Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS6038056 A
Publication typeGrant
Application numberUS 09/354,838
Publication dateMar 14, 2000
Filing dateJul 16, 1999
Priority dateMay 8, 1997
Fee statusPaid
Also published asDE69806846D1, DE69806846T2, EP0877272A1, EP0877272B1, US5943157
Publication number09354838, 354838, US 6038056 A, US 6038056A, US-A-6038056, US6038056 A, US6038056A
InventorsJames M. Florence, James D. Huffman, Rodney D. Miller
Original AssigneeTexas Instruments Incorporated
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Spatial light modulator having improved contrast ratio
US 6038056 A
Abstract
A spatial light modulator (70) comprised of an array of micromirrors (72) each having support post (74). The support post (74) defines support post edges (76) in the upper surface of the mirrors (72). These support post edges (76) are all oriented at 45 degree angles with respect to an incident beam of light from a light source (80) to minimize diffraction of light from the edges (76) into the darkfield optics when the mirrors are oriented in the off-state. The present invention achieves an increased contrast ratio of about 20% over conventional designs.
Images(4)
Previous page
Next page
Claims(11)
We claim:
1. A spatial light modulator, comprising:
at least one torsion hinge, said torsion hinge defining a deflection axis;
a light modulation surface; and
a support member supported by said torsion hinge and extending to said light modulation surface, said support member defining support edges in said light modulation surface, said support edges substantially oriented at a 45 degree angle to a projection of said deflection axis onto said light modulation surface.
2. The spatial light modulator as specified in claim 1, said light modulation surface comprising surface edges, wherein said surface edges and said support edges both define a rectangle.
3. The spatial light modulator as specified in claim 1 wherein said support member is centrally located with respect to said light modulation surface.
4. The spatial light modulator as specified in claim 3 wherein said support member extends perpendicular from said light modulation surface.
5. The spatial light modulator as specified in claim 1 further comprising a light source generating light beam incident to said light modulation surface, said light beam having a path projected onto said light modulation surface, said surface edges and said support edges both extending 45 degrees with respect to said path.
6. The spatial light modulator as specified in claim 1 wherein said support edges define an area no greater than 5.76 mm2.
7. A display system, comprising:
a light source generating a light beam;
at least one torsion hinge, said torsion hinge defining a deflection axis;
a light modulation surface; and
a support member supported by said torsion hinge and extending to said light modulation surface, said support member defining support edges in said light modulation surface, said support edges substantially oriented at a 45 degree angle to a projection of said deflection axis onto said light modulation surface.
8. The spatial light modulator as specified in claim 7, said light modulation surface comprising surface edges, wherein said surface edges and said support edges both define a rectangle.
9. The spatial light modulator as specified in claim 7 wherein said support member is centrally located with respect to said light modulation surface.
10. The spatial light modulator as specified in claim 7 wherein said support member extends perpendicular from said light modulation surface.
11. The spatial light modulator as specified in claim 7 wherein said support edges define an area no greater than 5.76 mm2.
Description

This application is a divisional of application Ser. No. 09/073,329 filed May 6, 1998, now U.S. Pat. No. 5,943,157, which claims priority from application Ser. No. 60/045,986 filed May 8, 1997.

FIELD OF THE INVENTION

The present invention is generally related to spatial light modulators for modulating incident light to form an optical light image, and more particularity, to a digital micromirror device (DMD) having an array of bistable micromirrors fabricated over addressing circuitry.

BACKGROUND OF THE INVENTION

Spatial Light Modulators (SLMs) have found numerous applications in the areas of optical information processing, projection displays, video and graphics monitors, televisions, and electrophotographic printing. SLMs are devices that modulate incident light in a spatial pattern to form a light image corresponding to an electrical or optical input. The incident light may be modulated in its phase, intensity, polarization, or direction. The light modulation may be achieved by a variety of materials exhibiting various electro-optic or magneto-optic effects, and by materials that modulate light by surface deformation.

A SLM is typically comprised of an area or linear array of addressable picture elements (pixels). Source pixel data is first formatted by an associated control circuit, usually external to the SLM, and then loaded into the pixel array one frame at a time. This pixel data may be written to the pixel array using a variety of algorithms, i.e. sequentially top-to-bottom one pixel line at a time, interleaving by sequentially addressing top-to-bottom every other pixel line, such as the odd rows of pixels, and then returning to address the even pixel lines, etc. In cathode ray tubes (CRTs), this data writing technique is known as rasterizing, whereby a high powered electron gun scans across the pixel elements of a phosphor screen left to right, one line at a time. This pixel address data writing scheme is equally applicable to liquid crystal displays (LCDs) as well.

A recent innovation of Texas Instruments Incorporated of Dallas Tex., is the digital micromirror device or the deformable mirror device (collectively DMD). The DMD is revolutionary in that it is truly a digital display device and an integrated circuit solution. The DMD is an electro/mechanical/optical SLM suitable for use in displays, projectors and hardcopy printers. The DMD is a monolithic single-chip integrated circuit SLM, comprised of a high density array of 16 micron square movable micromirrors on 17 micron centers. These mirrors are fabricated over address circuitry including an array of SRAM cells and address electrodes. Each mirror forms one pixel of the DMD array and is bistable, that is to say, stable in one of two positions, wherein a source of light directed upon the mirror array will be reflected in one of two directions. In one stable "on" mirror position, incident light to that mirror will be reflected to a projector lens and focused on a display screen or a photosensitive element of a printer. In the other "off" mirror position, light directed on the mirror will be deflected to a light absorber. Each mirror of the array is individually controlled to either direct incident light into the projector lens, or to the light absorber. The projector lens ultimately focuses and magnifies the modulated light from the pixel mirrors onto a display screen and produce an image in the case of a display. If each pixel mirror of the DMD array is in the "on" position, the displayed image will be an array of bright pixels.

For a more detailed discussion of the DMD device and uses, cross reference is made to U.S. Pat. No. 5,061,049 to Hornbeck, entitled "Spatial Light Modulator and Method"; U.S. Pat. No. 5,079,544 to DeMond, et al, entitled "Standard Independent Digitized Video System"; and U.S. Pat. No. 5,105,369 to Nelson, entitled "Printing System Exposure Module Alignment Method and Apparatus of Manufacture", each patent being assigned to the same assignee of the present invention and the teachings of each are incorporated herein by reference. Gray scale of the pixels forming the image is achieved by pulse-width modulation techniques of the mirrors, such as that described in U.S. Pat. No. 5,278,652, entitled "DMD Architecture and Timing for Use in a Pulse-Width Modulated Display System", assigned to the same assignee of the present invention, and the teachings of which are incorporated herein by reference.

