performed using IFN alone in 0.08N HCl. IFN alone was stable in SGF without pepsin (0.08 HCl). There was only a slight decrease after 2 hour incubation. This suggests that IFN was rather stable in HCl at pH 1.2 up to six hours (FIG. 19).

The results suggest that proteinoid carriers can retard IFN from pepsin digestion, while IFN alone cannot survive in the stomach for more than 20 minutes. These observations demonstrate the protective ability of proteinoid carriers on enzymatic digestion of protein drugs in the stomach.

(b) Protective Effects of Proteinoid carriers in SIF

As shown in FIG. 20, IFN proteinoid carriers were much more stable than IFN alone (in the absence of proteinoid) in SIF. IFN alone at pH 7.4 was completely degraded within 10 minutes when incubated with SIF. However, approximately 70% of the IFN/proteinoid carriers survived after 6 hours in SIF, indicating that considerable stability is provided by the proteinoid proteinoid carrier.

IFN alone was slightly more stable in SIF at pH 3 than at pH 7.4. After 6 hr incubation in SIF at pH 3, there was approximately 10% of the IFN remaining. The stability of IFN in SIF at pH 3 is attributed to the low pH, which appears to suppress enzymatic activity of the intestinal proteases.

EXAMPLE 23 Evaluation of Heparin-Containing Proteinoid Carriers in Rats

In this Example, a study was undertaken to ascertain whether proteinoid carriers are required for protective capability or whether (1) proteinoids (soluble proteinoids--not in carrier form) may be used and whether (2) alternative methods of carrier loading, such as incubating the therapeutic compound with preformed proteinoid carriers, are useful.

Preparation of Heparin-containing proteinoid carriers

Encapsulation of heparin in proteinoid carriers was performed in the same manner described in Example 12. Heparin (USP grade) was used and this material is available from a variety of commercial sources including Eli Lilly (Indianapolis, USA). Heparin proteinoid carriers were prepared, following the procedure of Example 12, using a 1:1 volume ratio of 150 mg/ml of Glu/Asp/Tyr/Phe/Orn0.5 (1:1:1:1:0.5 mole ratio of Glu, Asp, Tyr, Phe, and Orn used in the proteinoid reaction mixture) proteinoid in deionized water, and an 20 mg/mL aqueous heparin solution containing 1.7N citric acid solution and 0.5% gum acacia. The heparin proteinoid carrier suspension was dialyzed in acetic acid solution as described in Example 12. Heparin proteinoid carriers were then centrifuged at 4800g (15 minutes) and total heparin was measured by assaying the pellet and the supernatant with a modification of the Azure A method (Gundry et al. Amer. J. of Surgery (1984) Vol. 148, pages 191-194). Proteinoid was assayed by dissolving the proteinoid carriers with 0.1N NaOH and measuring absorbance at 294 nm.

Preparation of heparin-spiked empty proteinoid carriers

Empty proteinoid carriers were prepared following the same procedure described above for the heparin proteinoid carriers, with the modification being that no heparin was present. The lyophilized empty proteinoid carriers were resuspended in 0.85N citric acid and 0.5% gum containing heparin at a concentration of 20 mg/ml. The amount of heparin co-isolated with the proteinoid carriers was measured as described above.

Experimental Procedure

Male Spaque Dawley rats weighing approximately 350 g were dosed by oral gavage or intraduodenal (ID) injection (just anterior to the pyloric sphincter and into the duodenum). Rats were dosed orally or ID with one of the following: lyophilized heparin proteinoid carriers, heparin-spiked empty proteinoid carriers, proteinoid/heparin in water, heparin in 0.85N citric acid and 0.5% gum and heparin alone in water. In both oral and ID. injection experiments, weight ratios of heparin:proteinoid were constant. The total heparin dose in the oral studies was 100 mg/kg body weight; in ID injections studies, it was 50 mg/kg. The proteinoid dose was 40 mg/kg for oral gavages and 20 mg/kg for ID injections. The dosing volume was approximately 0.3 to 0.5 ml. Approximately 0.5 ml of blood is serially withdrawn from the tail artery of each rat just prior to dosing ("0" time) and 1 h, 2 h and 4 h post-dosing. Serum from the blood samples are stored at -20 C. for heparin activity determination.

Results and Discussion

The results obtained suggest that heparin alone as well as soluble proteinoid and heparin (both in water, dosed orally or by ID injection) did not appear to be absorbed from the GI tract in amounts sufficient to increase APTT values (FIG. 21). Heparin in citric acid elicited some increase in APTT values, but only when dosed directly into the duodenum.

Heparin proteinoid carriers gave the highest APTT values, indicated increased absorption of heparin when dosed orally, as well as when directly injected into the duodenum (FIGS. 22 and 23). While the observed activity was lower than observed with heparin proteinoid carriers (FIG. 23), heparin-spiked empty proteinoid carriers showed increased APTTs over baselines. Both types of proteinoid carriers showed a much greater increase in APTT values than that observed with citric acid/heparin.

The results obtained in this Example suggest that, in the proteinoid system, proteinoid carriers are necessary for the observed increase in heparin absorption, as soluble proteinoid did not show detectable activity within the experimental limits.

EXAMPLE 24 Preparation and Evaluation of M1-Containing Proteinoid Carrier

In this Example, influenza virus antigen-containing proteinoid carriers were prepared and evaluated in rats.

Preparation of M1 Proteinoid carriers

Encapsulation of M1 in proteinoid carriers was performed in the same manner described in Example 13. M1 protein, a major internal component of influenza virus, was obtained by purification of a swine influenza vaccine donated by Drug Directorate, Health Protection Branch, Bureau of Biologics, Ottawa, Ontrario Cannada. The vaccine was prepared with the high-yielding recombinant strain X-53Aa, which derives its HA and NA from the parent strain A/NJ/11/76(H1N1) and its internal proteins, including M1, from the parent strain A/PR/8/34 (R. B. Couc et al. (1983) Ann. Rev. Microbiol., Vol. 37, pages 529-549 and B. R. Murphy (1982) Infec. Immun., Vol. 36, pages 1102-1108). M1 was purified as described by Khan et al ((1982) J. Clin. Microbiol., Vol. 16, pages 813-820). M1 proteinoid carriers were prepared, by mixing (at 40 C.), equivolumes of an aqueous solution of 100 mg/ml of Glu/Asp/Tyr/Phe proteinoid in deionized water and a 10 mg/mL solution of M1 protein in 1.7N citric acid and 5% gum arabic (pH 2.0). The final M1 concentration in the suspension was 1.0 mg/ml.

Preparation of HA-NA-containing Proteinoid carriers and unencapsulated antigens

HA-NA antigen was isolated according to the procedure of Gallagher et al. ((1984) J. Clin. Microbiol., Vol. 20, pages 80-93). Influenza virus (A/PR8/34) was centrifuged at 90,000 G for 60 min. The viral pellet was solubilized with 0.05M acetate buffer (pH 7.0) containing 7.5% octylglucoside and re-centrifuged under the same conditions. The resulting supernatant contained approximately 90% HA and 10% NA as determined by SDS-PAGE.

HA-NA proteinoid carriers were prepared following the same protocol as for the M1 proteinoid carriers but substituted M1 for HA-NA. The final concentration of HA-NA in the suspension was also 1.0 mg/ml.

"Empty" proteinoid carriers were prepared following the sampe procedure described for the M1 proteinoid carriers, with the only modification being that a 1.7N citric acid/gum solution was used in place of the M1/citric acid/gum solution.

Unencapsulated antigens, M1 and HA-NA, was diluted in 1.7N citric acid, 10 mg/ml gum arabic to the same final 1 mg/ml concentration.

Experimental procedure

Male Spraque Dawley rats (about 350 g weight) were used in this experiment. Oral dosage was by gavage. Four groups of five rats each (the subcutaneous control group had 4) were dosed as follows: Group 1 was dosed orally with 1 mg of M1 proteinoid carriers per rat (1 ml), Group 2 was dosed orally with 1 mg per rat of "empty" proteinoid carrier, Group 3 was dosed with 1 mg of unencapsulated M1 per rat of "empty" carrier, Group 3 was dosed with 1 mg of unencapsulated M1 per rat in 1 ml and Group 4 was dosed subcutaneously (SC) with 25 ug per rat of M1 in 0.3 ml. Blood samples (300 ul) were taken from each rat by tail bleeeding before dosing and at 1, 2, 3 and 4 hours post-dose (to assay for antigen) and at 14, 28, and 42 days post-dose (for antibody assay). Solutions for subcutaneous control-M1 in TRIS (no SDS) was diluted to a concentration of 167 ug/mL. An equal amount of Freunds Complete Adjuvant (FCA, Sigma) was added and the mixture was thoroughly homogenized. The final concentration of M1 in the mixture was 83.3 ug/ml. HA-NA solutions for subcutaneous administration were prepared in the same manner except that phosphate buffered saline replaced TRIS-SDS buffer.

The same immunization and bleeding schedule was followed when dosing with HA-NA proteinoid carrier, with the following modifications: all rats received an oral booster with HA-NA proteinoid carrier (250 ug/rat) 42 days after the first oral dose and blood samples were again taken 14 days after the booster dose. Serum derived from the samples were stored at -20 C. until assayed.

Serum anti-M1 and anti-HA-NA specific IgGs were assayed by an ELISA method as described Khan et al. ((1982) J. Clin. Microbiol., vol. 16, pages 813-820).

Results and Discussion

Attempts to measure antigen in plasma samples were unsuccessful. M1 antigen could not be detected in rat plasma samples taken 1-4 hours post-dosing in all groups, including the subcutaneous control.

Plasma samples from rats dosed orally with "empty" proteinoid carriers showed no significant antibody titer against either M1 or HA-NA antigens when assayed by ELISA (Table 8). As expected, rats dosed with 25 ug of either M1 or HA-NA antigen (with FCA) subcutanouesly developed a vigorous antibody response with titers that ranged from 54,000-330,000 in the case of M1 and 176,750-909,000 in the case of HA-NA (Table 8).

Plasma samples from three of the five rats dosed with M1 proteinoid carriers showed a significant primary response to M1 antigen. All three rats had titers ranging from 760 to 2150 as early as 14 days post-dosing, compared to <30 in all rats that received the amount of unencapsulated M1 (Table 8). Titers in the group that received proteinoid carriers increased to 1150-5200 by 42 days (FIG. 24).

Four out of six rats immunized with unencapsulated HA-NA did show a moderate anti-HA-NA IgG response, with titers of 3400-17,675, while two of six rats dosed with HA-NA proteinoid carrier showed a significant response (FIG. 25). The rats that did respond, however, reached titers at least eight times higher than those obtained in the controls. Although several rats showed higher titers after the oral booster with HA-NA proteinoid carriers given 42 days post-dose, most did not show a significant increase in titers.

The results support that a single dose of M1 proteinoid carriers was capable of inducing a significant IgG response to M1 as early as two weeks post-dosing, while rats dosed with same M1 (no proteinoid carriers) total dose showed no detectable antibody response. Similarly, a single dose of HA-NA proteinoid carriers induced a response in 33% of the rats used in the study. This response was up to eight times greater than rats dosed with unencapsulated HA-NA.

              TABLE 8______________________________________ANTI M PROTEIN ANTIBODY TITERS IN SERUM FROM RATSDOSED WITH M PROTEINOID CARRIERS VS CONTROLS               14 day   28 day 42 dayDosing      rat #   titer    titer  titer______________________________________oral M protein       197     <30      <30    <30unencapsulated       198     <30      <30    <301 mg/rat    199     <30      <30    <30       200     <30      <30    35       201     <30      <30    56empty carrier       203     <30      <30    82       204     <30      <30    70       205     <30      <30    60       206     <30      <30    86       207     <30      <30    45M proteinoid       209     <30      <30    64carriers    210     2,150    820    5,2001 mg/rat total       211     860      430    1,150       212     760      1,850  3,000       213     <30      <30    62subcut. control       215     40,000   62,000 330,0000.025 mg/rat       217     34       8,000  54,000in FCA      218     430      8,000  125,000       219     270      6,600  78,000______________________________________

