Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS5923383 A
Publication typeGrant
Application numberUS 08/883,707
Publication dateJul 13, 1999
Filing dateJun 27, 1997
Priority dateJun 27, 1996
Fee statusLapsed
Publication number08883707, 883707, US 5923383 A, US 5923383A, US-A-5923383, US5923383 A, US5923383A
InventorsYeong-Taeg Kim
Original AssigneeSamsung Electronics Co., Ltd.
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Image enhancement method using histogram equalization
US 5923383 A
Abstract
In an image enhancement method is disclosed using a histogram equalization for an input image expressed in a predetermined number of gray levels. While calculating the probability density function of the gray levels of the input image, for use in a histogram equalization, the number of occurrences of each gray level are constrained not to exceed a predetermined value. Then a histogram equalization is performed on the input image based on the calculated probability density (or distribution) function. As a result, the mean brightness of the input image does not change significantly by the histogram equalization. Additionally, noise is prevented from being greatly amplified.
Images(2)
Previous page
Next page
Claims(7)
What is claimed is:
1. A histogram equalization method for image enhancement by equalizing an input image expressed in a predetermined number of gray levels, the method comprising the steps of:
(a) calculating a probability density function of gray levels of the input image, wherein a number of occurrences of each gray level in the probability density function is constrained to be within a predetermined value; and
(b) performing a histogram equalization on the input image based on the probability density function of gray levels calculated in said step (a).
2. The histogram equalization method as claimed in claim 1, wherein said step (a) comprises the steps of:
(a1) comparing a number of occurrences of a gray level of an input sample in the input image with the predetermined value;
(a2) including the input sample in a sample set if the number of occurrences of the gray level of the input sample is less than or equal to the predetermined value and excluding the input sample from the sample set if the number of occurrences of the gray level of the input sample is greater than the predetermined value; and
(a3) calculating the probability density function by use of the input samples in the sample set.
3. The histogram equalization method as claimed in claim 2, wherein said step (b) comprises the steps of:
(b1) calculating a cumulative distribution function based on the probability density function calculated in said step (a3); and
(b2) performing the histogram equalization on the input image based on the cumulative distribution function calculated in said step (b1).
4. An image enhancement method for use in a histogram equalization of an input image, the input image being expressed in a predetermined number of gray levels, the method comprising the steps of:
(a) initializing a number of total samples in the input image and a number of occurrences of each gray level;
(b) determining whether the number of occurrences of a particular one of the gray levels, which corresponding to a gray level of an input sample in the input image, is less than or equal to a predetermined value;
(c) incrementing both the number of total samples and the number of occurrences of said particular one of the gray levels, if the number of occurrences of that gray level is less than or equal to the predetermined value in said step (b); and
(d) determining whether the input image sample is a last one to calculate a probability density function of gray levels of the input image if the input image sample is the last one.
5. The image enhancement method as claimed in claim 4, further comprising the step of (e) excluding the input sample from calculating of the probability density function if the number of occurrences of said particular one of the gray levels, which corresponding to the gray level of the input sample in the input image, is greater than the predetermined value.
6. The image enhancement method as claimed in claim 4, further comprising the step of (f) repeating steps (b) through (d) if the input image sample is not the last one.
7. The histogram equalization method as claimed in claim 3, wherein the histogram equalization performed in said step (b2) is carried out according to a transform function.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to an image enhancement method. More particularly, it relates to an image enhancement method using a histogram equalization.

This application for an image enhancement method using histogram equalization is based on Korean Patent Application no. 96-24412 which is incorporated herein by reference for all purposes.

2. Description of the Related Arts

In general, the distribution of gray levels in a given input image is referred to as a histogram. The histogram of gray levels provides an overall description of the appearance of the input image. Proper adjustment of gray levels for a given image can enhance the appearance or contrast of the image.