As detailed in commonly assigned U.S. Pat. No. 5,535,047 entitled "Active Yoke Hidden Hinge Digital Micromirror Device", and shown in FIG. 1 of the present application, there is disclosed a digital micromirror device (DMD) spatial light modulator shown at 10. DMD 10 is a single-chip integrated circuit seen to include an array of micromirrors 30 monolithically fabricated over a memory cell array formed upon the substrate. Each pixel mirror 30 is seen to include a square mirror supported upon and elevated above a butterfly shaped yoke generally shown at 32 by a rectangular support post 34. Support post 34 extends downward from the center of the mirror 30, and is attached to the center of the yoke 32 along a torsion axis thereof, as shown, to balance the center of mass of mirror 30 upon yoke 32. Yoke 32 is axially supported along a central axis thereof by a pair of torsion hinges 40. The other end of each torsion hinge 40 is attached to and supported by a hinge support post cap 42 defined on top of a respective hinge support post 44. A pair of elevated mirror address electrodes 50 and 54 are supported by a respective address support post. The address support posts, and the hinge support posts 44, support the address electrodes 50 and 54, the torsion hinges 40, and the yoke 32 away from and above a bias/reset bus 60, and a pair of substrate level address electrode pads 26 and 28. When mirror 30 and yoke 32 are together rotated about the torsion axis of the yoke, defined by the hinges 40, a pair of yoke tips 58 on the side of the yoke 32 that is deflected land upon and engage the bias/reset bus 60 at a landing site 62. For more detailed discussion of this conventional DMD, the teachings of commonly assigned U.S. Pat. No. 5,535,047 are incorporated herein by reference.

Still referring to FIG. 1, it can be seen that the support post 34 extends downward from the reflective modulation surface of the square mirror 30 and defines support post edges at 64. These support post edges 64 conventionally have dimensions of 34 μm, which edges form a rectangle and are oriented either perpendicular or parallel to the incoming beam of light. Referring to FIG. 2, there is shown the light diffracted back into the projection optics when all mirrors are in the off-state. It can be seen that these support post edges 64 diffract the incident light into the projection system optics when the mirrors 30 are tilted to the off state, the diffraction seen as light dots 66, thus reducing the contrast ratio of the formed display image. Also seen in FIG. 2 is diffracted light from the underlying superstructure and address circuitry from between the mirror edges.

There is desired a DMD spatial light modulator forming an image having an improved contrast ratio whereby the diffraction of incident light from the support post edges 64 into the projection optics is substantially reduced.

SUMMARY OF THE INVENTION

The present invention achieves technical advantages as a micromechanical spatial light modulator by orienting the support post edges to be parallel to the mirror edges, and orienting the mirror edges at 45 degrees with respect to incident light. In addition, the dimensions of the support post edges are substantially reduced from 34 μm to 2.42.4 μm. This design substantially reduces the amount of scattered light from the support post edges back into the darkfield projection system optics. The corners formed by support post edges diffract a minimal amount of light back into the projection optics in this orientation. The support post edges are parallel with the corresponding mirror edges, and are also oriented at 45 degrees with respect to the incident light to minimize light diffraction therefrom.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a section view of a 33 array of pixels of a conventional DMD array with the yokes elevated address electrodes, and some hinge support posts being removed to illustrate underlying support structure, whereby the mirror support post edges are either perpendicular or parallel to the incident light and thus diffract incident light back into the projection optics, the dimensions of these support post edges being approximately 34 μm;

FIG. 2 is a pictorial view of an image formed by the array of mirrors of FIG. 1 in the off-state, whereby light is diffracted from the support post edges back into the projection optics, shown as light dots, thereby reducing the contrast ratio of the image formed by the spatial light modulator;

FIG. 3 is a section view of a 33 array of pixels according to the present invention whereby the support post edges are all oriented at 45 degrees with respect to the incident light, each edge being parallel to the corresponding mirror edges, to substantially reduce the amount of diffracted light back into the projection optics when oriented in the off-state; and

FIG. 4 is a pictorial view of the diffracted light from the support post edges of FIG. 3 in the off-state, illustrating a minimal amount of light being diffracted from the support post edges back into the projection optics, thereby significantly increasing the contrast ratio of the display image.

DESCRIPTION OF THE PREFERRED EMBODIMENT

Referring now to FIG. 3, there is shown at 70 an improved spatial light modulator according to the preferred embodiment of the present invention, wherein like numerals refer to like elements. Spatial light modulator 70 is preferably a digital micromirror device (DMD), however, other micromechanical spatial light modulators are intended to be covered by the present invention as well.

DMD 70 is improved over the conventional design shown in FIG. 1 by providing each mirror 72 with a mirror support post 74 defining support post edges 76 that are all oriented at 45 degrees with respect to the incident beam of light generated by light source 80. Each edge 76 is parallel to the corresponding mirror edges 78 of the respective mirrors 72, and thus edges 78 are also oriented at 45 degrees with respect to the incident beam of light generated by light source 80. This orientation of support post edges 76 with respect to the incident light beam minimizes any diffraction of light from being scattered back into the darkfield projection system optics when the mirror surfaces are oriented in the off-state. This is important to increase the contrast ratio of the display formed by SLM 70. For darkfield optics systems, it is imperative that as little light as possible be diffracted back into the optics when the mirrors 72 are in the off-state. By orienting the support post edges 76 to extend at 45 degrees with respect to the incident beam of light, this diffraction of light is minimized, and the generation of light dots 66 diffracted by the mirrors in the off-state into the projection optics, as seen in FIG. 2, are substantially reduced. Any diffraction of light from the corners defined by the edges 76 into the projection optics is also substantially reduced.

According to the present invention, the dimensions of the support post edges 76 have been substantially reduced from that of conventional designs. Specifically, the edges 76 have been reduced to a length of about 2.42.4 μm, which is substantially reduced from conventional dimensions shown in FIG. 1 which are typically 34 μm. Minimizing the length of the support post edges 76 also contributes to an improved contrast ratio of the image displayed by the spatial light modulator 70 according to the preferred embodiment of the present invention.

In previous designs, it was believed that orienting the support post edges 62, as shown in FIG. 1, to either be parallel to or perpendicular to the incoming beam of light was necessary to minimize diffraction of light from the support post corners. However, by reducing the dimensions of the support post edges 76, and orienting these edges 76 to extend at 45 degrees with respect to the incident beam of light has proven to provide an image with a substantially improved contrast ratio, as shown in FIG. 4. The amount of scattered light from the support post edges 76, and from the corners defined by these edges, is substantially reduced as compared to the conventional display shown for comparison in FIG. 4. In fact, an improved contrast ratio of about 20% is achieved over the embodiment of FIG. 1. Thus, the improvement of the present invention has dramatic results.