                                  APPENDIX A__________________________________________________________________________PROTEINOID BATCHES                         TEMP                             TIME                                 SPHERE       BATCH                                                     OperatorBt.   No. #AA    COMPOSITION   ADDITIVE                         C   (hr)                                 RATING       molar  Date__________________________________________________________________________085   3  GLU2 ASP2 ILEU                  --     170 3.0 INS5 MT1     0.0086   3  GLU2 ASP2 VAL --     170 3.0 INS4 MT0 HEP0                                              0.0087   3  GLU ASP LEU   --     170 3.0 INS5 MT3 HEP5                                              0.0088   2  GLU2 ASP2 EQU SEE    MEMO                             0.0              0.0089   2  GLU2 ASP2 EQU --     170 3.0 INS5 MT0     0.0090   3  GLU2 ASP2 VAL --     170 3.0 INS3 MT0 HEP1                                              0.0091   3  GLU ASP LEU   --     170 3.0 INS2 MT1     0.0092   3  GLU ASP THR   --     170 3.0 INS2 MT0     0.0093   4  GLU2 ASP2 VAL PRO                  --     170 3.0 INS2 MT2     0.0094   3  GLU ASP CYS-H --     170 3.0 INS1 MT1     0.0095   4  PRO SER THR CYS                  --     170 3.0              0.0096   3  GLU ASP VAL2  --     170 3.0 INS3 MT0 HEP4                                              0.0097   3  GLU ASP VAL   --     170 3.0 INS2 MT1     0.0098   3  GLU ASP CYS-H --     170 3.0 INS4 MT1     0.0099   2  GLU2 ASP2 EQU --     170 3.0 INS4         0.0186cp 4  PYGLU ASP TYR PHE    PA            176    4.0 INS0 MT4 HEP5                                 0.3199cp 4  GLU ASP TYR PHE    H2O           100    99.0                             MT0 INS0 HEP0                                 0.0202Acp 4  GLU2.4 ASP2 VAL2 GLY    --            170    4.0 INS3 MT0                                 0.6202Bcp 4  GLU2.4 ASP2 VAL2 GLY    --            170    4.0 MT0 INS3                                 0.6206Acp 4  GLU ASP TYR PHE    SULFA         175    4.5 INS4 MT3 HEP3                                 0.6206Bcp 4  GLU ASP TYR PHE    SULFA         175    4.5     0.6206C   >3K 4  GLU ASP-TYR PHE                  SULFA  175 4.5              0.6207Acp 4  GLU ASP-TYR PHE    SULFA         175    10.0                             INS5 MT4 HEP4                                 2.0207Bcp 4  GLU ASP-TYR PHE    SULFA         175    10.0                             MT4 INS3 HEP4                                 2.0211Acp 4  GLU ASP-VAL LYSFB    SULFA         175    4.3 INS5 MT5 HEP5 w                                 0.3211Bcp 4  GLU ASP-VAL LYSFB    SULFA         190    4.5     0.3212Acp 3  GLU2-TYR PHE    SULFA         190    5.0 INS4 MT3 HEP4                                 0.3212Bcp 3  GLU2-TYR PHE    SULFA         185    5.0     0.3214cp 3  GLU LYSFB-ARG    SULFA         185    7.0 INS0 MT0 HEP0                                 0.0223cp 4  LYSFB2 ARG2 LEU PGLU    SULFA         180    8.0 INS0 MT0 HEP2                                 0.3227Acp 2  VAL2 GLY2    SULF          180    1.5 INS0 MT0 HEP0                                 0.1227Bcp 2  VAL2 GLY2    SULFA         180    1.5 MT0 INS0 HEP0                                 0.1228Acp 3  VAL2 GLY2 PGLU    SULF          180    2.5 INS0 MT0 HEP0                                 0.1228Bcp 3  VAL2 GLY2 PGLU    SULFA         180    2.5 MT3 INS0 HEP0                                 0.1248cp 3  GLU ASP LEU    --            190    4.0 INS3 MT0 HEPa                                 0.0265Acp 4  GLU ASP-TYR PHE    SUL           155    4.0 INS4 MT4 HEP5                                 1.0265B  4  GLU ASP-TYR PHE                  SULFOLANE                         155 4.0              1.0265C                              .0               .0296Acp 4  GLU LYSH PHE ASP    SUL-H         180    3.0 INS4 MT2 HEP0                                 0.6296Bcp 4  GLU LYSH PHE ASP    SUL-H         180    3.0     0.6298cp 4  GLU ASP-TYR PHE    SUL-H         190    1.5 INS1a MT3 HEP4                                 0.5301cp 4  GLU ASP-TYR PHE    SUL           175    8.0 INS4 MT2 HEP3                                 2.0302cp 4  GLU ASP-TYR PHE    HMePO         190    1.5 INS4 MT2 HEP3                                 0.3308cp 4  GLU ASP TYR PHE    HMP           170    1.0 INS4 MT4 HEP4                                 0.3309CP 4GLU1.3 ASP1.3 TYR PHE1.3   SULFOLANE 190    1.5           INS4aMT3oaHEP4a                         0.3310cp 4GLU ASP TYR PHE   SULFALANE 190    4.0           INS4 MT2 HEP5                         1.0311cp 4GLU2 LYSH2 PHE2 ASP   SULFALANE 190    1.7           IND4o MT3o HEP3                         1.7312cp 4GLU2 LYSH2 PHE2 ASP   SULFALANE 190    0.7           INS4 MT2 HEP4a                         17.9313cp 4GLU2 LYSH2 PHE2 ASP   SULFALANE 180    3.0           INS3 MT3 HEP3ao                         0.6314cp 4ASP TYR PHE PGLU   SULFOLANE 190    2.5           INS2a MT4aHEP4a                         0.6315cp 4  GLU ASP-VAL LYSEB    sulfolane     190    4.0 INS4 MT4 HEP3                                 0.0316cp 4  GLU ASP-TYR PHE    sulfolane     180    21.0                             INS4 MT3a HEPa                                 0.3317Cp 4  GLN-ASP TYR PHE    SULFALANE     175    4.0 INS5 MT5 HEP5                                 0.3318cp 5  GLU2 ASP2 TYP2 PHE2 ORN    sulfalane     180*   .0  MT1 INS4 HEP3a                                 1.0319cp 4THR PHE ASP PGLU   SULFALANE 190    2.5           INS4aMT4 HEP4a                         0.3320Cp 4THR PHE PGLU ASP   Sulfolane 190    1.5           INS4aMT4 HEP4                         0.3321cp 5  GLU2 ASP2 TYR2 PHE2 ORN    SULFOLANE     180*   3.0 INS3aMT2aHEP4a                                 1.0322cp 4  GLU2 LYSR2 PHE2 ASP-    SULFOLANE     192    1.2 INS2 MT2 HEP2                                 0.6323cp 4  GLU ASP TYR PHE-    SULFOLANE     190    .0  ABORT                                 16.0324cp 4GLU ASP TYR PHE   SULFOLANE 190    3.0           INS4 MT4 HEP5a                         2.0325cp 5  GLU2 ASP2 TYR2 PHE2 ORN    SULFOLANE     180*   3.0 INS5a MT2a HEP                                 1.0326CP 4GLU ASP TYR PHE   SULFOLANE 190    6.5           INS3a MT0a HEP3                         16.0326CP 4GLU ASP TYR PHE   SULFOLANE    .0            INS4a MT4 HEP4a                         .0327CP 4GLU ASP TYR PHE   SULFOLANE 190    4.0           INS4a MT5a HEP3                         17.0328CP 4GLU ASP TYR PHE   SULFOLANE 190    3.0           INS5a MT3aHEP3a                         17.03287e 4GLU ASP TYR PHE   SULFOLANE    .0            INS3a MT0a HEP4                         .0329cp 4GLN ASP TYR PHE   SULFOLANE 175    6.5           INS5a MT3a HEP5                         1.0330cp 2  ASP PHE    SULFOLANE     180    3.0 INS0a MT1a HEP0                                 0.5331CP 2  ASP2 PHE    SULFOLANE     180    3.0 INS0a MT0a HEP0                                 0.5332   332 2  ASP3 PHE      SULFOLANE                         180 3.0 INS3aMT1aHEP0c                                              0.53337a 4GLU ASP TYR PHE   SULFOLANE 180    5.0           INS2aMT2a HEP5a                         17.03347ov   4GLU ASP TYR PHE   SULFOLANE 180    5.0           INS4aMT5a HEP4a                         17.0335CP 2ASP PHE2   SULFOLANE 180    3.0           INS1aMT2aHEP1a                         0.533611 5GLU2 ASP2 TYR2 PHE2 ORN   SULFOLANE 180    .0            INS3a MT3a HEP4                         2.0337   337 2ASP2 TYR   SULFOLANE 180    6.5           INS2aMT0cHEP0c                         0.5338CP 2ASP TYR   SULFOLANE 180    3.0           INS0 MT0 HEP0                         1.0339CP 2ASP3 TYR   SULFOLANE 180    3.0           INS0a MT0 HEP0                         0.5340   4GLU ASP TYR PHE   SULFOLANE    .0                   1.5341   4GLU ASP TYR PHE   SULFOLANE    .0                   17.0342   342 2ASP TYR2   SULFOLANE    .0            INS0MT0HEP0                         0.5342CP 2ASP TYR2   SULFOLANE    .0            INSOa MT0 HEP0                         0.5343   4GLU ASP TYR PHE   SULFOLANE    .0                   17.0344   4GLU ASP TYR PHE   SULFOLANE    .0                   2.0345CP 2ASP2 PHE   SULFOLANE    .0            INS0a MT0 HEP0                         .0346CP 4GLN ASP TYR PHE   SULFOLANE    .0            INS0aMT1aHEP2A                         .0347   4GLU2 ASP2 TYR5 PHE5   SULFOLANE    .0                   .0348   2ASP2 PHE   SULFOLANE    .0                   .0349   2PHE ASP2   SULFOLANE    .0                   .0350   2ASP2 PHE   SULFOLANE    .0                   .0351   351 3GLU2 TYR PRE   SULFOLANE    .0            INS3aMT2aHEP3a                         .0352   5GLU2 ASP2 TYR2 PHE2 ORN   SULFOLANE    .0                   .0353   5GLU2 ASP2 TYR2 PHE2 ORN   SULFOLANE    .0                   .0038   2  GLU2 ASP2 EQU --     180 1.5              0.0039   3  ASP2 ARG ILEU --     170 0.0 MT0          0.0040   2  GLU2 ASP2 EQU --     175 3.0              0.0041   2  GLU2 ASP2 EQU PA     170 3.0              0.0042   2  GLU2 ASP2 EQU GLYC   170 3.0 MT0          0.0043   2  GLU2 ASP2 EQU GLYC   170 3.0 INS4 MT4     0.0044   2  GLU2 ASP2 EQU GLYC   170 3.0 MT0          0.0045   2  GLU2 ASP2 EQU PA     170 3.0 MT1          0.0046   2  GLU2 ASP2 EQU GLYC   190 6.0 MT0          0.0047   2  GLU2 ASP2 EQU PA     190 6.0 MT0          0.0048   2  GLU2 ASP2 EQU --     190 6.0 MT0          0.0049   2  GLU2 ASP2 EQU --     190 3.0 MT0          0.0050   2  GLU2 ASP2 EQU --     170 3.0 MT0          0.0051   2  GLU2 ASP2 EQU --     170 6.0              0.0052   2  GLU2 ASP2 EQU --     170 6.0 MT0          0.0053   2  GLU2 ASP2 EQU --     170 4.0 INS0 MT0     0.0054   2  GLU2 ASP2 EQU --     200 3.5 INS4 MT0     0.0055   2  GLU2 ASP2 EQU --     150 3.5 MT-VERY SH   0.0056   2  GLU2 ASP2 EQU --     110 4.3 MT0          0.0057   2  GLU2 ASP2 EQU --     150 3.5 MT0          0.0058   2  GLU2 ASP2 EQU --     180 5.0              0.0059   2  GLU2 ASP2 EQU --     150 3.0 INS0 MT0     0.0060   2  GLU2 ASP2 EQU --     160 3.0 MT3          0.0061   2  GLU2 ASP2 EQU --     165 3.0 MT & MO AH   0.0062   2  GLU2 LEU      --     170 3.0 MT0          0.0063   2  GLU2 ASP2 EQU --     170 3.0              0.0064   2  GLU2 LEU      --     170 3.0 INS2 MT0     0.0065   3  GLU2 ASP2 LEU --     170 3.0 INS5 HEP0 H  0.0066   2  GLU2 GLY      --     170 3.0 MT0                 0.0067   2  ASP2 LEU      --     165 3.0              0.0068   2  ASP2 LEU      --         0.0              0.0069   2  GLU2 ASP2 EQU --     170 3.0 INS5 & AHORPHOU                                              0.0070   3  GLU2 ASP2 LEU --     170 6.0 HE           0.0071   3  GLU ASP3 LEU  --     170 2.6              0.0072   2  GLU2 ASP2 EQU --     170 3.0 INS0 MT0     0.0073   3  GLU ASP PRO   --     170 4.0 INS0 MT0 HEP0                                              0.3074   2  GLU2 ASP2 EQU --     170 3.0 INS5         0.0076   2  GLU2 ASP2 EQU --     170 3.0 MT3 H0 AHO   0.0077   2  GLU2 ASP2 EQU --     170 4.5 INS5                0.0078   2  GLU2 ASP2 EQU --     170 4.0 INS5         0.0079   4  GLU ASP PRO LYS3                  --     170 4.5 LOST BATCH   0.0080   3  GLU2 ASP2 ILEU                  --     170 4.0 INS4 MT0 HEP0                                              0.0081   2  ARG LYS EQU   --     170 3.0              0.0082   2  GLU2 ASP2 EQU --     170 4.0 INS4 MT3     0.0083   3  GLU2 ASP2 ILEU                  --     170 6.0 INS4 MT1 HEP4                                              0.0084   3  GLU2 ASP2 ILEU                  --     170 3.0 INS4 MT3     0.0295CP 1  ASP    SUL-H         180    1.5 INS2aMT2aHEP3oa                                 0.3297cp 4  GLU ASP-TYR PHE    SUL-H         190    1.5 INS2a MT4a HEP3                                 0.5299cp 4  GLU LYS PHE ASP    SUL-H         190    1.7 INS5 MT4 HEP2                                 0.6300cp 5  GLU ORN ASP LYS PHE    --            180    3.0 INS3 MT3 HEP3                                 0.3303cp 4  GLU ASP-TYR PHE    SUL-H         175    8.0 INS4 RT2 HEP3a                                 2.0304cp 5  GLU ASP-TYR PHE ORN0.5    SUL-H         180    3.0 INS4 MT2 BEP3                                 2.0305   4PGLU ASP.5TYR PHE   SUL   0.0           INS3 MT2 HEP3                         0.3306cp 4GLU ASP .5TYR PHE   SUL   0.0           INS3aMT2aHEP2a                         0.3307cp 4  GLU ASP TYR PHE    SULFOLANE     175    4.0 INS4o MT4 HEP4o                                 0.3          1--                                .0               .0000                               .0               .0001   2  GLU2 ASP2 EQU --     170 4.0              0.0002   2  GLU ASP EQU   --     149 0.0              0.0003   2  GLU ASP EQU   --     163 0.0              0.0004   0                --     204 0.0              0.0005   2  GLU ASP EQU   --     176 3.0              0.0006   2  GLU ASP EQU   --     154 3.0              0.0007   2  GLU ASP EQU   --     196 2.0              0.0008   2  GLU ASP EQU   --     154 3.6              0.0009   2  GLU2 ASP2 EQU --     192 3.0              0.0010   2  GLU2 ASP2 EQU --     163 4.0              0.0011   2  GLU2 ASP2 EQU --     160 5.0              0.0012   2  GLU2 ASP2 EQU --     154 4.0              0.0013   2  GLU2 ASP2 EQU --     176 4.0              0.0014   2  GLU2 ASP2 EQU --     174 3.5              0.0016   2  GLU2 ASP2 EQU --     170 3.5              0.0017   2  GLU2 ASP2 EQU --     170 3.5              0.0018   2  GLU2 ASP2 EQU --     170 3.5              0.0019   2  GLU2 ASP EQU  --     180 3.5              0.0020   2  GLU2 ASP2 EQU --     180 4.5 MT           0.0021   2  GLU2 ASP2 EQU --     180 3.5              0.0022   2  GLU2 ASP2 EQU --     180 3.5              0.0023   2  GLU2 ASP2 EQU --     180 3.3              0.0024   2  GLU2 ASP2 EQU --     175 3.3              0.0025   2  GLU2 ASP2 EQU --     175 3.0              0.0026   3  GLU2 ASP2 ASPG                  --     175 3.0              0.0027   3  GLU2 ASP2 SER --     195 5.0              0.0028   2  GLU2 ASP2 EQU --     175 3.5              0.0029   2  GLU2 ASP2 EQU --     175 3.5              0.0031   2  GLU2 ASP2 EQU --     170 3.3              0.0032   2  GLU2 ASP2 EQU --     170 3.5 MT0          0.0033   2  GLU2 ASP2 EQU --     175 3.0 MT0          0.0034   2  GLU2 ASP2 EQU --     180 0.0 MT0          0.0035   2  GLU2 ASP2 EQU --         3.0 MT0          0.0036   2  GLU2 ASP2 EQU --     175 3.6 MT0          0.0037   2  GLU2 ASP2 EQU --     175 21.0             0.0249   <3K 4  GLU2LEU2LYSH2PGLU                  --     180 3.0 INS0 MT0 HEP0                                              0.1250   <3K 5  PGLUARGH2LYS2LEUASP2                  --     180 3.0 INS0 MT0 HEP0                                              0.1251   <3K 4  GLU2ASP2TYRS-PHE5                  SUL-H  180 3.0 INS4 MT4 HEP2                                              0.1252cp 4  (GLU + ASP)VAL LYS    --            170    3.0 INS1 MT2 HEP1                                 0.0253cp 4  GLU ASP-TYR PHE    SUL-H         180    4.5 INS1 MT0 HEP0                                 2.0253   4  GLU ASP-TYR PHE                  SUL-H  180 10.0                                 INS4 MT4 HEP4                                              1.0254   cp 5  GLU2ASP2-TYR2PHE2ORN                  SUL-H  180 8.5 INS4 MT4 HEP4                                              0.1255cp 5  GLU ASPTYR-PHE ORN    SUL-H         180    3.0 INS2 MT4 HEP4                                 0.3256cp 4  GLU2LYSH2PHE2PGLU    --            180    3.0 INS0 MT0 HEP0                                 0.1257cp 4  GLU ASP ARGH ORNB    --            180    3.0 INS0 MT0 HEP0                                 0.0258   <3K 3  GLU ASP ARGH  --     180 3.0 INS1 MT1 HEP0                                              0.0259   <3K 4  GLU ASP-TYR PHE                  SUL-H  180 3.0 INS3 MT3 HEP3                                              0.3260   <3K 4  GLU ASP-TYR PHE                  SUL-H  180 2.5 INS2 MT3 HEP2                                              0.3261cp 4  GLU ASP-TYR PHE    SUL-H         180    3.0 INS0 MT0 HEP0                                 0.3262cp 4  GLU LORN ASP LYSFB    