Among the many methods for contrast enhancement, the most widely known one is the histogram equalization, in which the contrast of a given image is enhanced according to the sample distribution thereof. The method is disclosed in documents: 1! J. S. Lim, "Two-dimensional Signal and Image Processing," Prentice Hall, Englewood Cliffs, N.J., 1990, and 2! R. C. Gonzalez and P. Wints, "Digital Image Processing," Addison-Wesley, Reading, Mass., 1977.

Also, the useful applications of the histogram equalization method for medical image processing and radar image processing are disclosed in documents: 3! J. Zimmerman, S. Pizer, E. Staab, E. Perry, W. McCartney and B. Brenton, "Evaluation of the Effectiveness of Adaptive Histogram Equalization for Contrast Enhancement," IEEE Transaction on Medical Imaging, pp. 304-312, December. 1988, and 4! Y. Li, W. Wang and D. Y. Yu, "Application of Adaptive Histogram Equalization to X-ray Chest Image," Proc. of the SPIE, pp. 513-514, vol. 2321, 1994.

In general, since histogram equalization causes the dynamic range of an image to be stretched, the density distribution of the resultant image is made more flat and the contrast of the image is enhanced as a consequence.

However, such a widely-known feature of the histogram equalization becomes a defect in some practical cases. In particular, the mean brightness of the image may change significantly as a result of the equalization. Furthermore, noise in the image is equalized along with the image signal. This may cause the noise to be greatly amplified, which deteriorates the quality of the image. Such problems typically occur when the input samples in the image are concentrated in a few gray levels.

SUMMARY OF THE INVENTION

It is an object of the present invention to provide an image enhancement method using a histogram equalization, by which the mean brightness of an image does not change significantly.

In order to achieve the above object, there is provided an image enhancement method using a histogram equalization for an input image expressed in a predetermined number of gray levels, comprising the steps of (a) calculating a distribution of gray levels of the input image while constraining a number of occurrences of each gray level to be within a predetermined value; and (b) performing a histogram equalization on the input image based on the calculated distribution of gray levels obtained in the step (a).

BRIEF DESCRIPTION OF THE DRAWINGS

The above object and advantages of the present invention will become more apparent by describing in detail a preferred embodiment thereof with reference to the attached drawings in which:

FIG. 1 is a flowchart illustrating a conventional method of calculating the probability density function of an image; and

FIG. 2 is a flowchart illustrating a method of calculating the probability density function for use in the histogram equalization method of the present invention.

DETAILED DESCRIPTION OF THE INVENTION

Prior to the description of an image enhancement method using a histogram equalization according to the present invention, a typical histogram equalization will be explained briefly to enhance understanding of the present invention.

A given discrete image {X} is composed of L discrete gray levels {XO, X1 , XL-1 }, where XO corresponds to a black level, and XL-1 corresponds to a white level.

A probability density function (PDF) is defined as follows: ##EQU1## where 0≦p(Xk)≦1, L is the number of levels, p(Xk) denotes a probability of k-the gray level Xk in the image {X}, nk is the number of occurrences of samples having the gray level xk in the image {X}, and n is the total number of samples in the image {X}.

A cumulative density function (CDF) is defined as follows: ##EQU2## where C(XL-1)=1.

Based on the CDF, an output Y of the histogram equalization is given by the following equation (3).

Y=C(Xk) XL-I                                     (3)

One step for applying a histogram equalization is to calculate the PDF of a given image. A conventional method of calculating the PDF for applying to the histogram equalization is depicted in FIG. 1.

In FIG. 1, the number of total samples n and the number of occurrences of samples having the gray level Xj (j=0, 1, . . . , L-1) in the image, nj, are initialized. That is, all of n and nj (j=0, 1, . . . , L-1) are set to 0 (step S11). Whenever a sample Xk is received in step S12, the number of total samples n is incremented by 1 along with nk the number of occurrences of the gray level Xk (step S13). Then, a determination is made as to whether the last sample of the given image is received or not (step S14). If the input sample is not the last one, steps S12 through S14 are repeated. If the input sample is the last one, the PDF p(Xj) of each gray level of the given image is calculated by use of the equation (1) (step S15).