Though the invention has been described with respect to a specific preferred embodiment, many variations and modifications will become apparent to those skilled in the art upon reading the present application. It is therefore the intention that the appended claims be interpreted as broadly as possible in view of the prior art to include all such variations and modifications.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US5061049 *Sep 13, 1990Oct 29, 1991Texas Instruments IncorporatedSpatial light modulator and method
US5142405 *Jun 29, 1990Aug 25, 1992Texas Instruments IncorporatedBistable dmd addressing circuit and method
US5535047 *Apr 18, 1995Jul 9, 1996Texas Instruments IncorporatedActive yoke hidden hinge digital micromirror device
US5583688 *Dec 21, 1993Dec 10, 1996Texas Instruments IncorporatedMulti-level digital micromirror device
US5661591 *Sep 29, 1995Aug 26, 1997Texas Instruments IncorporatedOptical switch having an analog beam for steering light
US5771116 *Oct 21, 1996Jun 23, 1998Texas Instruments IncorporatedMultiple bias level reset waveform for enhanced DMD control
US5943157 *May 6, 1998Aug 24, 1999Texas Instruments IncorporatedSpatial light modulator having improved contrast ratio
US5953153 *Oct 27, 1997Sep 14, 1999Texas Instruments IncorporatedSpatial light modulator with improved light shield
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US6396619Aug 11, 2000May 28, 2002Reflectivity, Inc.Deflectable spatial light modulator having stopping mechanisms
US6523961Dec 7, 2000Feb 25, 2003Reflectivity, Inc.Projection system and mirror elements for improved contrast ratio in spatial light modulators
US6614576 *Dec 17, 2001Sep 2, 2003Texas Instruments IncorporatedSurface micro-planarization for enhanced optical efficiency and pixel performance in SLM devices
US6741383May 24, 2002May 25, 2004Reflectivity, Inc.Deflectable micromirrors with stopping mechanisms
US6861277Oct 2, 2003Mar 1, 2005Hewlett-Packard Development Company, L.P.Method of forming MEMS device
US6908778Sep 2, 2003Jun 21, 2005Texas Instruments IncorporatedSurface micro-planarization for enhanced optical efficiency and pixel performance in SLM devices
US6914709Oct 2, 2003Jul 5, 2005Hewlett-Packard Development Company, L.P.MEMS device and method of forming MEMS device
US6992810May 18, 2004Jan 31, 2006Miradia Inc.High fill ratio reflective spatial light modulator with hidden hinge
US7022245Jan 13, 2004Apr 4, 2006Miradia Inc.Fabrication of a reflective spatial light modulator
US7026695Nov 19, 2003Apr 11, 2006Miradia Inc.Method and apparatus to reduce parasitic forces in electro-mechanical systems
US7034984May 18, 2004Apr 25, 2006Miradia Inc.Fabrication of a high fill ratio reflective spatial light modulator with hidden hinge
US7042619Jun 18, 2004May 9, 2006Miradia Inc.Mirror structure with single crystal silicon cross-member
US7068417Jul 28, 2004Jun 27, 2006Miradia Inc.Method and apparatus for a reflective spatial light modulator with a flexible pedestal
US7079301Mar 28, 2005Jul 18, 2006Hewlett-Packard Development Company, L.P.MEMS device and method of forming MEMS device
US7085035 *Oct 19, 2004Aug 1, 2006Reflectivity, IncDisplay apparatus with improved contrast ratio
US7092140Jan 13, 2004Aug 15, 2006Miradia Inc.Architecture of a reflective spatial light modulator
US7106492 *Dec 21, 2004Sep 12, 2006Texas Instruments IncorporatedBias voltage routing scheme for a digital micro-mirror device
US7118234Jan 13, 2004Oct 10, 2006Miradia Inc.Reflective spatial light modulator
US7142349Jan 7, 2005Nov 28, 2006Miradia Inc.Method and structure for reducing parasitic influences of deflection devices on spatial light modulators
US7172921Jan 3, 2005Feb 6, 2007Miradia Inc.Method and structure for forming an integrated spatial light modulator
US7180573Oct 15, 2004Feb 20, 2007Asml Holding N.V.System and method to block unwanted light reflecting from a pattern generating portion from reaching an object
US7183618Aug 14, 2004Feb 27, 2007Fusao IshiiHinge for micro-mirror devices
US7184195Jun 15, 2005Feb 27, 2007Miradia Inc.Method and structure reducing parasitic influences of deflection devices in an integrated spatial light modulator
US7190508Jun 15, 2005Mar 13, 2007Miradia Inc.Method and structure of patterning landing pad structures for spatial light modulators
US7199918Jan 7, 2005Apr 3, 2007Miradia Inc.Electrical contact method and structure for deflection devices formed in an array configuration
US7202989Jun 1, 2005Apr 10, 2007Miradia Inc.Method and device for fabricating a release structure to facilitate bonding of mirror devices onto a substrate
US7206110Dec 3, 2004Apr 17, 2007Miradia Inc.Memory cell dual protection
US7233428Apr 26, 2006Jun 19, 2007Miradia Inc.Method and apparatus for a reflective spatial light modulator with a flexible pedestal
US7298539Jun 1, 2005Nov 20, 2007Miradia Inc.Co-planar surface and torsion device mirror structure and method of manufacture for optical displays
US7310175Dec 21, 2004Dec 18, 2007Hewlett-Packard Development Company, L.P.MEMS device and method of forming MEMS device
US7369297Dec 8, 2005May 6, 2008Miradia Inc.Mirror structure with single crystal silicon cross-member
US7375739 *Sep 14, 2005May 20, 2008Vardex Laser CorporationImage management system operable to manage the formation of dynamically variable images in objects in single shot events
US7382519Mar 19, 2007Jun 3, 2008Miradia, Inc.Method and device for fabricating a release structure to facilitate bonding of mirror devices onto a substrate
US7423794Feb 15, 2004Sep 9, 2008Technion Research & Development Foundation Ltd.Device and method for stacked multi-level uncoupled electrostatic actuators
US7428094Jul 3, 2007Sep 23, 2008Miradia Inc.Fabrication of a high fill ratio reflective spatial light modulator with hidden hinge
US7449284May 11, 2004Nov 11, 2008Miradia Inc.Method and structure for fabricating mechanical mirror structures using backside alignment techniques
US7486867Aug 18, 2006Feb 3, 2009Qualcomm Mems Technologies, Inc.Methods for forming layers within a MEMS device using liftoff processes to achieve a tapered edge
US7502158Oct 13, 2005Mar 10, 2009Miradia Inc.Method and structure for high fill factor spatial light modulator with integrated spacer layer
US7545552Oct 19, 2006Jun 9, 2009Qualcomm Mems Technologies, Inc.Sacrificial spacer process and resultant structure for MEMS support structure