SUL-H         180    3.5 INS0 MT1 HEP4                                 0.3263cp 4  GLU2 LYSH2 PHE2 ASP    --            190    3.0 INS3 MT3 HEP0                                 0.3264cp 4  GLU2 LYSH2 PHE2 ASP    --            180    3.2 INS5 MT3 HEP4                                 0.3266cp 4  GLU2 LYSH2 PHE2 ASP    --            180    3.0 INS4 MT4 HEP4                                 0.3267cp 3  GLU LYSFB ASP LYSER    SUL-H         180    3.0 INSa MTc HEPc                                 0.3268   4  GLU ASP-TYR PHE                  SUL-H  190 2.5 INS0 MT0 HEP0                                              0.3269cp 4  GLU ORNH ASP-LYSFB    SUL-H         180    4.0 INSc MTc HEPc                                 0.1270cp 4  GLU ASP-TYR PHE    SUL-H         180    1.5 INS5 MT4 HEPO                                 1.5271   3  GLU LYSFB-PHE SUL-H  190 1.5 INS3aMT4oHEP4o                                              0.0272cp 4  GLU2 LEU2 LYSH2 TYR1    --            180    3.0 INSc MT1 HEP4                                 0.1273cp 4  GLU2 LEU2 LYSH2 PHE1    --            180    3.0 INS2aMT2 HEP2, a                                 0.1274cp 4  GLU LEU ARG TYR    --            180    3.0 INSc MTc HEPc                                 0.1275cp 4  GLU ARGH-TYR    SUL           190    1.5 INSc MTc HEPc                                 0.3276cp 4  GLU2 LEU2 ARG2 PHE    --            180    3.0 INS3 MT3 HEP4                                 0.1277cp 3  GLU LYS TYR    SUL-H         190    1.5 INSc MTc HEP4o                                 0.3278cp 3  GLU LYS PHE    SUL-H         190    1.5 INSc MTc HEP4                                 0.3279cp 3  GLU LYS ALA    --            190    1.5 INSc MTc HEPc                                 0.3280cp 4  GLUGLUASPGLUTYRGLPHE    SUL-H         190    1.5 INS4 MT3 HEP4                                 0.4281cp 4  GLU1 ASP1 TYR2.5-PHE2.5    SUL-H         180    3.0 INS4 MTa HEP2a                                 1.0282cp 3  GLU2 LY55 PHE2    --            190    1.5 INS0 MT0 HEP2                                 0.3283cp 4  GLU2 LYS5 PRE5 TYR2    --            190    1.5 INS0 MT0 HEP3                                 0.1284   5  GLU2ASP2-TYR2PHE2ORN                  SUL-H  180 3.0 INS4aMT4oHEP2a                                              1.0285cp 2  GLU(2X) ASP(2X)    --            180    3.0 INSc MTc HEPc                                 0.3286cp 2  GLU ASP(2X)    --            180    2.5 INSc MTc HEPc                                 0.3287cp 2  GLU PHE    --            180    3.5 1NS3 MT2 HEP3                                 0.3288cp 3  GLU ORN PHE    --            180    3.0 INSc MTc HEPc                                 0.3289   2  GLU ARG       --     180 1.0              0.3290cp 3  GLU ARG PHE    --            180    3.0 INS2 MT2 HEP2                                 0.3291CP 3  GLU LYS PHE    SUL-H         190    1.5 INS4 MT3o HEP4o                                 0.3292cp 5  GLU ASP ARG ORN PHE    SUL-H         180    3.0 INS0 MT0 HEP0                                 0.3293cp 4  GLU ASP ARG ORN PHE    SUL-H         180    3.0 INS3 MT3 HEP3                                 0.3294cp 4  GLU2 LYSH2 PHE2 ASP    --            180    3.0 INS3 MT4 HEP4                                 0.3192cp 3  GLU LYSFB ASP    --            195    3.0 INS4 MT0                                 0.3193   >6K 4  (GLU + ASP) TYR PHE                  PA     175 4.0 MT0 HEP0     0.3194cp 3  GLU LYSFB ASP    TRIGL         195    3.0 INS1 MT0 HEP2                                 0.3195cp 3  GLY ASP VAL2    --            170    3.2 INS2 MT1 HEP0                                 0.3196cp 4  GLU ASP TYR PHE    PA            175    4.2 INS2 MT5 HEP4                                 1.0197cp 4  GLU ASP TYR PHE    SUL           175    2.7 INS2 MT5 HEP5                                 0.3198cp 3  GLU LYSFB ASP    --            195    3.2 INS3                                 1.0200cp 3  GLU LYSH ASP    PA            185    3.0 INS4 MT0 HEP0                                 0.3201cp 3  GLU LYSFB ASP    SULFA         195    3.0 INS4 MT0 HEP3                                 0.3203cp 4  GLU ASP VAL LYS    --            170    3.0 INS5 MT5 HEP                                 0.3204cp 3  GLU LYS ASP    --            185    3.0 INS4 MT0 HEP0                                 0.3205cp 4  GLU ASP-TYR PHE    SULFA         175    3.7 INS4 MT0                                 0.6208   3  GLUM LYSM ASPM                  NaHCO& 80  8.0 INSO MT0 HEP0                                              0.0                  MeOH209cp 4  GLU ASP-VAL LYS    SULFA         170    3.2 INS4 MT4 HEP3 W                                 0.3210cp 4  GLU ASP-VAL LYSFH    SULFA         170    3.0 INS4 MT4 HEP3                                 2.0213cp 3  GLU-LYS HIS    SULFA         180    3.0 INS0 MT0 HEP0                                 0.3215cp 3  GLU ASP GLY2    --            180    5.5 INS3 MT0 HEP0                                 0.3216cp 4  GLU ASP-TYR PHE    SULFA         175    3.0 INS4 MT4 HEP4                                 2.0217   3  GLUASPLYS(DIETESTER)                  MEOH/Et3N                         75  29.0             0.0218cp 4  GLU ASP-TYR PHE    SULFA         175    .0  INS0 MT0 HEP0 A                                 0.3219cp 3  GLU-LYS-LEU    sul/POCl3     180*   8.5 INS2 MT0 HEP2                                 0.3220cp 4  GLU ASP-TYR PHE    SULFA         180    20.5                             INS4 MT4 HEP5                                 0.3221cp 3ASP2 TYR PHE   SULFA 180    22.0          INS2 MT0 HEP0                         0.3222cp 3LYSFB2 ARG2 LEU   SULFA 180    4.0           INS0 MT0 HEP2                         0.3224cp 4  GLU ASP-TYR PHE-    SULFA         180    6.0 INS3 MT0 HEP0                                 0.3225cp 3  PRO-SER TYR    SULF          180    3.5 INS2 MT0 HEP0                                 0.3226   <3K 4  GLU ASP TYR PHE                  SULF   180 4.0 INS3 MT4 HEP3                                              0.3229   <3K 4GLU ASP TYR PHE   SULF 180    5.5           INS3 MT0 HEP0                         0.3230cp 2  GLU TYR    --            180    4.0 INS4 MT0 HEP0                                 0.3231cp 3  GLU LYSFB PHE    SULF          180    3.5 INS2 MT0 HEP0                                 0.3232cp 3  GLU LEU ARG    --            180    4.0 INS0 MT0 HEP0                                 0.3233cp 3  GLU LEU LYSH    --            180    4.0 INS0 MT0 HEP0                                 0.3234cp 4(GLU ASP TYR PHE)   SULF 150    27.0          INS3 MT0 HEP0                         0.3235cp 4(GLU ASP)TYR10PHE10   SULF 180    22.0          INS0 MT0 HEP0                         0.0236cp 3  GLU TYR LYSHCL    --            180    2.0 INS0 MT0 HEP0                                 0.3237   <3K 4  GLU2 LEU2 LYSH2 ASP                  --     180 3.0 INS0 MT0 HEP0                                              0.1238   <3K 4  GLU ASP TYR5 PHE5                  SULF   180 3.0 INS0 MT0 HEP0                                              0.1239cp 3  GLU ASP LHU    SUL-H         190    1.0 INS3 MT0 HEP0                                 0.0240cp 3(GLU ASP) LEU   SUL-H 170    4.0           INS4 MT0 HEP0                         0.0241   <3K 3(GLU ASP) LEU   SUL-H 190    5.0           INS3 MT0 HEP0                         0.0242cp 3(GLU ASP LEU)   SUL-H 170    2.5           INS0 MT0 HEP0                         0.0243cp 5  PGLU2ASPARG2LYS2LEU    --            180    3.0 INS0 MT0 HEP0                                 0.1244cp 3  (GLU ASP) LEU    --            190    2.5 INS0 MT0 HEP0                                 0.0245cp 3  (GLU ASP) LEU    --            170    1.0 INS3 MT1 HEP0                                 0.0246   <3K 5  GLU2 LYSH2 PHE2 ASP                  --     180 6.0 INS4 MT4 HEP4                                              0.0247cp 3  GLU ASP LEU    --            170    5.0 INS0 MT0 HEP0                                 0.0145   3  GLU ASP LYSFB PPA    185 6.0 MT0          0.0146   3  GLU ASP VAL2  PPA    170 3.5 INS2 MT0     0.0147   4  GLU ASP PHE ALA                  --     170 3.0 INS4 MT3 HEP4                                              0.0148   4  GLU ASP TYR PHE                  PA     170 3.0 MT0 HEP4     0.0149   3  GLU ASP PHE2  --     170 3.0              0.0150   4  GLU ASP LEU PRE                  PA     170 24.0                                 MT0 HEP0     0.0151   4  GLU ASP TYR PHE                  PA     170 6.0 INS4 MT4 HEP4                                              0.0152   4  GLU ASP TYR PRE                  PA     170 5.0              0.0153   3  GLU LYSFB PHE PA     170 24.0             0.0154   4  GLU ASP TYR PHE                  PA     170 4.0              0.0155   3  GLU2 TYR PHE  PA     170 4.0 INS4 MT5 HEP3                                              0.0156   3  GLU4 LYS2 PHE --     170 6.0 INS0 MT0 HEPc                                              0.0157   3  GLU2 TYR LEU  PA     170 5.0 INS2 MT1 HEP0                                              0.0158   3  GLU2 PHE LEU  PA     175 5.0 INS4 MT0 HEP4                                              0.0159   3  GLU3 PHE TYR  PA     175 5.0 INS4 MT4 HEP4                                              0.0160   4  GLU6 LYS2 PHE TYR                  PA     170 6.0 INSa MTc HEPc                                              0.0161   4  GLU4 PHE2 TYR2 CYS                  PA     170 4.0 INS4 MT HEP  0.0162   3  GLU2 TYR PHE  PA     170 5.5 INS3 MT0 HEP2                                              0.0163   3  GLU2 PHE TYR  PA     170 5.0 INS3 MT2 HEP3                                              0.0164   3  GLU2 PHE TYR  PA     170 5.0 INS4 MT4 HEP4                                              0.0165   4  GLU3 ASP PHE2 TYR2                  PA     170 3.0 INS3 MT0 HEP0                                              0.0166   3  GLU LYSFB PGLU                  PA     170 7.0              0.0167   4  GLU ASP TYR PRE                  PA     170 6.5              0.0168   3  GLU ASP LYSEB PPA    185*                             72.0                                 MT0          0.0169   3  GLU ASP LYSYB PPA    185 72.0                                 MT0          0.0170   3  GLU ASP LYSFB --     195 7.0 MT5          0.0171   3  GLU LSYHCL ASP                  H.OIL  180 7.0 MT0          0.0172   4  GLU ASP TYR PHE                  PA     170 6.0 MT1          0.0173   3  GLU LYS ASP   mineral o.                         185 3.0 ABORT        0.3174   >6K 3  GLU LYS ASP   GLycerin                         185 3.0 INS2 MT1 HEP3                                              0.3175   >6K 4  GLU ASP TYR PHE                  PA     172 3.5              1.0176   >6K 3  GLU2 LYS2 LYS --     180 3.0 INS0 MT0 HEP0                                              0.3177   >6K 3  GLU ARG ASP   --     180 3.2 INS0 MT2 HEP0                                              0.3178   >6K 3  GLU LYS ASP   --     190 3.2 INS0 MT0 HEP1                                              0.3179   >6K 4  GLU ASP TYR PHE                  PA     175 4.0              1.0180   >6K 4  GLU ASP TYR PHE                  PA     175 7.0 See Notes.   1.0181   >6K 3  GLU LYS ASP   --     185 3.0 INS0 MT0     0.3182   >6K 4  GLY ASP TYR PHE                  PA     175 3.7 MT1 HEP1     0.3183   4  PGLU ASP TYR PHE                  PA     175 4.0 ABORT-RETRY  0.3184cp 4  GLU ASP TYR PHE    PA            175    3.5 MT2 HEP4                                 0.3185cp 4  GLU ASP TYR PHE    PA            176    4.2 INS MT4 HEP4                                 1.0187   3  ASP TYR PHE   PA     170 .0  ABORT        0.3188cp 3  ASP TYR PHE    PA            150    21.2                             INS0 MT0 HEP0                                 0.3189cp 4  GLU ASP TYR PHE    PA            176    4.0 MT4 HEP5                                 1.0190cp 4  GLU ASP TYR PHE    PA            175    4.0 MT5 HEP4                                 1.0191cp 3  ASP2 TYR PHE    PA            150    24.0                             MT0 HEP0                                 0.3015   2  GLU2 ASP2 EQU --     170 2.5              0.0100   3  GLU ASP VAL2  --     170 3.0              0.0101   3  GLU ASP VAL2  --     170 3.0              0.0102   3  GLU ASP VAL2  --     170 3.0              0.0103   4  GLU ASP GLY VAL                  --     170 3.5 INS4         0.0104   4  GLU ASP VAL LEU                  --     170 3.5 INS4 MT2 HEP5                                              0.0105   3  GLU ASP GLY2  --     180 4.0 INS4 MT2     0.0106   4  GLU ASP VAL LEU                  --     170 5.0              0.0107   4  GLU2 ASP2 GLY VAL2                  --     170 3.0 INS5         0.0108   4  GLU2 ASP2 GLY VAL2                  --     170 4.0 INS4 NO AHORPHO                                              0.0109   4  GLU2 ASP2 GLY VAL2                  --     170 4.0 INS4 MT1     0.0110   4  GLU2 ASP2 GLY2 VAL                  --     170 3.5              0.0111   5  GLU ASP GLY VAL CYS                  --     170 3.0              0.0112   4  GLU ASP GLY PHE                  --     170 4.0 INS4 MT3 HEP4                                              0.0113   4  GLU ASP VAL2 GLY                  --     170 3.0 INS2 MT0     0.0114   3  GLU ASP VAL   --     170 3.0 INS4 MT0     0.0115   3  GLU VAL TYR   --     170 4.0              0.0116   4  GLU ASP VAL LYS                  --     170 4.0              0.0117   3  GLU VAL TYR   --     170 3.0 INS5         0.0118   2  GLU TYR       --     170 3.5 INS5 MT0 HEP0                                              0.0119   2  GLU2 ASP2 EQU --     170 3.5 INS5 MT1     0.0120   3  GLU ASP TYR   --     170 4.5 INS0 MT0 HEP0                                              0.0121   4  GLU ASP TYR PHE                  --     170 4.0 INS5 MT3 HEP4                                              0.0122   4  GLU ASP VAL TYR                  --     170 3.0 INS3 MT0 HEP0                                              0.0123   1  GLU           --     170 4.5 CAN'T DRY    0.0124   3  GLU TYR VAL   --     170 3.5 INS4 MT3 HEP3                                              0.0125   3  PGLU VAL TYR  --     170 3.5 INS3 MT2     0.0126   4  GLU ASP VAL2 GLY                  --     170 4.0 INS1         0.0127   4  GLU2 ASP2 VAL PHE                  --     170 4.0 INS3 MT2 HEP4                                              0.0128   2  GLU2 ASP2 EQU --     170 3.5 MT0          0.0129   2  GLU2 ASP2 EQU --     VARY                             4.0 INS3 MT0     0.0130   2  GLU2 ASP2 EQU --     220 3.0 INS5 MT0     0.0131   2  GLU2 LYSFB    --     185 3.0 INS1 MT0     0.0132   3  GLU ASP LYSFB --     185 3.0 INS3 MT2 HEP2                                              0.0133   3  GLU ASP LYSFB PA     180 6.2 INS5 MT1 HEP2134   4  GLU ASP LYS VAL                  PA     185 3.0              0.0135   3  GLU ASP LYSFB GLYC   185 6.5 INS1 MT1     0.0136   2  GLU2 ASP2 EQU --     155 3.0 MT0          0.0137   5  GLU2ASP2LEU THY VAL                  --     185 4.0 INS0 MT0     0.0138   4  GLU ASP VAL TYR                  --     185 4.5 INS1 MT3     0.,o139   4  GLU ASP VAL TYR                  PPA    160*                             72.0                                 INS2 MT3     0.0140   3  GLU ASP LYSFB PPA    120*                             72.0                                 INS5 MT2 HEP4                                              0.0141   3  GLU LYSFBSYNPEPagqp                  --     185 6.0              0.0142   3  GLU ASP LYSFB PPA    120*                             72.0                                 INS1 MT1     0.0143   3  GLU VAL TYR   --     170 3.0 INS2 MT2     0.0144   4  GLU2 ASP2 GLY VAL2                  --     170 3.0 INS1 MT1     0.0354   5(GLU ASP TYR PHE)2 ORN   SULFOLARE    .0                   .0__________________________________________________________________________ Glossary: a = amorphous o = oil * = varying temperature + = cook time change Sphere rating: 0 = worst 5 = best IMT = insulin MT = empty microsphere HEP = heparin SulM = sulfolane, medical grade Sulfa = Sulf = Sul = Sulfolane PA = phosphoric acid Equ = equilents GLYC = glycerol TRIGL = triglyme PPA = polyphosphoric acid M.Oil = mineral o. = mineral oil