To understand the drawback of the conventional histogram equalization, it is assumed that an input image is composed of three gray levels X1, X2, and X3 among 256 levels. Also, it is assumed that the numbers of occurrences of gray levels X1, X2, and X3 are n1 =200, n2 =9700 and n3= 100, respectively.

Then, the PDF values for each gray levels are as follows:

p(X1)=200/10000=0.02

p(X2)=9700/10000=0.97

p(X3)=100/10000=0.01

Also, the three gray levels are mapped into levels of 5,247 and 255, respectively, by the histogram equalization according to the equations (2) and (3).

The mean brightness of the image so equalized is given as follows, regardless of magnitudes of the gray levels X1, X2 and X3.

(0.025)+(0.97247)+(0.01255)=242

The mean brightness of the equalized image may differ significantly from the mean brightness of the input image. For example, let's assume that X1 =10 and X2 =30. Then, the level difference of two gray levels before the histogram equalization is 20. However, the level difference becomes 242 after the histogram equalization regardless of the value of X1 and X2. Here, if the level difference before the histogram equalization is due to Gaussian noise, the histogram equalization results in the amplification of the noise.

As described above, one of the most significant problems of the conventional histogram equalization is that the mean brightness between input and output signals differs significantly from each other depending on the PDF.

Furthermore, such a problem is conspicuously prominent when the samples in the input image are concentrated in a group of a few gray levels. Thus, in the present invention, in cases where the samples in the input image are concentrated in a few gray levels, the number of samples in each gray level is maintained below a predetermined number when the PDF is calculated.

FIG. 2 is a flowchart illustrating a method of calculating the PDF for applying to the histogram equalization according to the present invention.

First, in FIG. 2, the number of total samples n and the number of occurrences of samples having the gray level Xj (j=0, 1, . . . , L-1) in the image, nj, are initialized. That is, all of n and nj (j=0, 1, . . . , L-1) are set to 0 (step S21).

Then, an input sample Xk is received (step S22), and a determination is made as to whether the number of occurrences, nk, of the gray level Xk is less than or equal to a predetermined value MAX (step S23).

If it is determined in step S23 that the number of occurrences, nk, of the gray level Xk is less than or equal to a predetermined value MAX, the number of total samples n is incremented by 1 along with the number of occurrences of the gray level Xk, i.e., nk (step S24).

However, if it is determined in step S23 that the number of occurrences, nk, of the gray level Xk is greater than the predetermined value MAX, the incrementation step S24 is not carried out but step S22 is carried out so that a next sample is received. As a result, the number of occurrences of each gray level nj is constrained within the predetermined value MAX.

After the step 24, a determination is made as to whether the last sample of the given image is received or not (step S25). If the input sample is not the last one, steps S22 through S25 are repeatedly carried out. Otherwise, if the input sample is the last one, the PDF p(Xj) of each gray level of the given image is calculated by use of the equation (1) (step S26).

After the PDF has been calculated, a CDF is calculated based on the PDF. Then, a histogram equalization is carried out for the input image according to a transform function. The transform function is preferably described by the equation (3), but another suitable equation may be used. Any of the number of known transform functions, as well as ones which will be suggested in the future, may be employed in the present invention.

As described above, the image enhancement method using a histogram equalization according to the present invention calculates the PDF considering the concentration of gray levels in the input image. Therefore, the mean brightness of an image does not change significantly by the histogram equalization. Also, the noise is prevented from being amplified greatly.