US7556917Nov 14, 2007Jul 7, 2009Idc, LlcMethod for manufacturing an array of interferometric modulators
US7566940Jul 21, 2006Jul 28, 2009Qualcomm Mems Technologies, Inc.Electromechanical devices having overlying support structures
US7570416May 23, 2007Aug 4, 2009Miradia Inc.Method and apparatus for a reflective spatial light modulator with a flexible pedestal
US7649671Jun 1, 2006Jan 19, 2010Qualcomm Mems Technologies, Inc.Analog interferometric modulator device with electrostatic actuation and release
US7653371Aug 30, 2005Jan 26, 2010Qualcomm Mems Technologies, Inc.Selectable capacitance circuit
US7655492Apr 7, 2005Feb 2, 2010Texas Instruments IncorporatedMethods for depositing, releasing and packaging micro-electromechanical devices on wafer substrates
US7667884Feb 23, 2010Qualcomm Mems Technologies, Inc.Interferometric modulators having charge persistence
US7668415Feb 23, 2010Qualcomm Mems Technologies, Inc.Method and device for providing electronic circuitry on a backplate
US7670880Mar 2, 2010Miradia Inc.Method and structure for forming an integrated spatial light modulator
US7671428Apr 7, 2005Mar 2, 2010Texas Instruments IncorporatedMethods for depositing, releasing and packaging micro-electromechanical devices on wafer substrates
US7675669Sep 2, 2005Mar 9, 2010Qualcomm Mems Technologies, Inc.Method and system for driving interferometric modulators
US7679627Mar 16, 2010Qualcomm Mems Technologies, Inc.Controller and driver features for bi-stable display
US7679812Jul 21, 2006Mar 16, 2010Qualcomm Mems Technologies Inc.Support structure for MEMS device and methods therefor
US7684104Mar 23, 2010Idc, LlcMEMS using filler material and method
US7692839Apr 29, 2005Apr 6, 2010Qualcomm Mems Technologies, Inc.System and method of providing MEMS device with anti-stiction coating
US7692844Jan 5, 2004Apr 6, 2010Qualcomm Mems Technologies, Inc.Interferometric modulation of radiation
US7701631Mar 7, 2005Apr 20, 2010Qualcomm Mems Technologies, Inc.Device having patterned spacers for backplates and method of making the same
US7702192Jun 21, 2006Apr 20, 2010Qualcomm Mems Technologies, Inc.Systems and methods for driving MEMS display
US7704773Aug 18, 2006Apr 27, 2010Qualcomm Mems Technologies, Inc.MEMS devices having support structures with substantially vertical sidewalls and methods for fabricating the same
US7706044Apr 28, 2006Apr 27, 2010Qualcomm Mems Technologies, Inc.Optical interference display cell and method of making the same
US7706050Mar 5, 2004Apr 27, 2010Qualcomm Mems Technologies, Inc.Integrated modulator illumination
US7709964Oct 26, 2007May 4, 2010Qualcomm, Inc.Structure of a micro electro mechanical system and the manufacturing method thereof
US7710629Jun 3, 2005May 4, 2010Qualcomm Mems Technologies, Inc.System and method for display device with reinforcing substance
US7710636Aug 22, 2005May 4, 2010Qualcomm Mems Technologies, Inc.Systems and methods using interferometric optical modulators and diffusers
US7711239Apr 19, 2006May 4, 2010Qualcomm Mems Technologies, Inc.Microelectromechanical device and method utilizing nanoparticles
US7719500May 20, 2005May 18, 2010Qualcomm Mems Technologies, Inc.Reflective display pixels arranged in non-rectangular arrays
US7719752Sep 27, 2007May 18, 2010Qualcomm Mems Technologies, Inc.MEMS structures, methods of fabricating MEMS components on separate substrates and assembly of same
US7723015Aug 1, 2007May 25, 2010Qualcomm Mems Technologies, Inc.Method for manufacturing an array of interferometeric modulators
US7724993Aug 5, 2005May 25, 2010Qualcomm Mems Technologies, Inc.MEMS switches with deforming membranes
US7747109Jun 29, 2010Qualcomm Mems Technologies, Inc.MEMS device having support structures configured to minimize stress-related deformation and methods for fabricating same
US7763546Jul 27, 2010Qualcomm Mems Technologies, Inc.Methods for reducing surface charges during the manufacture of microelectromechanical systems devices
US7777715Aug 17, 2010Qualcomm Mems Technologies, Inc.Passive circuits for de-multiplexing display inputs
US7781850Aug 24, 2010Qualcomm Mems Technologies, Inc.Controlling electromechanical behavior of structures within a microelectromechanical systems device
US7795061Sep 14, 2010Qualcomm Mems Technologies, Inc.Method of creating MEMS device cavities by a non-etching process
US7808703May 27, 2005Oct 5, 2010Qualcomm Mems Technologies, Inc.System and method for implementation of interferometric modulator displays
US7813026Oct 12, 2010Qualcomm Mems Technologies, Inc.System and method of reducing color shift in a display
US7830586Jul 24, 2006Nov 9, 2010Qualcomm Mems Technologies, Inc.Transparent thin films
US7835061Jun 28, 2006Nov 16, 2010Qualcomm Mems Technologies, Inc.Support structures for free-standing electromechanical devices
US7843410Nov 30, 2010Qualcomm Mems Technologies, Inc.Method and device for electrically programmable display
US7855824Dec 21, 2010Qualcomm Mems Technologies, Inc.Method and system for color optimization in a display
US7875485Jul 27, 2009Jan 25, 2011Qualcomm Mems Technologies, Inc.Methods of fabricating MEMS devices having overlying support structures
US7876298 *Oct 24, 2005Jan 25, 2011Texas Instruments IncorporatedControl timing for spatial light modulator
US7880954May 3, 2006Feb 1, 2011Qualcomm Mems Technologies, Inc.Integrated modulator illumination
US7889163Apr 29, 2005Feb 15, 2011Qualcomm Mems Technologies, Inc.Drive method for MEMS devices
US7893919Feb 22, 2011Qualcomm Mems Technologies, Inc.Display region architectures
US7903047Apr 17, 2006Mar 8, 2011Qualcomm Mems Technologies, Inc.Mode indicator for interferometric modulator displays
US7907319Mar 15, 2011Qualcomm Mems Technologies, Inc.Method and device for modulating light with optical compensation
US7916103Apr 8, 2005Mar 29, 2011Qualcomm Mems Technologies, Inc.System and method for display device with end-of-life phenomena
US7916980Jan 13, 2006Mar 29, 2011Qualcomm Mems Technologies, Inc.Interconnect structure for MEMS device
US7920135Apr 5, 2011Qualcomm Mems Technologies, Inc.Method and system for driving a bi-stable display
US7920136Apr 5, 2011Qualcomm Mems Technologies, Inc.System and method of driving a MEMS display device
US7928940Apr 19, 2011Qualcomm Mems Technologies, Inc.Drive method for MEMS devices
US7936031Jul 21, 2006May 3, 2011Qualcomm Mems Technologies, Inc.MEMS devices having support structures