__________________________________________________________________________IEF TABLESProteinoid sorting, pKa and composition Chemical basis for microsphereODSRun   Material    Composition →                   Sphere frac                         Sphere pH                               Sphere                                    Sphere    Max UV                                                    Max UVNo.   ID No.    (*no asp)      number                         range rating                                    Matrix IEF rating                                              Frac.                                                    pH.__________________________________________________________________________   202B  Glu2.4 Asp2Val2Gly *                   no spher                         --    --   INS4 HT0 HEP3                                              --    --   210>1K    Glu Asp Val Lys                   14-20 2.3-4.4                               2-3  INS4 HT4 HEP3                                              14-19 4.4-3.0   213>1K    Glu LysFB HisFb                   16-19 1.7-2.1                               2    INS0 HT0 HEP0                                              11-16 7.6-2.1   218<3K    Glu Asp Tyr Phe                   13-20 3.2-2.7                               2    INS0 HT0 HEP0                                              1-7   12.2-9.3   129   Glu Asp Equ    10-18 2.5-4.4                               3    INS3 HT0  15-18 2.9-2.5   214<1K    Glu LysFb Arg  no spher                         --    --   INS0 HT0 HEP0                                              1-4   11.8-9.2   176   Glu LysFB2 LysFB                   no spher                         --    --   INS0 HT0 REP0                                              5-6   9-8.6   222-cp    Arg2 LysFB2 Leu                   ?1-4? 9.9-11.7                               2?   TNS0 HT0 HEP2                                              2-6   8.5-11.5   202B  Glu2.4 Asp2, Val2 Gly                   8-12  3.3-5 2,1-2                                    INS4 HT0 HEP3                                              8-12  5-3.3   223-cp    Arg2 LysFB2 Leu pGlu                   1     10.3  2-3  INS0 HT0 HEP2                                              1     10.3   223-cp    Arg2 LySFB2 Leu pGlu                   1-5   9.0-12                               2    INS0 HT0 HEP2                                              3     10.7   170a  Glu Asp LysFB  16-20 2.3-5.0                               2-3  HT5       16-20 5-2.3   216<3K    Glu Asp Tyr Phe(sul)                   14-20 2.4-3.9                               2    INS4 HT4 HEP4                                              14-17 3.9-2.8   125   Glu Val Tyr    13-20 2.7-3.6                               1-2  INS3 HT2  14-20 3.2-2.7   228-H20    sul Val2 Gly2 pGlu                   no spher                         --    --   INS0 HT0 HEP0                                              9-13  5-3.4   228-AB    sul Val2 Gly2 pGlu                   no spher                         --    --   INS0 HT0 HEP0                                              16-18 3.8-3.3   177   Glu Asp Arg    14-19 5.2-3.9                               2-3  INS0 HT2 HEP0                                              14-19 5.2-3.9   118   Glu Tyr        12-14 5.2-6.0                               1-2  INS5 HT0 HEP0                                              12-19 6-4.2   153   Glu LysFB Phe  no spher                         --    --             8-9   9.1-10.2   131   Glu Lys        no spher                         --    --   INS1 HT0  14-17 4.3-3.6   162   Glu Tyr Phe    16-17 4.1-3.7                               2-3  INS3 HT0 HEP2                                              16-17 4.1-3.7   156   Glu4 Lys2 Phe  no spher                         --    --   INS0      20    4.5   124   Glu Val Tyr    no spher                         --    --   INS4 HT3  13-14 3.7-3.5   210<1K    Glu Asp Lys Val *                   12-20 3.6-3.1                               1-2  INS4 HT4 HEP3                                              12-19 3.6-3.2   156   Glu4 Lys2 Phe  14-17 3.6-3.1                               2    INS0      14    3.6   231   Glu Lys Phe sul                   no spher                         --    --   INS2 HT0 HEP3                                              18    9.1   232   Glu Leu Lys    no spher                         --    --   INS0 HT0 HEP2                                              6     10.9   233   Glu Leu Arg    no spher                         --    --   INS0 HT0 HEP2                                              9     10   blank 2% ampholytes  --    --    --   --        --    --   216<3K    Glu Asp sul Tyr Phe                   14-20 4.1-2.6                               2    INS4 HT4 HEP4                                              18-20 3-2.6   230<1K    Glu Tyr        13-20 3.9-3 3    INS4 HT4 HEP0                                              19-20 3.3-3   170a  Glu Asp LysHB  15-20 3.9-2.2                               2    HT5       18-19 3.3-2.6   236-cp    Glu Tyr Lys--HCl                   19-20 3.0   0-1  INS2 HT0 HEP0                                              19-20 3   216<3k    Glu Asp sul TyrPhe *                   14-20 3.3-2.2                               2    INS4 HT4 HEP4                                              20    2.2   216<3K    Glu Asp sul Tyr Phe                   16-20 3.9-2.3                               1-2  INS4 HT4 HEP4                                              20    2-3   237-cp    Glu Leu2 Lys2 Asp                   no spher                         --    --   INS0 HT0 HEP0                                              9-12  4.6-4   243-cs    pGluArg2Lys2LeuAsp                   no spher                         --    --   INS0 HT0 HEP0                                              15-17 8.5-7   246-cs    Glu2 LysH2 Phe2 Asp                   17-20 4.1-2.2                               2-3  INS4 HT4 HEP4                                              17-20 4.1-2.2   250-cs    pGluArg2LysH2LeuAsp2                   no spher                         --    --   INS0 HT0 HEP0                                              11-14 8-6.8   249<3K    Glu2 Leu2 LysH2 pGlu                   no spher                         --    --   INS0 HT0 HEPD   254-cp    GluAspsulTyrPheOrn.5                   18    5.4-2.5                               2    INS3 HT4 HEP4                                              14-20 3.7-2.1   253-cp    Glu Asp sul Tyr Phe                   18-20 3-4   2    INS0 HT0 HEP0                                              1-4,19-20                                                    11.5,3-3.5   235<3K    GluAspsulTyr10Phe10                   18-20P                         2.6-3.2                               1-2  INS0 HT0 HEP0                                              1-3   11   256-cp    Glu LysH2 Phe2 pGlu                   13-20 3.7-4.0                               1-2  INS0 HT0 HEP0                                              2-5,14-20                                                    2.7-4,7-10   238<3K    GluAspsulTyr5Phe5                   no spher                         --    --   INS1 HT3 HEP4                                              2     11.4   255-CP    Glu AspTyrsulPheOrn                   13-20 5.3-3.1                               2    INS1 HT3 HEP4                                              1-6,19-20                                                    11-9.3.6-3   251<3K    GluAsp2sulTyr5Phe5                   16-20 5.5-3.3                               2    INS4 HT4 HEP4                                              17-20 5.8-3.847 257-CP    Glu Asp ArgH OrnH                   no spher                         --    --   INS0 HT0 HEP0                                              19-20 5-348 257-CP    Glu Asp ArgH OrnH*                   no spher                         --    --   INS0 HT0 HEP0                                              15-17 8.9-8.549 258<3K    Glu Asp ArgH   no spher                         --    --   INS0 HT0 HEP0                                              1,17-20                                                    9.8,4-2.550 262-CP    Glu Orn Asp LysFB                   11-18 6.8-3.5                               2    INS0 HT1 HEP4                                              15    4.851 262-FILT    Glu Orn Asp LysFB                   4-11  7.7-5.4                               1-2  ins0 mt1 hep4                                              1-2,12-20                                                    9.4.6-1.852 267-cp    Glu LysFB Asp LysFB                   no spher                         --    --   INSa HTc HEPc                                              14-20 6.3-3.853 268-cp c    Glu Asp sul Tyr Phe                   15-20 4.5-2.34                               2-3  INS4oHT4oHEP4a                                              1-10,18-20                                                    12-2.554 269-cp    Glu OrnH Asp LysFB                   17-20 2.91-1.4                               1    INSc HTc HEPc                                              4,7,9 9-7.555 273-cp    Glu Leu LysH Phe                   17-20 3-1.2 1-2  INS2a HT2 HEP2a                                              19    256 272/273    Glu Leu LysH   no spher                         --    --   --        3-9,13-15                                                    9.8.5,8-8.57 276   Glu Leu Arg Phe                   12-18 3.57-1.4                               1-2,2                                    INS2 HT2 HEP3                                              1-7,17-20                                                    9-6,1.5-1.58 274   Glu Leu Arg Tyr                   no spher                         --    --   INSc HTc Hepc                                              16-20 4.14-1.459 272   Glu Leu LysH Tyr                   no spher                         --    --   INSc HTc HEPc                                              1-2   9.4-9.360 274A  Glu Leu Arg    no spher                         --    --   --        all frac.61 278   Glu Lys Phe sul                   16-20 4.8-3.5                               1-2  INSc HTc HEP4                                              all frac.                                                    --62 284E  GluAspTyrPhesulOrn                   14-20 3.8-2.1                               1-2  INS4oHT4oHEP3                                              15-20 3.3-2.163 287-cp    Glu Phe        10-20 3.55-2.3                               2    1NS3 HT2 HEP3                                              18-20,1-7                                                    2.4-2.3,864 284-E Glu2Asp2Tyr2Phe2Orn                   14-20 3.95-1.6                               2 w/oil                                    INS4a HT4aHEP2a                                              3-8   12.3-7.7665 288-cp    Glu Orn Phe    no spher                         --    --   INSc HTc HEPc                                              17-20 2.7-1.0266 293-cp    Glu Asp sul Tyr Phe                   1-8   1.9-3.9                               1-2  INS1 HT2 HEP1a67 290-cp    Glu Arg Phe    1-7   1.05-3.8                               1-2  INS1 HT1 HEP1                                              18-20 12.1-12.668 292-cp    Glu Asp Arg    no spher                         --    --   INS HT HEP                                              16-20 3.19-1.569 300-cp    Glu Orn Asp Lys Phe                   15-19 4.05-1.5                               1-2  INS3 HT3 HEP3?                                              all frac.                                                    --70 297-cp    GLU ASP SUL TYR PHE                   1-7   2.38-4.15                               2-3  INS2 HT4 HEP                                              1-2   2.38-271 301<3K    GLU ASP SUL TYR PHE                   --    --    --   INS4 HT2 HEP3                                              1-20  --72 303   GLU ASP SUL TYR PHE                   1-8   2.83-3.76                               2-3  INS4 HT2 HEP3a                                              1-3,18-20                                                    2.88/173 299   GLU2 LYS2 PHE2 ASP                   1-7   1.13-3.82                               1    INS4a HT4 HEP2a                                              3-7   1.58-374 305   PGlu ASP.5 TYR PHE                   1-12  2.12-4.20                               2-3  INS3 HT2 HEP3                                              11-20 5.54-175 307-CP    GLN ASP TYR PHE                   1-9   2.43-4.48                               2-3  INS4o HT4 HEP4a                                              1-13  2.43-7.076 305   PGLU ASP.5 TYR PHE                   1-6   2.05-5.56                               2-3  1NS3 HT2 HEP3                                              4-7   3.3-7.077 124/156    GLU TYR VAL/GLU2 LYS2 PHE                   --    --    --   I4 H3 H3/I0H0H0                                              1     10.5878 223-CP    LYS ARG LEU PGLU                INS0 HT0 HEP279 319-CP    SUL-U TYR PHE ASP PGLU                   1-10  2.28-5.3                               2-30 INS4aHT4hEP4a                                              2-8,19-20                                                    2.3-4,1280 314-CP    SUL TYR PHE ASP PGLU                   1-11  1.93-5.30                               2    INS2aHT4aHEP4a                                              18    8.9581 320-CP    SUL TYR PHE PGLU ASP                   1-7   2.12-4.4                               2a   INS4aHT4HEP4                                              16-20 9.3-10.2582 188>6K    ASP2 TYR PHE   1-6   1.85-5                               0a   INS0HT0HEP0                                              18-20 12-12.583 286-CP    GLU ASP        14-18 2.38-2.02                               PART-                                    INSCHTCHEPC                                              14-18 2.38                               ICLES84 288/188    ASP2 TYR PHE/GLU ORN PHE                   14-17 4.9-3.1                               1-2  INSCHTCHEPC                                              17-19 3.1-1.6585 66    GLU2 GLY       --    --    --   HT0       16-19 2.85-2.5586 0112-2A    GLU ASP TYR PHE                   1-10  3.17-13.48                               1,0-1                                    INS5aHT3aHEP3a                                              14#2  9.20,3.32__________________________________________________________________________