Although the present invention has been described in terms of a preferred embodiment, it will be appreciated that various changes and modifications may be made to the described embodiment without departing from the spirit and scope of the claimed invention.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
JPH1032769A * Title not available
Non-Patent Citations
Reference
1J.S. Lim, "Two-dimensional Signal and Image Processing," Prentice Hall, Englewood Cliffs, New Jersey, 1990.
2 *J.S. Lim, Two dimensional Signal and Image Processing, Prentice Hall, Englewood Cliffs, New Jersey, 1990.
3R.C. Gonzalez and P. Wints, "Digital Image Processing," Addison-Wesley, Reading, Massachusetts, 1997.
4 *R.C. Gonzalez and P. Wints, Digital Image Processing, Addison Wesley, Reading, Massachusetts, 1997.
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US6633684Jul 7, 2000Oct 14, 2003Athentech Technologies Corp.Distortion-free image contrast enhancement
US6677959Apr 13, 2000Jan 13, 2004Athentech Technologies Inc.Virtual true color light amplification
US6700628 *May 8, 2000Mar 2, 2004Lg Electronics Inc.Device and method for controlling brightness of image signal
US6961066Oct 23, 2003Nov 1, 2005Athentech Technologies, Inc.Automatic color adjustment for digital images
US7042522Aug 1, 2002May 9, 2006Samsung Electronics Co., Ltd.Adaptive contrast enhancement method using time-varying nonlinear transforms on a video signal
US7058220 *Apr 29, 2002Jun 6, 2006Hewlett-Packard Development Company, L.P.Method and system for processing images using histograms
US7102697Feb 24, 2003Sep 5, 2006Sony Deutschland GmbhContrast enhancement of digital images
US7221408Aug 15, 2003May 22, 2007Samsung Electronics Co., Ltd.Adaptive contrast enhancement method for video signals based on time-varying nonlinear transforms
US7388998 *Jun 23, 2004Jun 17, 2008Ed-Tech Co., Ltd.Apparatus and method for controlling brightness of moving image signals in real time
US7822272 *Dec 29, 2006Oct 26, 2010Sony Deutschland GmbhAdaptive histogram equalization for images with strong local contrast
US8275201Mar 5, 2009Sep 25, 2012Tyco Healthcare Group LpImage enhancement and application functionality for medical and other uses
US8379938Dec 22, 2008Feb 19, 2013Nikon CorporationGradation correction characteristics evaluation device, image processing device, gradation correction characteristics evaluation method, image processing method, and computer-readable computer program product
US8615119Aug 1, 2012Dec 24, 2013Covidien LpImage enhancement and application functionality for medical and other uses
US8736766 *Oct 14, 2011May 27, 2014Sharp Kabushiki KaishaImage processing device, image processing method, image processing program, and recording medium, each capable of correcting luminance of image so that the local deterioration of grey scales is unlikely to occur
US8774554 *Jan 18, 2012Jul 8, 2014Exelis, Inc.Bias and plateau limited advanced contrast enhancement
US8806321Jun 26, 2007Aug 12, 2014Oracle International CorporationInteractive controls and information visualization using histogram equalization
US20130182185 *Oct 14, 2011Jul 18, 2013Sharp Kabushiki KaishaImage processing device, image processing method, image processing program, and recording medium
CN100388758CJan 4, 2005May 14, 2008Lg电子有限公司Image processing device and method
Classifications
U.S. Classification348/672, 382/169, 348/671, 348/E05.073
International ClassificationG06T5/40, H04N5/20
Cooperative ClassificationG06T5/009, H04N5/20, G06T5/40
European ClassificationH04N5/20, G06T5/40
Legal Events
DateCodeEventDescription
Aug 30, 2011FPExpired due to failure to pay maintenance fee
Effective date: 20110713
Jul 13, 2011LAPSLapse for failure to pay maintenance fees
Feb 14, 2011REMIMaintenance fee reminder mailed
Dec 26, 2006FPAYFee payment
Year of fee payment: 8
Oct 11, 2002FPAYFee payment
Year of fee payment: 4
Jan 9, 1998ASAssignment
Owner name: SAMSUNG ELECTRONICS CO., LTD., KOREA, REPUBLIC OF
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:KIM, YEONG-TAEG;REEL/FRAME:008916/0287
Effective date: 19970820