US7936497May 3, 2011Qualcomm Mems Technologies, Inc.MEMS device having deformable membrane characterized by mechanical persistence
US7948457Apr 14, 2006May 24, 2011Qualcomm Mems Technologies, Inc.Systems and methods of actuating MEMS display elements
US8004504Jun 17, 2005Aug 23, 2011Qualcomm Mems Technologies, Inc.Reduced capacitance display element
US8008736Aug 30, 2011Qualcomm Mems Technologies, Inc.Analog interferometric modulator device
US8014059Nov 4, 2005Sep 6, 2011Qualcomm Mems Technologies, Inc.System and method for charge control in a MEMS device
US8040588Oct 18, 2011Qualcomm Mems Technologies, Inc.System and method of illuminating interferometric modulators using backlighting
US8049713Nov 1, 2011Qualcomm Mems Technologies, Inc.Power consumption optimized display update
US8059326Apr 30, 2007Nov 15, 2011Qualcomm Mems Technologies Inc.Display devices comprising of interferometric modulator and sensor
US8068268Nov 29, 2011Qualcomm Mems Technologies, Inc.MEMS devices having improved uniformity and methods for making them
US8072402Aug 29, 2007Dec 6, 2011Qualcomm Mems Technologies, Inc.Interferometric optical modulator with broadband reflection characteristics
US8124434Jun 10, 2005Feb 28, 2012Qualcomm Mems Technologies, Inc.Method and system for packaging a display
US8149497Feb 24, 2010Apr 3, 2012Qualcomm Mems Technologies, Inc.Support structure for MEMS device and methods therefor
US8174469May 8, 2012Qualcomm Mems Technologies, Inc.Dynamic driver IC and display panel configuration
US8194056Feb 9, 2006Jun 5, 2012Qualcomm Mems Technologies Inc.Method and system for writing data to MEMS display elements
US8207004Nov 18, 2009Jun 26, 2012Miradia Inc.Method and structure for forming a gyroscope and accelerometer
US8218229Feb 24, 2010Jul 10, 2012Qualcomm Mems Technologies, Inc.Support structure for MEMS device and methods therefor
US8284475Oct 9, 2012Qualcomm Mems Technologies, Inc.Methods of fabricating MEMS with spacers between plates and devices formed by same
US8298847Oct 30, 2012Qualcomm Mems Technologies, Inc.MEMS devices having support structures with substantially vertical sidewalls and methods for fabricating the same
US8310441Nov 13, 2012Qualcomm Mems Technologies, Inc.Method and system for writing data to MEMS display elements
US8391630Mar 5, 2013Qualcomm Mems Technologies, Inc.System and method for power reduction when decompressing video streams for interferometric modulator displays
US8394656Jul 7, 2010Mar 12, 2013Qualcomm Mems Technologies, Inc.Method of creating MEMS device cavities by a non-etching process
US8416487Jan 26, 2009Apr 9, 2013Qualcomm Mems Technologies, Inc.Photonic MEMS and structures
US8422108Apr 16, 2013Qualcomm Mems Technologies, Inc.Method and device for modulating light with optical compensation
US8530259May 24, 2012Sep 10, 2013Miradia Inc.Method and structure for forming a gyroscope and accelerometer
US8638491Aug 9, 2012Jan 28, 2014Qualcomm Mems Technologies, Inc.Device having a conductive light absorbing mask and method for fabricating same
US8659816Apr 25, 2011Feb 25, 2014Qualcomm Mems Technologies, Inc.Mechanical layer and methods of making the same
US8682130Sep 13, 2011Mar 25, 2014Qualcomm Mems Technologies, Inc.Method and device for packaging a substrate
US8735225Mar 31, 2009May 27, 2014Qualcomm Mems Technologies, Inc.Method and system for packaging MEMS devices with glass seal
US8736590Jan 20, 2010May 27, 2014Qualcomm Mems Technologies, Inc.Low voltage driver scheme for interferometric modulators
US8791897Nov 8, 2012Jul 29, 2014Qualcomm Mems Technologies, Inc.Method and system for writing data to MEMS display elements
US8817357Apr 8, 2011Aug 26, 2014Qualcomm Mems Technologies, Inc.Mechanical layer and methods of forming the same
US8830557Sep 10, 2012Sep 9, 2014Qualcomm Mems Technologies, Inc.Methods of fabricating MEMS with spacers between plates and devices formed by same
US8853747Oct 14, 2010Oct 7, 2014Qualcomm Mems Technologies, Inc.Method of making an electronic device with a curved backplate
US8878771Aug 13, 2012Nov 4, 2014Qualcomm Mems Technologies, Inc.Method and system for reducing power consumption in a display
US8878825Jul 8, 2005Nov 4, 2014Qualcomm Mems Technologies, Inc.System and method for providing a variable refresh rate of an interferometric modulator display
US8885244Jan 18, 2013Nov 11, 2014Qualcomm Mems Technologies, Inc.Display device
US8928967Oct 4, 2010Jan 6, 2015Qualcomm Mems Technologies, Inc.Method and device for modulating light
US8963159Apr 4, 2011Feb 24, 2015Qualcomm Mems Technologies, Inc.Pixel via and methods of forming the same
US8964280Jan 23, 2012Feb 24, 2015Qualcomm Mems Technologies, Inc.Method of manufacturing MEMS devices providing air gap control
US8970939Feb 16, 2012Mar 3, 2015Qualcomm Mems Technologies, Inc.Method and device for multistate interferometric light modulation
US8971675Mar 28, 2011Mar 3, 2015Qualcomm Mems Technologies, Inc.Interconnect structure for MEMS device
US9001412Oct 10, 2012Apr 7, 2015Qualcomm Mems Technologies, Inc.Electromechanical device with optical function separated from mechanical and electrical function
US9086564Mar 4, 2013Jul 21, 2015Qualcomm Mems Technologies, Inc.Conductive bus structure for interferometric modulator array
US9097885Jan 27, 2014Aug 4, 2015Qualcomm Mems Technologies, Inc.Device having a conductive light absorbing mask and method for fabricating same
US9110289Jan 13, 2011Aug 18, 2015Qualcomm Mems Technologies, Inc.Device for modulating light with multiple electrodes
US9134527Apr 4, 2011Sep 15, 2015Qualcomm Mems Technologies, Inc.Pixel via and methods of forming the same
US20020075555 *Nov 21, 2001Jun 20, 2002Iridigm Display CorporationInterferometric modulation of radiation
US20020126364 *Feb 19, 2002Sep 12, 2002Iridigm Display Corporation, A Delaware CorporationInterferometric modulation of radiation
US20030234994 *Feb 27, 2003Dec 25, 2003Pan Shaoher X.Reflective spatial light modulator
US20040004753 *Feb 27, 2003Jan 8, 2004Pan Shaoher X.Architecture of a reflective spatial light modulator
US20040058532 *Sep 20, 2002Mar 25, 2004Miles Mark W.Controlling electromechanical behavior of structures within a microelectromechanical systems device
US20040069742 *Feb 27, 2003Apr 15, 2004Pan Shaoher X.Fabrication of a reflective spatial light modulator
US20040145795 *Jan 13, 2004Jul 29, 2004Pan Shaoher X.Architecture of a reflective spatial light modulator