  - Sphere Testing of Externally Prepared Proteinoids    INS/CA INS/AA  SOI No. Composition pH 0.85 CA 5% AA 0.85 CA + GM 5% AA + GM GM/GL/CD GM/GL/CD HEP/CA +  GM  91EHIP001F20B1SA0 GLU ASP TYR PHE -- Rating 1-2 1-2 3 2-3 2-3 0 2 -3Desc. a a -- a a a apH -- -- -- -- -- -- --  91EHIP001F21B1SA07 GLU ASP TYR PHE -- Rating 2-3 3-4 3-4 2-3 4 4-5     Desc. a,ag a,ag a a a,p a,ag a,ppH -- -- -- -- -- -- --  91EHIP001F21B1SA07 GLU ASP TYR PHE -- Rating 3 3 4-5 3 3-4 3-4 4-5     Desc. ag,a a a ag,p ag,p ag,p a,ppH -- -- -- -- -- -- --  91EHIP001F22B1A7 GLU ASP TYR PHE -- Rating 2-3 2-3 3 4-5 0 3-4 4-5     Desc. -- a -- a,o a o apH -- -- -- -- -- -- --  91EHIP011F23B1SA8 GLU ASP TYR PHE ORN -- Rating 2-3 3 4 4 0-1 4 3-4    Desc. a,p a -- -- a a,o a,opH -- -- -- -- -- -- --  91EHIP011F24SA7 GLU ASP TYR PHE ORN -- Rating 2 2 2-3 3 4 0-1 5        Desc. a a o -- a a,o ppH -- -- -- -- -- -- --  91EHIP001F25B1SA2A GLU ASP TYR PHE -- Rating 0-1 0 3-4 0 3-4 4-5 4-5   Desc. -- a,p a a a a apH -- -- -- -- -- -- --  91EHIP001F25B1SA5 GLU ASP TYR PHE -- Rating 0-1 1 2-3 2-3 0-1 3-4 2-3  Desc. a a a -- a a,o apH -- -- -- -- -- -- --  91EHIP001F26B1SA2A GLU ASP TYR PHE -- Rating 2-3 2-3 3 3-4 2 2-3 3-4   Desc. -- a -- -- a -- opH -- -- -- -- -- -- --RatingDesc.pH  91CTAP001F014B02 GLU ASP TYR PHE -- Rating 2-3 3 5 4-5 4-5 2-3 3       Desc. a a a -- a a apH -- -- -- -- -- -- --  91CTAP001F014B02 GLU ASP TYR PHE -- Rating 2 4-5 5 5 5 5 5Desc. -- a -- -- -- -- --pH -- -- -- -- -- -- --  91CTAP001F014B02 GLU ASP TYR PHE -- Rating 2-3 3 5 4-5 4-5 2-3 3       Desc. a a a -- a a apH -- -- -- -- -- -- --  91CTAP001F014B03 GLU ASP TYR PHE -- Rating 2 2 3-4 3-4 5 3 3-4Desc. a a a a a a apH -- -- -- -- -- -- --  91CTAP001F014B03 GLU ASP TYR PHE -- Rating 0-1 0-1 5 5 5 2-3 4Desc. a,ag a,ag a,ag a,ag a,ag a --pH -- -- -- -- -- -- --  91CTAP001F014B03 GLU ASP TYR PHE -- Rating 2-3 2-3 5 5 5 3 5Desc. ag ag a,ag -- a,ag,o ag,a --pH -- -- -- -- -- -- --  91CTAP001F014B03 GLU ASP TYR PHE -- Rating 2 2 3-4 3-4 5 3 3-4Desc. a a a a a a apH -- -- -- -- -- -- --  91CTAP001F014B04 GLU ASP TYR PHE -- Rating 0-1 0-1 4 5 2-3 0 5Desc. a a a a a a apH -- -- -- -- -- -- --  91CTAP001F014B05 GLU ASP TYR PHE -- Rating 3 3-4 5 4-5 4 4 4Desc. -- a a -- a a apH -- -- -- -- -- -- --  91CTAP001F014B04 GLU ASP TYR PHE -- Rating 3 3-4 5 4-5 4 4 4Desc. -- a a -- a a apH -- -- -- -- -- -- --  91EHIP011F15B12 GLU2ASP2TYR2PHE2ORN -- Rating 2-3 3 4 3-4 0 3-4 4      Desc. a,ag ag -- a,o a -- --pH -- -- -- -- -- -- --  91EHIP001F20B1SA07 GLU ASP TYR PHE -- Rating 2 2-3 3 2-3 4 3 4Desc. ag ag -- -- a,o a,o --pH -- -- -- -- -- -- --RatingDesc.pH  91EH1P001F25B1SA3a  6.52 Rating 2-3 2-3 3-4 4 3-4 4 5Desc. ag,a ag -- -- a,p o --pH -- -- -- -- -- -- --  91CTAP001F012B01 GLU ASP TYR PHE 7.5 Rating 2-3 2 5 5 4 5 5Desc. a a -- -- a -- apH -- -- -- -- -- -- --  P005-B01 GLU LYSH2 PHE2 ASP 9.0 Rating -- -- 3-4 -- 4 3 3Desc. -- -- a,o -- a,o a,o a,opH -- -- -- -- -- -- --  91CTAPR001F010B01 GLU2 LYSH2 PHE2 ASP -- Rating 2-3 2 4 4 4 4 4        Desc. a a -- -- a a apH -- -- -- -- -- -- --  F003-B01 GLU2 LYSH2 PHE2 ASP -- Rating -- -- 4 3-4 3 4-5 3Desc. -- -- a o a a a,opH -- -- -- -- -- -- --  F004-B01 GLU2 LYSH2 PHE2 ASP -- Rating -- -- 3-4 2-3 2-3 4 2-3Desc. -- -- a,o a a a apH -- -- -- -- -- -- --  91CTAP001F011B01 GLU ASP TYR PHE ORN -- Rating -- -- -- -- -- -- --    Desc. -- -- -- -- -- -- --pH -- -- -- -- -- -- --  91CTAP001F013B01 GLU ASP TYR PHE 7.9 Rating 2-3 2-3 4-5 4-5 4-5 4 5    Desc. -- a -- a,o a,o a,o apH -- -- -- -- -- -- --  91CTAP001F014B01 GLU ASP TYR PHE 8.0 Rating 0 0-1 4-5 4-5 4-5 3-4 4    Desc. a a a -- a a apH -- -- -- -- -- -- --  91CTAP001F014B01 GLU ASP TYR PHE -- Rating 0-1 0-1 5 4 4 3 3-4Desc. a a a,o a,o a,o a,o a,opH -- -- -- -- -- -- --  91CTAP001F014B01 GLU ASP TYR PHE -- Rating 2 2 5 5 5 3 5Desc. ag ag,a ag -- ag,a ag,a --pH -- -- -- -- -- -- -- CA = citric acid GM = gum acacia GL = gelatin INS = insulin HEP = heparin CD = cyclodextrin a = amorphous p = particulate o = oil ag = aggregate eating: 0 = worst 5 = best
Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2671451 *Jun 16, 1952Mar 9, 1954Bolger Stephen JRemedial pill
US2862918 *Mar 12, 1956Dec 2, 1958Glidden CoAcylated, isolated, partially-hydrolyzed, soya protein and process
US2868740 *Mar 25, 1954Jan 13, 1959Swift & CoMethod of copolymerizing acrylic or methacrylic acid with proteinaceous material and product obtained
US2971916 *Jan 30, 1957Feb 14, 1961Ncr CoMicroscopic capsules containing magnetizable material
US3016308 *Aug 6, 1957Jan 9, 1962Moore Business Forms IncRecording paper coated with microscopic capsules of coloring material, capsules and method of making
US3052655 *Aug 1, 1958Sep 4, 1962Fox Sidney WThermal polymerization of amino acid mixtures containing aspartic acid or a thermal precursor of aspartic acid
US3057344 *May 21, 1957Oct 9, 1962Alberto Abella CarlosCapsule for the study of the digestive tract and method of using the same
US3076790 *Aug 1, 1958Feb 5, 1963Fox Sidney WMethod of making copolymers of amino acids containing glutamic acid
US3170802 *Dec 14, 1960Feb 23, 1965Zh Noda Sangyo Kagaku KenkyushMethod for treatment of soybean proteins
US3190837 *Dec 31, 1958Jun 22, 1965Ncr CoMaking individual capsules by dual deposition
US3474777 *Feb 10, 1966Oct 28, 1969Amp IncMethod of administering therapeutic agents
US3491093 *Nov 29, 1967Jan 20, 1970Endo LabDerivatives of 5 aminomethyl-4,5,6,7-tetrahydro-4-oxoindoles
US3565559 *Mar 6, 1969Feb 23, 1971Sumitomo Chemical CoProcess for making microcapsules
US3567650 *Feb 14, 1969Mar 2, 1971Ncr CoMethod of making microscopic capsules
US3574832 *May 29, 1968Apr 13, 1971American Cyanamid CoTherapeutic heparin-surfactant compositions
US3576758 *Oct 17, 1966Apr 27, 1971Ncr CoTreatment of polypeptide-containing hydrophilic polymeric capsule wall material with uranium and vanadium compounds
US3725113 *Dec 17, 1970Apr 3, 1973Research CorpBlood compatible microencapsulated detoxicants and method for making
US3748277 *Oct 14, 1965Jul 24, 1973Ncr CoProcess of forming minute capsules
US3794561 *Apr 3, 1972Feb 26, 1974Sasaki TBiologically active peptide and method of preparing the same
US3795739 *Feb 6, 1973Mar 5, 1974Hoffmann La RocheTreatment of parkinson disease
US3816404 *Dec 8, 1971Jun 11, 1974Texaco IncPreparation of caprolactam
US3822348 *Jul 17, 1972Jul 2, 1974Toyo Jozo KkHormone-like substance having serum calcium reducing property
US3849550 *Mar 31, 1972Nov 19, 1974Yeda Res & DevTherapeutic copolymer
US3933873 *Jun 10, 1974Jan 20, 1976Texaco Inc.Preparation of omega-aminoalkanoic acids
US3937668 *Nov 6, 1972Feb 10, 1976Ilse ZolleCarriers for drugs, insecticides, dyes, albumin
US3939253 *Apr 10, 1975Feb 17, 1976Interx Research CorporationNovel, transient pro-drug forms of l-dopa useful in the treatment of parkinson's disease
US3956172 *Jul 18, 1973May 11, 1976Fuji Photo Film Co., Ltd.Process for hardening microcapsules containing hydrophobic oil droplets
US3962416 *Jul 2, 1973Jun 8, 1976Sol KatzenEncapsulated
US3976773 *Mar 14, 1975Aug 24, 1976John Wyeth & Brother LimitedAntiulcer
US4035507 *Jul 23, 1976Jul 12, 1977Interx Research CorporationNovel, transient pro-drug forms of L-DOPA to treat Parkinson's disease
US4048268 *Dec 4, 1975Sep 13, 1977Eli Lilly And CompanyAntibiotic
US4061466 *Oct 14, 1975Dec 6, 1977Ingvar Gosta Holger SjoholmBiologically active composition and the use thereof
US4117801 *Jun 10, 1976Oct 3, 1978Eastman Kodak CompanyApparatus for spray coating discrete particles
US4147767 *Sep 30, 1977Apr 3, 1979Minnesota Mining And Manufacturing CompanyAlbumin medicament carrier system
US4183849 *Dec 8, 1977Jan 15, 1980Nordisk InsulinlaboratoriumTherapeutic insulin preparation and a process for the production of a stable insulin preparation with protracted effect
US4199561 *Feb 26, 1979Apr 22, 1980The Dow Chemical CompanyCoated nutrients and medicaments for veterinary use
US4217370 *Sep 29, 1978Aug 12, 1980Blue Wing CorporationLipid-containing feed supplements and foodstuffs
US4239635 *Jun 11, 1979Dec 16, 1980Cincinnati Milacron Inc.Novel diamide and lubricants containing same
US4272506 *Aug 31, 1979Jun 9, 1981Syva CompanyPurification of reagents by disulfide immobilization
US4289759 *Jun 23, 1980Sep 15, 1981Ortho Pharmaceutical CorporationRestoring immune system to normal state
US4345588 *Jun 27, 1980Aug 24, 1982Northwestern UniversityMethod of delivering a therapeutic agent to a target capillary bed
US4348384 *Oct 7, 1981Sep 7, 1982Dainippon Pharmaceutical Co., Ltd.Pharmaceutical composition for oral administration containing coagulation factor VIII or IX
US4351337 *Sep 11, 1980Sep 28, 1982Arthur D. Little, Inc.Biodegradable, implantable drug delivery device, and process for preparing and using the same
US4352883 *Mar 28, 1979Oct 5, 1982Damon CorporationEncapsulation of biological material
US4357259 *Dec 12, 1977Nov 2, 1982Northwestern UniversityMethod of incorporating water-soluble heat-sensitive therapeutic agents in albumin microspheres
US4388304 *Jan 14, 1981Jun 14, 1983Richter Gedeon Vegyeszeti Gyar RtAngiotensin-II analogues with antagonizing effects, containing an ester group in position 8, and a process for the preparation thereof
US4393192 *Dec 21, 1982Jul 12, 1983The Standard Oil CompanyCrystalline copolymers prepared from N,N'-terephthaloyldi-beta-alanine and a glycol
US4402856 *Apr 6, 1981Sep 6, 1983Bayer AktiengesellschaftMicrocapsules with a defined opening temperature, a process for their production and their use
US4405598 *Jan 13, 1981Sep 20, 1983Fisons, LimitedComposition for treating asthma
US4442090 *Mar 24, 1981Apr 10, 1984Kyoto Yakuhin Kogyo Kabushiki KaishaAbsorption-promoting compounds, compositions thereof with pharmaceuticals and/or bases for rectal administration and method of use
US4446138 *Feb 10, 1982May 1, 1984Pack Howard MMethod and composition for reducing weight