US20040145822 *Jan 13, 2004Jul 29, 2004Pan Shaoher X.Reflective spatial light modulator
US20040159631 *Jan 13, 2004Aug 19, 2004Pan Shaoher X.Fabrication of a reflective spatial light modulator
US20040209192 *Nov 13, 2003Oct 21, 2004Prime View International Co., Ltd.Method for fabricating an interference display unit
US20040218149 *May 28, 2004Nov 4, 2004Huibers Andrew G.Projection display
US20040218154 *May 28, 2004Nov 4, 2004Huibers Andrew G.Packaged micromirror array for a projection display
US20040218292 *May 28, 2004Nov 4, 2004Huibers Andrew GMicromirror array for projection TV
US20040218293 *May 28, 2004Nov 4, 2004Huibers Andrew G.Packaged micromirror array for a projection display
US20040223088 *May 28, 2004Nov 11, 2004Huibers Andrew G.Projection TV with improved micromirror array
US20040223240 *May 28, 2004Nov 11, 2004Huibers Andrew G.Micromirror array
US20040233392 *May 28, 2004Nov 25, 2004Huibers Andrew G.Projection TV with improved micromirror array
US20040240032 *Jan 5, 2004Dec 2, 2004Miles Mark W.Interferometric modulation of radiation
US20040240033 *May 18, 2004Dec 2, 2004Pan Shaoher X.High fill ratio reflective spatial light modulator with hidden hinge
US20040263944 *Jun 24, 2003Dec 30, 2004Miles Mark W.Thin film precursor stack for MEMS manufacturing
US20050007557 *Aug 5, 2004Jan 13, 2005Huibers Andrew G.Rear projection TV with improved micromirror array
US20050030490 *May 28, 2004Feb 10, 2005Huibers Andrew G.Projection display
US20050036095 *Mar 31, 2004Feb 17, 2005Jia-Jiun YehColor-changeable pixels of an optical interference display panel
US20050046922 *Mar 31, 2004Mar 3, 2005Wen-Jian LinInterferometric modulation pixels and manufacturing method thereof
US20050046948 *Mar 24, 2004Mar 3, 2005Wen-Jian LinInterference display cell and fabrication method thereof
US20050073735 *Oct 2, 2003Apr 7, 2005Monroe Michael G.MEMS device and method of forming MEMS device
US20050078379 *Oct 19, 2004Apr 14, 2005Andrew HuibersDisplay apparatus with improved contrast ratio
US20050104144 *Nov 19, 2003May 19, 2005Xhp Microsystems, Inc.Method and apparatus to reduce parasitic forces in electro-mechanical systems
US20050122560 *Dec 9, 2003Jun 9, 2005Sampsell Jeffrey B.Area array modulation and lead reduction in interferometric modulators
US20050142684 *Sep 14, 2004Jun 30, 2005Miles Mark W.Method for fabricating a structure for a microelectromechanical system (MEMS) device
US20050162727 *Jan 24, 2004Jul 28, 2005Fusao IshiiMicromirrors with support walls
US20050168431 *Feb 3, 2004Aug 4, 2005Clarence ChuiDriver voltage adjuster
US20050174628 *Dec 3, 2004Aug 11, 2005Miradia Inc.Memory cell dual protection
US20050176212 *Mar 28, 2005Aug 11, 2005Monroe Michael G.MEMS device and method of forming MEMS device
US20050179982 *Apr 7, 2005Aug 18, 2005Patel Satyadev R.Methods for depositing, releasing and packaging micro-electromechanical devices on wafer substrates
US20050180686 *Apr 7, 2005Aug 18, 2005Patel Satyadev R.Methods for depositing, releasing and packaging micro-electromechanical devices on wafer substrates
US20050181532 *Apr 7, 2005Aug 18, 2005Patel Satyadev R.Methods for depositing, releasing and packaging micro-electromechanical devices on wafer substrates
US20050191790 *Apr 7, 2005Sep 1, 2005Patel Satyadev R.Methods for depositing, releasing and packaging micro-electromechanical devices on wafer substrates
US20050195468 *Mar 5, 2004Sep 8, 2005Sampsell Jeffrey B.Integrated modulator illumination
US20050212738 *Jan 14, 2005Sep 29, 2005Brian GallyMethod and system for color optimization in a display
US20050214976 *Apr 7, 2005Sep 29, 2005Patel Satyadev RMethods for depositing, releasing and packaging micro-electromechanical devices on wafer substrates
US20050231790 *Mar 1, 2005Oct 20, 2005Miles Mark WMethod and device for modulating light with a time-varying signal
US20050244949 *Feb 11, 2005Nov 3, 2005Miles Mark WMethod and device for modulating light
US20050247477 *May 4, 2004Nov 10, 2005Manish KothariModifying the electro-mechanical behavior of devices
US20050249966 *May 4, 2004Nov 10, 2005Ming-Hau TungMethod of manufacture for microelectromechanical devices
US20050250235 *Mar 25, 2005Nov 10, 2005Miles Mark WControlling electromechanical behavior of structures within a microelectromechanical systems device
US20050254115 *May 12, 2004Nov 17, 2005Iridigm Display CorporationPackaging for an interferometric modulator
US20050255666 *May 11, 2004Nov 17, 2005Miradia Inc.Method and structure for aligning mechanical based device to integrated circuits
US20050260793 *Apr 7, 2005Nov 24, 2005Patel Satyadev RMethods for depositing, releasing and packaging micro-electromechanical devices on wafer substrates
US20050277277 *Jul 29, 2005Dec 15, 2005Taiwan Semiconductor Manufacturing Company, Ltd.Dual damascene process
US20050286113 *Jun 10, 2005Dec 29, 2005Miles Mark WPhotonic MEMS and structures
US20050286114 *Jun 10, 2005Dec 29, 2005Miles Mark WInterferometric modulation of radiation
US20060001942 *Jul 2, 2004Jan 5, 2006Clarence ChuiInterferometric modulators with thin film transistors
US20060006138 *Sep 9, 2005Jan 12, 2006Wen-Jian LinInterference display cell and fabrication method thereof
US20060007517 *Oct 12, 2004Jan 12, 2006Prime View International Co., Ltd.Structure of a micro electro mechanical system
US20060007522 *Aug 30, 2005Jan 12, 2006Andrew HuibersMicromirror and post arrangements on substrates
US20060018003 *Aug 30, 2005Jan 26, 2006Andrew HuibersMicromirror and post arrangements on substrates
US20060023286 *Jul 28, 2004Feb 2, 2006Miradia Inc.Method and apparatus for a reflective spatial light modulator with a flexible pedestal
US20060024880 *Jul 26, 2005Feb 2, 2006Clarence ChuiSystem and method for micro-electromechanical operation of an interferometric modulator
US20060033975 *Oct 21, 2005Feb 16, 2006Miles Mark WPhotonic MEMS and structures
US20060034006 *Aug 14, 2004Feb 16, 2006Fusao IshiiHinge for micro-mirror devices
US20060044246 *Feb 8, 2005Mar 2, 2006Marc MignardStaggered column drive circuit systems and methods
US20060044928 *Apr 29, 2005Mar 2, 2006Clarence ChuiDrive method for MEMS devices
US20060050066 *Oct 24, 2005Mar 9, 2006Hewlett Gregory JControl timing for spatial light modulator
US20060057754 *Feb 25, 2005Mar 16, 2006Cummings William JSystems and methods of actuating MEMS display elements