US4450150 *May 11, 1981May 22, 1984Arthur D. Little, Inc.Matrices of a polylactam copolymer of glutamic acid and monoethyl glutamate; controlled and sustained release
US4460563 *Apr 2, 1981Jul 17, 1984Eurand S.P.A.Process for preparing microcapsules in a liquid vehicle
US4462839 *Jun 16, 1983Jul 31, 1984Fmc CorporationEnteric coating for pharmaceutical dosage forms
US4462991 *Jun 11, 1982Jul 31, 1984Interx Research Corp.Method of increasing oral absorption of polar bioactive agents
US4473620 *Dec 23, 1982Sep 25, 1984Eastman Kodak CompanyEdible polymeric coating
US4483807 *Jan 20, 1982Nov 20, 1984Japan Atomic Energy Research InstituteProcess for producing a slow release composite
US4492684 *Jun 20, 1983Jan 8, 1985Connaught Laboratories LimitedAlbumin and gluteraldhyde and insulin crosslinked
US4518433 *Nov 8, 1982May 21, 1985Fmc CorporationEnteric coating for pharmaceutical dosage forms
US4590265 *Apr 18, 1985May 20, 1986Eastman Kodak CompanyCarboxylated cellulose ester and manufacture thereof
US4608278 *Jun 15, 1984Aug 26, 1986The Ohio State University Research FoundationFor pharmaceuticals whose solubility is greater at a first ph than at a second ph
US4613500 *Mar 9, 1984Sep 23, 1986Teijin LimitedPowdery pharmaceutical composition for nasal administration
US4647455 *Dec 18, 1984Mar 3, 1987Queen's University At KingstonProcess for extracting atrial natriuretic factor
US4666641 *Jun 4, 1985May 19, 1987Universite Paris-Sud (Paris Xi)Crosslinking albumin, adsorption of drug
US4671954 *Feb 4, 1986Jun 9, 1987University Of FloridaMicrospheres for incorporation of therapeutic substances and methods of preparation thereof
US4673566 *May 24, 1984Jun 16, 1987Connaught Laboratories LimitedImplantation for long term treatment of disease
US4690786 *Feb 24, 1986Sep 1, 1987Nitto Electric Industrial Co., Ltd.Process for producing a microcapsule containing a liquid active material
US4692284 *Apr 30, 1986Sep 8, 1987Damon Biotech, Inc.Atomizing living culture material
US4703042 *Dec 17, 1985Oct 27, 1987Bodor Nicholas SOrally active heparin salts containing multivalent cationic units
US4708952 *Mar 31, 1986Nov 24, 1987Aida SalatinjantsProlonging blood residence time for drugs
US4745161 *Apr 1, 1986May 17, 1988Ceskoslovenska Akademie VedPolypeptides, polylactams
US4753804 *Dec 11, 1985Jun 28, 1988Boehringer Biochemica S.P.A.Granular dietetic product based on amino acids and process for their preparation
US4757007 *Feb 22, 1985Jul 12, 1988The Nisshin Oil Mills, Ltd.Process for preparing hydrolyzed products of soy protein
US4757024 *Aug 8, 1985Jul 12, 1988Biostar Medical Products, Inc.Immune complex detection method and article using immunologically non-specific immunoglobulins
US4757066 *Oct 10, 1986Jul 12, 1988Sankyo Company LimitedComposition containing a penem or carbapenem antibiotic and the use of the same
US4766012 *Aug 22, 1986Aug 23, 1988Farmaceutici Formenti S.P.A.Microencapsulation of a medicament
US4774320 *Oct 20, 1986Sep 27, 1988Sclavo S.P.A.Synthetic peptide with human interleukin 1 activity
US4789734 *Aug 6, 1985Dec 6, 1988La Jolla Cancer Research FoundationVitronectin specific cell receptor derived from mammalian mesenchymal tissue
US4835312 *Jul 2, 1986May 30, 1989Mitsui Chemicals, IncorporatedProduction process of N-substituted amide compounds
US4837381 *Jul 31, 1987Jun 6, 1989American Cyanamid CompanyCompositions for parenteral administration and their use
US4844904 *Nov 21, 1986Jul 4, 1989Takeda Chemical Industries, Ltd.Drug delivery, sustained release
US4873087 *Mar 8, 1982Oct 10, 1989Toyo Jozo Company, Ltd.Suppository preparation having excellent absorption property
US4886663 *Dec 12, 1983Dec 12, 1989Scripps Clinic And Research FoundationHaving at least one disulfide bond
US4895725 *Apr 4, 1988Jan 23, 1990Clinical Technologies Associates, Inc.Odorless, tasteless
US4897444 *Jun 3, 1985Jan 30, 1990The Research Foundation Of The State University Of New YorkImmobilized fluorogenic substrates for enzymes; and processes for their preparation
US4900730 *Jun 18, 1987Feb 13, 1990Toyo Jozo Co., Ltd.Preparation which promotes the absorption of peptides
US4919939 *Jul 8, 1988Apr 24, 1990Pharmetrix CorporationPeriodontal disease treatment system
US4925673 *Aug 14, 1987May 15, 1990Clinical Technologies Associates, Inc.Delivery systems for pharmacological agents encapsulated with proteinoids
US4963364 *Apr 10, 1989Oct 16, 1990Fox Sidney WMicroencapsulated antitumor agent
US4976968 *Feb 24, 1989Dec 11, 1990Clinical Technologies Associates, Inc.Anhydrous delivery systems for pharmacological agents
US4983402 *Feb 24, 1989Jan 8, 1991Clinical Technologies Associates, Inc.Orally administerable ANF
US4996292 *Jun 30, 1989Feb 26, 1991Fox Sidney WThermally engineered proteins; dermatology
US5019400 *May 1, 1989May 28, 1991Enzytech, Inc.Very low temperature casting of controlled release microspheres
US5023374 *Sep 19, 1990Jun 11, 1991Firma Willi MollerFor strips or membranes used in determinations of lithium ion concentration in fluids
US5039481 *May 29, 1990Aug 13, 1991Clean Air, Inc.Reducing amount of ammonia released into air by treating animal excrement with dicarboxylic acids
US5055300 *Jun 5, 1989Oct 8, 1991Basic Bio Systems, Inc.Time release protein
US5066487 *Sep 12, 1989Nov 19, 1991Rhone-Poulenc ChimieAntisudoral composition comprising dibasic aluminium salts of acylated amino acids
US5067961 *Feb 15, 1990Nov 26, 1991Autogenesis Technologies, Inc.Non-biodegradable two phase corneal implant and method for preparing same
US5069936 *Aug 7, 1989Dec 3, 1991Yen Richard C KManufacturing protein microspheres
USRE24899 *Jun 30, 1953Nov 29, 1960 Oil-containrab
Non-Patent Citations
Reference
1 *(1985) Chemical Abstracts, vol. No. 102(6), Abstract No. 50870d.
2 *(1985) Chemical Abstracts, vol. No. 105(1), Abstract No. 12027p.
3AAPS 6TH Ann. Meeting and Expo., "Proteinoids--A Novel Drug Delivery System" Nov. 19, 1992, p. 33.
4Abstract, J. Gyore et al., Thermal Analysis, vol. 2--Proceeding Fourth ICTA Budapest 1974, pp. 387-394.
5 *Airaudo, C.B. et al. (1987) Journal of Food Science, vol. 52(6), pp. 1750 1752.
6Airaudo, C.B. et al. (1987) Journal of Food Science, vol. 52(6), pp. 1750-1752.
7 *Amino, Y., et al., Chem. Pharm. Bull. 36(11):4426 4434 (1988).
8Amino, Y., et al., Chem. Pharm. Bull. 36(11):4426-4434 (1988).
9 *Andini, S. et al. (1975) Orgins of Life, vol. 6, pp. 147 153.
10Andini, S. et al. (1975) Orgins of Life, vol. 6, pp. 147-153.
11 *Andriuoli, G., et al., (1990), Haemostasis 20 (suppl. 1): 154 158.
12Andriuoli, G., et al., (1990), Haemostasis 20 (suppl. 1): 154-158.
13Baughman et al., "Screening Candiadate Microsphere Formulations By Incubating In Simulated Digestive Fluids" Proc. of the 6th Intern'l. Sympo. on Recent Advances in Drug Delivery Systems, Ctr. for Controlled Chem. Delivery, University of Utah, Feb. 22-25, 1993, pp. 181-182.
14 *Baughman, R.A. et al., Proc. of the 6th Inter l Symp. on Recent Advs. in Drug Delivery Systems, Ctr. for Controlled Chem. Delivery, University of Utah, Feb. 22 25, 1993, Salt Lake City, UT, pp. 179 180 Method for Assessing The Stability of Proteinoid Microspheres .
15Baughman, R.A. et al., Proc. of the 6th Inter'l Symp. on Recent Advs. in Drug Delivery Systems, Ctr. for Controlled Chem. Delivery, University of Utah, Feb. 22-25, 1993, Salt Lake City, UT, pp. 179-180 "Method for Assessing The Stability of Proteinoid Microspheres".
16Bergeron, Raymond et al., "A Comparative Evaluation of Iron Clearance Models", Annals New York Academy of Sciences, pp. 278-393.
17 *Bergeron, Raymond et al., A Comparative Evaluation of Iron Clearance Models , Annals New York Academy of Sciences, pp. 278 393.
18 *Bergeron, Raymond J. et al., J. Am. Chem. Soc. 1994, 116,8479 8484 Macromolecular Self Assembly of Diketopiperazine Tetrapeptides .
19Bergeron, Raymond J. et al., J. Am. Chem. Soc. 1994, 116,8479-8484 "Macromolecular Self-Assembly of Diketopiperazine Tetrapeptides".
20Bergeron, Raymond J., et al. (1991) "Evaluation of Desferrithiocin and Its Synthetic Analogs as Orally Effective Iron Chelators", Journal of Medicinal Chemistry, vol. 34, No. 7, pp. 2072-2078.
21 *Bergeron, Raymond J., et al. (1991) Evaluation of Desferrithiocin and Its Synthetic Analogs as Orally Effective Iron Chelators , Journal of Medicinal Chemistry, vol. 34, No. 7, pp. 2072 2078.
22Bergeron, Raymond J., et al. (1992) "A Comparison of the Iron Clearing Properties if 1,2-Dimethyl-3-Hydroxypyrid-4-One, 1,2-Diethyl-3-Hydroxypyrid-4-One, and Deferoxamine", Blood, vol. 79, No. 7, pp. 1882-1890.
23 *Bergeron, Raymond J., et al. (1992) A Comparison of the Iron Clearing Properties if 1,2 Dimethyl 3 Hydroxypyrid 4 One, 1,2 Diethyl 3 Hydroxypyrid 4 One, and Deferoxamine , Blood, vol. 79, No. 7, pp. 1882 1890.
24Bergeron, Raymond J., et al. (1993) "A Comparative Study of the Iron-Clearing Properties of Desferrithiocin Analogues With Desferrioxamine B in a Cebus Monkey Model", Blood, vol. 81, No. 8, pp. 2166-2173.
25 *Bergeron, Raymond J., et al. (1993) A Comparative Study of the Iron Clearing Properties of Desferrithiocin Analogues With Desferrioxamine B in a Cebus Monkey Model , Blood, vol. 81, No. 8, pp. 2166 2173.
26Bergeron, Raymond J., et al. (1994) "Macromolecular Self-Assembly of Diketopiperazine Tetrapeptides", Journal of the American Chemical Society, vol. 116, pp. 8479-8484.
27 *Bergeron, Raymond J., et al. (1994) Macromolecular Self Assembly of Diketopiperazine Tetrapeptides , Journal of the American Chemical Society, vol. 116, pp. 8479 8484.
28 *Bernstein (1985), Chest 87(1):68S 73S.
29Bernstein (1985), Chest 87(1):68S-73S.
30Brendan D. Curti, Critical Reviews in Oncology/Hematology, 1993: 14 pp. 29-39 "Physical barriers to drug delivery in tumors".
31 *Brooke, S. 1 et al. (1977) BioSystems, vol. 9, pp. 1 22.
32Brooke, S. 1 et al. (1977) BioSystems, vol. 9, pp. 1-22.
33Butera et al., J. Med. Chem., 34:3212-3228, 1990.
34C.A. Finch, Chemistry and Industry, 22:752-756, (1985), "Polymers for Microcapsule Walls".
35 *Caramazza, I., et al. (1991), Thrombosis Research 62:785 789.
36Caramazza, I., et al. (1991), Thrombosis Research 62:785-789.
37Chemical Abstract, 99(19) 158832b, (1982).
38 *Chemical Abstract, vol. 80(9) Abst. No. 52392a.
39 *Chemical Abstracts :83 184360k, (1975).
40Chemical Abstracts, 112(15):134663h, (1989).
41Chemical Abstracts, 114(22):214519x, (1990).
42Chemical Abstracts, 76(14):72994u, (1971).
43Chemical Abstracts, 84(7):44660d, (1975).
44Chemical Abstracts, 86(16):107529g, (1976).
45Chemical Abstracts:83 184360k, (1975).
46Chen et al. (1975) "Evidence for Hemiacetal Formation", Biochemistry, vol. 18, No. 5, pp. 921-925.
47 *Chen et al. (1975) Evidence for Hemiacetal Formation , Biochemistry, vol. 18, No. 5, pp. 921 925.
48Cimini et al., Ann. Rept. in Med. Chem., 27:89-98, 1992.
49 *Dal Pozzo, A., et al. (1989), Thrombosis Research 56:119 124.
50Dal Pozzo, A., et al. (1989), Thrombosis Research 56:119-124.
51 *Damge et al. (1988), Diabetes 37:246 251.
52Damge et al. (1988), Diabetes 37:246-251.
53Davis et al. (1983) "Leucinal Inhibits . . . ", Pharmacology Biochemistry Behavior, vol. 19, pp. 791-794.
54 *Davis et al. (1983) Leucinal Inhibits . . . , Pharmacology Biochemistry Behavior, vol. 19, pp. 791 794.
55Derwent Abstracts, JP 67008622, (1967).
56Doris K. Chiappetta, Eastern Analytical Symposium, Nov. 17, 1992 "Solutions for Problems in Bioanalysis".
57 *Dose, K. (1974) Origins of Life, vol. 5, pp. 239 252.
58Dose, K. (1974) Origins of Life, vol. 5, pp. 239-252.
59Earley et al., Brain Research, 546:282-286, 1991.
60Elizabeth A. Harris. M.S., Eastern Analytical Symposium, Nov. 17, 1992 "Solutions for Problems in Bioanalysis".
61Ellingboe et al., J. Med. Chem., 35:705-716, 1992.
62 *Fasman et al. (1964) Biochemistry, vol. 3, No. 11, pp. 1665 1674.
63Fasman et al. (1964) Biochemistry, vol. 3, No. 11, pp. 1665-1674.
64 *Fox, S.W. (1976) Orgins of Life, vol. 7, pp. 49 68.
65Fox, S.W. (1976) Orgins of Life, vol. 7, pp. 49-68.
66 *Fox, S.W. (1980) Naturwissenschaften, vol. 67, pp. 378 383.
67Fox, S.W. (1980) Naturwissenschaften, vol. 67, pp. 378-383.
68 *Fox, S.W. (1984) Orgins of Life, vol. 14, pp. 485 488.
69Fox, S.W. (1984) Orgins of Life, vol. 14, pp. 485-488.
70 *Fox, S.W. et al. (1960) Archives of Biochemistry and Biophysics, vol. 86, pp. 281 285.
71Fox, S.W. et al. (1960) Archives of Biochemistry and Biophysics, vol. 86, pp. 281-285.
72 *Fox, S.W. et al. (1968) Biochim. Biophys. Acta, vol. 160, pp. 246 249.
73Fox, S.W. et al. (1968) Biochim. Biophys. Acta, vol. 160, pp. 246-249.
74 *Fox, S.W. et al. (1974) Origins of Life, vol. 5, pp. 227 237.
75Fox, S.W. et al. (1974) Origins of Life, vol. 5, pp. 227-237.
76 *Fox, S.W. et al. (1976) BioSystems, vol. 8, pp. 40 44.
77Fox, S.W. et al. (1976) BioSystems, vol. 8, pp. 40-44.
78 *Fox, S.W. et al., Molecular Evolution and the Orgin of Life, Maxel Decker, New York (1977).
79 *Gelb, R., et al (1983), Lite Sciences 33(1):83 85.
80Gelb, R., et al (1983), Lite Sciences 33(1):83-85.
81 *Gol dovskii, A.M. (1978) Zhurnal Evolyutsionnoi Biokhimii i Fiziologii, vol. 14(6), pp. 437 439.
82Gol'dovskii, A.M. (1978) Zhurnal Evolyutsionnoi Biokhimii i Fiziologii, vol. 14(6), pp. 437-439.
83 *Guarini, S., et al. (1983), Experimentia 41:350 352.
84Guarini, S., et al. (1983), Experimentia 41:350-352.
85 *Guarini, S., et al. (1985), Pharmacological Research Communications 17(8):685 697.
86Guarini, S., et al. (1985), Pharmacological Research Communications 17(8):685-697.
87 *Gurrieri, S. et al. (1973) Thermochimica Acta, vol. 7, pp. 231 239.
88Gurrieri, S. et al. (1973) Thermochimica Acta, vol. 7, pp. 231-239.
89Haas, S. et al., "Assesment Of Stability Of Proteinoid Microspheres", Proceed. Intern. Symp. Control. Rel. Bioact. Mater., 20 (1993), Controlled Release Society, Inc.
90 *Haas, S. et al., Assesment Of Stability Of Proteinoid Microspheres , Proceed. Intern. Symp. Control. Rel. Bioact. Mater., 20 (1993), Controlled Release Society, Inc.
91 *Harada et al., (1960) Archives of Biochemistry and Biophysics, vol. 86, pp. 274 280.
92Harada et al., (1960) Archives of Biochemistry and Biophysics, vol. 86, pp. 274-280.
93 *Harada, K. et al. (1979) BioSystems, vol. 11, pp. 47 53.
94Harada, K. et al. (1979) BioSystems, vol. 11, pp. 47-53.
95 *Hare (1970) Etude Cenetique De La Polycondensation Thermique D Amino Acides, vol. 45, pp. 330 339.
96Hare (1970) Etude Cenetique De La Polycondensation Thermique D'χ-Amino Acides, vol. 45, pp. 330-339.
97 *Heinrich, M.R. et al. (1969) Archives of Biochemistry and Biophysics, vol. 130, pp. 441 448.
98Heinrich, M.R. et al. (1969) Archives of Biochemistry and Biophysics, vol. 130, pp. 441-448.
99 *Heinz, B. et al. (1981) BioSystems, vol. 14, pp. 33 40.
100Heinz, B. et al. (1981) BioSystems, vol. 14, pp. 33-40.
101 *Hennon, G. et al. (1975) Biochimie, vol. 57, pp. 1395 1396.
102Hennon, G. et al. (1975) Biochimie, vol. 57, pp. 1395-1396.
103 *Hsu, L.L. et al. (1971) Currents in Modern Biology, vol. 4, pp. 12 25.
104Hsu, L.L. et al. (1971) Currents in Modern Biology, vol. 4, pp. 12-25.
105 *Hsu, L.L. et al. (1976) BioSystems, vol. 8, pp. 89 101.
106Hsu, L.L. et al. (1976) BioSystems, vol. 8, pp. 89-101.
107 *Ishima, Y. et al. (1981), BioSystems, vol. 14, pp. 243 251.
108Ishima, Y. et al. (1981), BioSystems, vol. 14, pp. 243-251.
109Jackson et al. (1991) "Pharmacological . . . ", J. Pharm. & Exp. Thera., vol. 261, No. 1, pp. 546-552.
110 *Jackson et al. (1991) Pharmacological . . . , J. Pharm. & Exp. Thera., vol. 261, No. 1, pp. 546 552.
111 *Jungck, J.R. et al. (1973) Naturwissenschaften, vol. 60, pp. 425 427.
112Jungck, J.R. et al. (1973) Naturwissenschaften, vol. 60, pp. 425-427.
113 *Kokufuta, E. et al. (1984) BioSystems, vol. 16, pp. 175 181.
114Kokufuta, E. et al. (1984) BioSystems, vol. 16, pp. 175-181.
115Kondo, Microcapsule Processing and Technology, pp. 154-165, 1979.
116 *Lacey, Jr., J.C. et al. (1979) BioSystems, vol. 11, pp. 1 7.
117Lacey, Jr., J.C. et al. (1979) BioSystems, vol. 11, pp. 1-7.
118 *Lacey, Jr., J.C. et al. (1979) BioSystems, vol. 11, pp. 9 17.
119Lacey, Jr., J.C. et al. (1979) BioSystems, vol. 11, pp. 9-17.
120 *Leipold et al., Pharm. Res. 11: 1994, p. S 298 Oral Delivery of Interferon in Rats and Primates .
121Leipold et al., Pharm. Res. 11: 1994, p. S-298 "Oral Delivery of Interferon in Rats and Primates".
122 *Leone Bay et al., Pharm. Res. 11: 1994, p. S 121 Oral Delivery of Heparin using Acylated Amino Acids .
123 *Leone Bay et al., Presented at Winter Conference on Medicinal and Bioorganic Chemistry Steamboat Springs, Colorado Feb. 1995 Microsphere Formation and Drug Delivery in a Series of Derivatized Amino Acids.
124Leone-Bay et al., Pharm. Res. 11: 1994, p. S-121 "Oral Delivery of Heparin using Acylated Amino Acids".
125Leone-Bay et al., Presented at "Winter Conference on Medicinal and Bioorganic Chemistry" Steamboat Springs, Colorado -Feb. 1995 Microsphere Formation and Drug Delivery in a Series of Derivatized Amino Acids.
126Lumma et al., J. Med. Chem., 30:758-763, 1987.
127Lynch et al., J. Pharm. and Expo Therap. 269:541-554, 1994.
128 *Martinez Luque Romero, M. et al. (1986) BioSystems, vol. 19, pp. 267 272.
129Martinez Luque-Romero, M. et al. (1986) BioSystems, vol. 19, pp. 267-272.
130 *Masinovsky, Z. et al. (1989) BioSystems, vol. 22, pp. 305 310.
131Masinovsky, Z. et al. (1989) BioSystems, vol. 22, pp. 305-310.
132Matsuno et al., Brain Research, 575:315-319, 1992.
133 *Matsuno, K. (1981) BioSystems, vol. 14, pp. 163 170.
134Matsuno, K. (1981) BioSystems, vol. 14, pp. 163-170.
135 *Matsuno, K. (1982) BioSystems, vol. 15, pp. 1 11.
136Matsuno, K. (1982) BioSystems, vol. 15, pp. 1-11.
137 *Matsuno, K. (1984) BioSystems, vol. 17, pp. 11 14.
138Matsuno, K. (1984) BioSystems, vol. 17, pp. 11-14.
139 *McAlhaney, W.W. et al. (1976) BioSystems, vol. 8, pp. 45 50.
140McAlhaney, W.W. et al. (1976) BioSystems, vol. 8, pp. 45-50.
141 *Melius, P. (1979) BioSystems, vol. 11, pp. 125 132.
142Melius, P. (1979) BioSystems, vol. 11, pp. 125-132.
143 *Melius, P. et al. (1975) Bioorganic Chemistry, vol. 4, pp. 385 391.
144Melius, P. et al. (1975) Bioorganic Chemistry, vol. 4, pp. 385-391.
145 *Melius, P. et al. (1987) BioSystems, vol. 20, pp. 213 217.
146Melius, P. et al. (1987) BioSystems, vol. 20, pp. 213-217.
147Michael E. Osband et al., Immunology Today, vol. 11, No. 6 1990, pp. 93-95, "Problems in the investigational study and clinical use of cancer immunotherapy".
148Milstein et al. "Preparation And In Vitro Characterization Of Proteinoid Microspheres" Proceed Intern. Symp. Control. Rel. Bioact. Mater., 19 (1992), Controlled Release Society, Inc. pp. 516-517.
149 *Milstein et al. Symposia Abstracts. AAPS Annual Meeting, San Antonia, TX, Nov. 15 19, 1993.
150Milstein et al. Symposia Abstracts. AAPS Annual Meeting, San Antonia, TX, Nov. 15-19, 1993.
151Milstein et al., "Efficient Oral Delivery of Monoclonal Antibodies By Proteinoid Encapsulation" The 1993 Miami Bio/Technology Winter Symposium--Advances in Gene Technology: Protein Engineering and Beyond, Jan. 17-22, 1993.
152 *Miquel, J. et al. (1971) Currents in Modern Biology, vol. 3, pp. 299 306.
153Miquel, J. et al. (1971) Currents in Modern Biology, vol. 3, pp. 299-306.
154Morgan et al., J. Med. Chem., 33:1091-1097, 1990.
155 *Nakashima, T. et al. (1980) J. Mol. Evol., vol. 15, pp. 161 168.
156Nakashima, T. et al. (1980) J. Mol. Evol., vol. 15, pp. 161-168.
157 *Nakashima, T. et al. (1981) BioSystems, vol. 14, pp. 151 161.
158Nakashima, T. et al. (1981) BioSystems, vol. 14, pp. 151-161.
159 *Novak, V.J.A. (1984) Origins of Life, vol. 14, pp. 513 522.
160Novak, V.J.A. (1984) Origins of Life, vol. 14, pp. 513-522.
161Oinuma et al., J. Med. Chem., 33:903-905, 1990.
162 *Olafsson, P.G. et al. (1971) Polymer Letters, vol. 9, pp. 521 528.
163Olafsson, P.G. et al. (1971) Polymer Letters, vol. 9, pp. 521-528.