US20060065043 *Mar 25, 2005Mar 30, 2006William CummingsMethod and system for detecting leak in electronic devices
US20060065366 *Jan 28, 2005Mar 30, 2006Cummings William JPortable etch chamber
US20060065436 *Mar 25, 2005Mar 30, 2006Brian GallySystem and method for protecting microelectromechanical systems array using back-plate with non-flat portion
US20060065622 *Mar 17, 2005Mar 30, 2006Floyd Philip DMethod and system for xenon fluoride etching with enhanced efficiency
US20060065940 *Jun 3, 2005Mar 30, 2006Manish KothariAnalog interferometric modulator device
US20060066503 *Apr 1, 2005Mar 30, 2006Sampsell Jeffrey BController and driver features for bi-stable display
US20060066504 *Apr 1, 2005Mar 30, 2006Sampsell Jeffrey BSystem with server based control of client device display features
US20060066542 *Aug 15, 2005Mar 30, 2006Clarence ChuiInterferometric modulators having charge persistence
US20060066543 *Aug 20, 2005Mar 30, 2006Gally Brian JOrnamental display device
US20060066559 *Apr 6, 2005Mar 30, 2006Clarence ChuiMethod and system for writing data to MEMS display elements
US20060066560 *Sep 16, 2005Mar 30, 2006Gally Brian JSystems and methods of actuating MEMS display elements
US20060066594 *Feb 18, 2005Mar 30, 2006Karen TygerSystems and methods for driving a bi-stable display element
US20060066595 *Apr 1, 2005Mar 30, 2006Sampsell Jeffrey BMethod and system for driving a bi-stable display
US20060066596 *Apr 1, 2005Mar 30, 2006Sampsell Jeffrey BSystem and method of transmitting video data
US20060066597 *Apr 1, 2005Mar 30, 2006Sampsell Jeffrey BMethod and system for reducing power consumption in a display
US20060066598 *May 20, 2005Mar 30, 2006Floyd Philip DMethod and device for electrically programmable display
US20060066599 *May 20, 2005Mar 30, 2006Clarence ChuiReflective display pixels arranged in non-rectangular arrays
US20060066600 *Jun 3, 2005Mar 30, 2006Lauren PalmateerSystem and method for display device with reinforcing substance
US20060066601 *Jul 8, 2005Mar 30, 2006Manish KothariSystem and method for providing a variable refresh rate of an interferometric modulator display
US20060066856 *Aug 5, 2005Mar 30, 2006William CummingsSystems and methods for measuring color and contrast in specular reflective devices
US20060066863 *Mar 4, 2005Mar 30, 2006Cummings William JElectro-optical measurement of hysteresis in interferometric modulators
US20060066864 *Nov 17, 2005Mar 30, 2006William CummingsProcess control monitors for interferometric modulators
US20060066871 *Nov 17, 2005Mar 30, 2006William CummingsProcess control monitors for interferometric modulators
US20060066872 *Nov 17, 2005Mar 30, 2006William CummingsProcess control monitors for interferometric modulators
US20060066876 *Feb 24, 2005Mar 30, 2006Manish KothariMethod and system for sensing light using interferometric elements
US20060066932 *Mar 25, 2005Mar 30, 2006Clarence ChuiMethod of selective etching using etch stop layer
US20060066936 *Aug 22, 2005Mar 30, 2006Clarence ChuiInterferometric optical modulator using filler material and method
US20060066937 *Sep 23, 2005Mar 30, 2006Idc, LlcMems switch with set and latch electrodes
US20060066938 *Sep 26, 2005Mar 30, 2006Clarence ChuiMethod and device for multistate interferometric light modulation
US20060067641 *Jan 28, 2005Mar 30, 2006Lauren PalmateerMethod and device for packaging a substrate
US20060067642 *Mar 25, 2005Mar 30, 2006Karen TygerMethod and device for providing electronic circuitry on a backplate
US20060067643 *Apr 1, 2005Mar 30, 2006Clarence ChuiSystem and method for multi-level brightness in interferometric modulation
US20060067644 *Jun 17, 2005Mar 30, 2006Clarence ChuiMethod of fabricating interferometric devices using lift-off processing techniques
US20060067646 *Jul 1, 2005Mar 30, 2006Clarence ChuiMEMS device fabricated on a pre-patterned substrate
US20060067648 *Aug 5, 2005Mar 30, 2006Clarence ChuiMEMS switches with deforming membranes
US20060067649 *Aug 12, 2005Mar 30, 2006Ming-Hau TungApparatus and method for reducing slippage between structures in an interferometric modulator
US20060067650 *Aug 19, 2005Mar 30, 2006Clarence ChuiMethod of making a reflective display device using thin film transistor production techniques
US20060067651 *Aug 19, 2005Mar 30, 2006Clarence ChuiPhotonic MEMS and structures
US20060067652 *Sep 1, 2005Mar 30, 2006Cummings William JMethods for visually inspecting interferometric modulators for defects
US20060076311 *Mar 25, 2005Apr 13, 2006Ming-Hau TungMethods of fabricating interferometric modulators by selectively removing a material
US20060076634 *Apr 8, 2005Apr 13, 2006Lauren PalmateerMethod and system for packaging MEMS devices with incorporated getter
US20060076637 *Jun 10, 2005Apr 13, 2006Gally Brian JMethod and system for packaging a display
US20060077126 *Mar 11, 2005Apr 13, 2006Manish KothariApparatus and method for arranging devices into an interconnected array
US20060077145 *Mar 7, 2005Apr 13, 2006Floyd Philip DDevice having patterned spacers for backplates and method of making the same
US20060077151 *May 27, 2005Apr 13, 2006Clarence ChuiMethod and device for a display having transparent components integrated therein
US20060077152 *Jun 10, 2005Apr 13, 2006Clarence ChuiDevice and method for manipulation of thermal response in a modulator
US20060077153 *Jun 17, 2005Apr 13, 2006Idc, Llc, A Delaware Limited Liability CompanyReduced capacitance display element
US20060077155 *Jul 21, 2005Apr 13, 2006Clarence ChuiReflective display device having viewable display on both sides
US20060077156 *Jul 28, 2005Apr 13, 2006Clarence ChuiMEMS device having deformable membrane characterized by mechanical persistence
US20060077381 *Nov 17, 2005Apr 13, 2006William CummingsProcess control monitors for interferometric modulators
US20060077393 *May 27, 2005Apr 13, 2006Gally Brian JSystem and method for implementation of interferometric modulator displays
US20060077502 *Mar 25, 2005Apr 13, 2006Ming-Hau TungMethods of fabricating interferometric modulators by selectively removing a material
US20060077503 *Apr 29, 2005Apr 13, 2006Lauren PalmateerSystem and method of providing MEMS device with anti-stiction coating
US20060077504 *May 2, 2005Apr 13, 2006Floyd Philip DMethod and device for protecting interferometric modulators from electrostatic discharge
US20060077505 *Apr 22, 2005Apr 13, 2006Clarence ChuiDevice and method for display memory using manipulation of mechanical response