164Pastores et al., Journal of Liquid Chromatography, 18:3049-3059, 1995.
165 *Phillips, R.D. et al. (1974) Int. J. Peptide Protein Res., vol. 6, pp. 309 319.
166Phillips, R.D. et al. (1974) Int. J. Peptide Protein Res., vol. 6, pp. 309-319.
167Presented at "IBC Rational Drug Design Conference", San Diego, Calif. -Dec. 1994.
168 *Presented at IBC Rational Drug Design Conference , San Diego, Calif. Dec. 1994.
169 *Przybylski, A.T. (1985) BioSystems, vol. 17, pp. 281 288.
170Przybylski, A.T. (1985) BioSystems, vol. 17, pp. 281-288.
171 *Przybylski, A.T. et al. (1982) die Naturwissenschaften, vol. 69, pp. 561 563.
172Przybylski, A.T. et al. (1982) die Naturwissenschaften, vol. 69, pp. 561-563.
173 *Przybylski, A.T. et al. (1984) Applied Biochemistry and Biotechnology, vol. 10, pp. 301 307.
174Przybylski, A.T. et al. (1984) Applied Biochemistry and Biotechnology, vol. 10, pp. 301-307.
175Rao et al., Molecular Pharmacology, 37:978-982, 1990.
176Robert O. Dillman, M.D., Annals of Internal Medicine 1989:111 pp. 592-600, "Monoclonal Antibodies for Treating Cancer".
177 *Rohlfing, D.L. (1967) Archives of Biochemistry and Biophysics, vol. 118, pp. 468 474.
178Rohlfing, D.L. (1967) Archives of Biochemistry and Biophysics, vol. 118, pp. 468-474.
179 *Rohlfing, D.L. (1970) Science, vol. 169, pp. 998 1000.
180Rohlfing, D.L. (1970) Science, vol. 169, pp. 998-1000.
181 *Rohlfing, D.L. (1975) Origins of Life, vol. 6, pp. 203 209.
182Rohlfing, D.L. (1975) Origins of Life, vol. 6, pp. 203-209.
183 *Rohlfing, D.L. et al. (1976) BioSystems, vol. 8, pp. 139 145.
184Rohlfing, D.L. et al. (1976) BioSystems, vol. 8, pp. 139-145.
185 *Rohlfing, D.L. et al. Catalytic Activities of Thermal Polyanhydro Amino Acids, pp. 378 418.
186Rohlfing, D.L. et al. Catalytic Activities of Thermal Polyanhydro-α-Amino Acids,pp. 378-418.
187 *Ryan, J.W. et al. (1973) BioSystems, vol. 5, pp. 115 118.
188Ryan, J.W. et al. (1973) BioSystems, vol. 5, pp. 115-118.
189Santiago et al. "Initial Studies In The Assessment of Proteinoid Microsphere Activity" Proceed. Intern. Symp. Control. Rel. Bioact. Mater., 20 (1993), Controlled Release Society, Inc.
190Santiago et al. "Oral Immunization of Rats with Influenza Virus M Protein (M1) Microspheres" Proceed. Intern. Symp. Control. Rel. Bioact. Mater., 19(1992), Controlled Release Society, Inc., p. 116-117.
191Santiago et al. "Proteinoid Microshperes For The Oral Delivery of Heparin" Proceed. Intern. Symp. Control. Rel. Bioact. Mater., 19 (1992), Controlled Release Society, Inc. pp. 514-515.
192Santiago et al. American Society for Microbiology 92nd General Meeting, Abstract of the General Meeting, p. 159, May 26-30, 1992.
193 *Santiago et al. Initial Studies In The Assessment of Proteinoid Microsphere Activity Proceed. Intern. Symp. Control. Rel. Bioact. Mater., 20 (1993), Controlled Release Society, Inc.
194 *Santiago et al. Oral Immunization of Rats with Influenza Virus M Protein (M1) Microspheres Proceed. Intern. Symp. Control. Rel. Bioact. Mater., 19(1992), Controlled Release Society, Inc., p. 116 117.
195 *Santiago et al., Phar. Res. 11: 1994, p. S 298 Oral Delivery of Heparin Microspheres made with Modified Amino Acids .
196Santiago et al., Phar. Res. 11: 1994, p. S-298 "Oral Delivery of Heparin Microspheres made with Modified Amino Acids".
197 *Santiago et al., Pharm. Res. 11: 1994, p. S 298 Evaluation in Rats of Vehicles for the Oral Delivery of Low Molecular Weight Heparin .
198Santiago et al., Pharm. Res. 11: 1994, p. S-298 "Evaluation in Rats of Vehicles for the Oral Delivery of Low Molecular Weight Heparin".
199Sarubbi et al., "Pharm. Res. 11: 1994, p. S-299 Oral Calcitonin Delivery using the PODDS Technology".
200 *Sarubbi et al., Pharm. Res. 11: 1994, p. S 299 Oral Calcitonin Delivery using the PODDS Technology .
201 *Saunders, M.A. et al. (1974) BioSystems, vol. 6, pp. 81 92.
202Saunders, M.A. et al. (1974) BioSystems, vol. 6, pp. 81-92.
203Sinha et al., Journal of Biological Chemistry, 260:10714-10719, 1985.
204 *Snyder, W.D. et al. (1975) BioSystems, vol. 7, pp. 222 229.
205Snyder, W.D. et al. (1975) BioSystems, vol. 7, pp. 222-229.
206 *Sokol, P.E. (1974) Journal of the American Oil Chemists Society, vol. 52, pp. 101 102.
207Sokol, P.E. (1974) Journal of the American Oil Chemists' Society, vol. 52, pp. 101-102.
208Stephen J. Douglas et al., Chemistry and Industry, 22:748-751, (1985), "The Use of Nanoparticles in Drug Targeting".
209Thomas A. Waldmann, Articles Jun. 21, 1991, pp. 1657-1662, "Monoclonal Antibodies in Diagnosis and Therapy".
210Tibtech Feb. 1993 vol. 11, pp. 42-44 "Therapeutic antibodies--the coming of age".
211V. Hird. et al, Genes and Cancer, edited by Desmond Carney & Karol Sikora, pp. 183-189, Immunotherapy with Monoclonal Antibodies.
212 *Vaughan, G. et al. (1987) BioSystems, vol. 20, pp. 219 223.
213Vaughan, G. et al. (1987) BioSystems, vol. 20, pp. 219-223.
214 *Vol kenshtein, M.V. (1989) Molekulyarnaya Biologiya, vol. 23(1), pp. 23 37.
215Vol'kenshtein, M.V. (1989) Molekulyarnaya Biologiya, vol. 23(1), pp. 23-37.
216 *Waehneldt, T.V. et al. (1968) Biochim. Biophys. Acta, vol. 160, pp. 239 245.
217Waehneldt, T.V. et al. (1968) Biochim. Biophys. Acta, vol. 160, pp. 239-245.
218 *Watterberg et al. (1988), Pediatric Research, vol. 23, No. 4, part 2, p. 570A, column 1, abstract no. 2209.
219 *Williams et al. (1991) J. Biol. Chem., vol. 266, No. 8, pp. 5182 5190.
220Williams et al. (1991) J. Biol. Chem., vol. 266, No. 8, pp. 5182-5190.
221 *X. Ma et al., PDD 7303 Pharmaceutical Research 9(10):S 244, 1992 (Oct. Supplement).
222X. Ma et al., PDD 7303 Pharmaceutical Research 9(10):S-244, 1992 (Oct. Supplement).
223X. Ma, et al., Proceed Intern. Symp. Control. Rel. Bioact. Mater., 20 (1993), Controlled Release Society, Inc. "In Vitro Mechanistic Investigation of the Proteinoid Microsphere Oral Delivery System".
224 *X. Ma, et al., Proceed Intern. Symp. Control. Rel. Bioact. Mater., 20 (1993), Controlled Release Society, Inc. In Vitro Mechanistic Investigation of the Proteinoid Microsphere Oral Delivery System .
225Xinghang Ma, et al. "Stability Study of Drug-loaded Proteinoid Microsphere Formulations during Freeze-drying" Journal of Drug Targeting, 1994, vol. 2, pp. 9-21.
226 *Yen, H. R H., et al., Adsorption of Sulforhodamine 101 on Proteinoid Microspheres Proceed. Intern. Symp. Control. Rel. Bioact. Mater., 20 (1993), Controlled Release Society, Inc.
227Yen, H.-R H., et al., "Adsorption of Sulforhodamine 101 on Proteinoid Microspheres" Proceed. Intern. Symp. Control. Rel. Bioact. Mater., 20 (1993), Controlled Release Society, Inc.
228 *Yuki, A. et al. (1969) Biochemical and Biophysical Research Communications, vol. 36(4), pp. 657 663.
229Yuki, A. et al. (1969) Biochemical and Biophysical Research Communications, vol. 36(4), pp. 657-663.
230Zulaski et al. (1983) "New Carboxyalkyl Inhibitors of Brain Enkenphalinase", J. Med. Chem., 26, pp. 60-65.
231 *Zulaski et al. (1983) New Carboxyalkyl Inhibitors of Brain Enkenphalinase , J. Med. Chem., 26, pp. 60 65.
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US6391303Aug 20, 1997May 21, 2002Emisphere Technologies, Inc.Orally administering to animal pharmaceutical formulation comprising antigen and delivery agent comprising at least one derivatized amino acid or salt thereof in amount sufficient to induce tolerance to antigen
US6395774Aug 13, 2001May 28, 2002Emisphere Technologies, Inc.Carbon-substituted diketopiperazine delivery systems
US6440929Jul 27, 1999Aug 27, 2002Emisphere Technologies, Inc.Pulmonary delivery of active agents
US6627228Jan 7, 2000Sep 30, 2003Emisphere Technologies, Inc.Polymeric delivery agents and delivery agents compounds
US6642411Jul 27, 1999Nov 4, 2003Emisphere Technologies, Inc.Compounds and compositions for delivering active agents
US6646162Aug 24, 2001Nov 11, 2003Emisphere Technologies, Inc.Compounds and compositions for delivering active agents
US6663887Feb 21, 2002Dec 16, 2003Emisphere Technologies, Inc.Compounds and compositions for delivering active agents
US6663898 *Apr 19, 2002Dec 16, 2003Emisphere Technologies, Inc.Carbon-substituted diketopiperazine delivery systems
US6906030 *May 21, 2003Jun 14, 2005Emisphere Technologies, Inc.Carbon-substituted diketopiperazine delivery systems
US6916489Sep 25, 2002Jul 12, 2005Emisphere Technologies, Inc.Active agent transport systems
US6991798Aug 6, 1999Jan 31, 2006Emisphere Technologies, Inc.Compounds and compositions for delivering active agents
US7184894 *Apr 9, 2004Feb 27, 2007Rohm Co., LtdQuantitative measurement method and quantitative measurement chip for target substance
US7186414Jun 30, 2005Mar 6, 2007Emisphere Technologies, IncImproved bioavailability; for oral and intracolonic administration
US7208483May 28, 2003Apr 24, 2007Emisphere Technologies, Inc.Polymeric delivery agents and delivery agent compounds
US7276534Feb 18, 2005Oct 2, 2007Emisphere Technologies, Inc.Carbon-substituted diketopiperazine delivery systems
US7563457 *Oct 2, 2002Jul 21, 2009The Regents Of The University Of CaliforniaNanoparticle assembled hollow spheres
US7727558Jan 31, 2007Jun 1, 2010Emisphere Technologies, Inc.Polymeric delivery agents and delivery agent compounds
US7744910Sep 13, 2006Jun 29, 2010Emisphere Technologies, Inc.Compounds and compositions for delivering active agents
US7867545Mar 12, 2007Jan 11, 2011J.P.M.E.D. Ltd.Homogenous granular solid matrix containing vegetable protein
US8133514May 27, 2009Mar 13, 2012Mannkind CorporationCarbon-substituted diketopiperazine delivery systems
WO2003062372A2 *Oct 2, 2002Jul 31, 2003Univ CaliforniaNanoparticle assembled hollow spheres
WO2005112937A1May 19, 2005Dec 1, 2005Emisphere Tech IncAcyclovir formulations
Legal Events
DateCodeEventDescription
Jan 21, 2003FPExpired due to failure to pay maintenance fee
Effective date: 20021124
Nov 25, 2002LAPSLapse for failure to pay maintenance fees
Jun 11, 2002REMIMaintenance fee reminder mailed