US20060077507 *Feb 11, 2005Apr 13, 2006Clarence ChuiConductive bus structure for interferometric modulator array
US20060077508 *Apr 22, 2005Apr 13, 2006Clarence ChuiMethod and device for multistate interferometric light modulation
US20060077510 *Feb 11, 2005Apr 13, 2006Clarence ChuiSystem and method of illuminating interferometric modulators using backlighting
US20060077514 *Jan 21, 2005Apr 13, 2006Sampsell Jeffrey BSystem and method of reducing color shift in a display
US20060077515 *Apr 11, 2005Apr 13, 2006Cummings William JMethod and device for corner interferometric modulation
US20060077516 *Apr 29, 2005Apr 13, 2006Manish KothariDevice having a conductive light absorbing mask and method for fabricating same
US20060077518 *Jul 1, 2005Apr 13, 2006Clarence ChuiMirror and mirror layer for optical modulator and method
US20060077521 *Jul 29, 2005Apr 13, 2006Gally Brian JSystem and method of implementation of interferometric modulators for display mirrors
US20060077523 *Apr 1, 2005Apr 13, 2006Cummings William JElectrical characterization of interferometric modulators
US20060077527 *Jun 16, 2005Apr 13, 2006Cummings William JMethods and devices for inhibiting tilting of a mirror in an interferometric modulator
US20060077528 *Aug 5, 2005Apr 13, 2006Floyd Philip DDevice and method for modifying actuation voltage thresholds of a deformable membrane in an interferometric modulator
US20060077529 *Aug 5, 2005Apr 13, 2006Clarence ChuiMethod of fabricating a free-standing microstructure
US20060077617 *Aug 30, 2005Apr 13, 2006Floyd Philip DSelectable capacitance circuit
US20060079048 *May 20, 2005Apr 13, 2006Sampsell Jeffrey BMethod of making prestructure for MEMS systems
US20060079098 *Mar 16, 2005Apr 13, 2006Floyd Philip DMethod and system for sealing a substrate
US20060082745 *Oct 15, 2004Apr 20, 2006Asml Holding N.V.System and method to block unwanted light reflecting from a pattern generating portion from reaching an object
US20060082862 *Nov 30, 2005Apr 20, 2006Miradia Inc.High fill ratio reflective spatial light modulator with hidden hinge
US20060087717 *Dec 8, 2005Apr 27, 2006Miradia Inc.Mirror structure with single crystal silicon cross-member
US20060103613 *Jun 10, 2005May 18, 2006Clarence ChuiInterferometric modulator array with integrated MEMS electrical switches
US20060103643 *Jul 15, 2005May 18, 2006Mithran MathewMeasuring and modeling power consumption in displays
US20060131262 *Dec 22, 2005Jun 22, 2006Miradia Inc.Fabrication of a reflective spatial light modulator
US20060132890 *Dec 21, 2004Jun 22, 2006Texas Instruments IncorporatedBias voltage routing scheme for a digital micro-mirror device
US20060148121 *Jan 3, 2005Jul 6, 2006Miradia Inc.Method and structure for forming an integrated spatial light modulator
US20060152794 *Jan 7, 2005Jul 13, 2006Miradia Inc.Method and structure for reducing parasitic influences of deflection devices on spatial light modulators
US20060152795 *Jan 7, 2005Jul 13, 2006Miradia Inc.Electrical contact method and structure for deflection devices formed in an array configuration
US20060177950 *May 20, 2005Aug 10, 2006Wen-Jian LinMethod of manufacturing optical interferance color display
US20060187525 *Apr 26, 2006Aug 24, 2006Miradia Inc.Method and apparatus for a reflective spatial light modulator with a flexible pedestal
US20060198013 *May 3, 2006Sep 7, 2006Sampsell Jeffrey BIntegrated modulator illumination
US20060209384 *May 3, 2006Sep 21, 2006Clarence ChuiSystem and method of illuminating interferometric modulators using backlighting
US20060219435 *May 18, 2006Oct 5, 2006Manish KothariModifying the electro-mechanical behavior of devices
US20060250335 *Apr 28, 2006Nov 9, 2006Stewart Richard ASystem and method of driving a MEMS display device
US20060250337 *Mar 28, 2006Nov 9, 2006Miles Mark WPhotonic MEMS and structures
US20060250350 *Apr 14, 2006Nov 9, 2006Manish KothariSystems and methods of actuating MEMS display elements
US20060262180 *Sep 14, 2005Nov 23, 2006Robbins Gene AObject processing assembly operable to form dynamically variable images in objects in single shot events
US20060262181 *Sep 14, 2005Nov 23, 2006Robbins Gene ALaser-based image former operable to form dynamically variable images in objects in single shot events
US20060262182 *Sep 14, 2005Nov 23, 2006Robbins Gene AImage management system operable to manage the formation of dynamically variable images in objects in single shot events
US20060262380 *Jul 24, 2006Nov 23, 2006Idc, Llc A Delaware Limited Liability CompanyMEMS devices with stiction bumps
US20060274074 *May 23, 2006Dec 7, 2006Miles Mark WDisplay device having a movable structure for modulating light and method thereof
US20060274397 *Jun 1, 2005Dec 7, 2006Miradia Inc.Co-planar surface and torsion device mirror structure and method of manufacture for optical displays
US20060274400 *May 12, 2006Dec 7, 2006Miles Mark WMethod and device for modulating light with optical compensation
US20060277486 *Jun 2, 2005Dec 7, 2006Skinner David NFile or user interface element marking system
US20060279862 *Feb 15, 2004Dec 14, 2006David ElataDevice and method for stacked multi-level uncoupled electrostatic actuators
US20060284877 *Jun 1, 2006Dec 21, 2006Miles Mark WPhotonic mems and structures
US20060285192 *Jun 15, 2005Dec 21, 2006Miradia Inc.Method and structure of patterning landing pad structures for spatial light modulators
US20070001247 *Apr 7, 2005Jan 4, 2007Patel Satyadev RMethods for depositing, releasing and packaging micro-electromechanical devices on wafer substrates
US20070024550 *Aug 28, 2006Feb 1, 2007Clarence ChuiDrive method for MEMS devices
US20070035804 *Oct 25, 2006Feb 15, 2007Clarence ChuiSystem and method for addressing a MEMS display
US20070035805 *Oct 25, 2006Feb 15, 2007Clarence ChuiSystem and method for addressing a MEMS display
US20070041079 *Oct 26, 2006Feb 22, 2007Clarence ChuiInterferometric modulators having charge persistence
US20070042524 *Aug 18, 2006Feb 22, 2007Lior KogutMEMS devices having support structures with substantially vertical sidewalls and methods for fabricating the same
US20070047900 *Jul 21, 2006Mar 1, 2007Sampsell Jeffrey BMEMS devices having support structures and methods of fabricating the same
US20070053652 *Jan 6, 2006Mar 8, 2007Marc MignardMethod and system for driving MEMS display elements
US20070058095 *Nov 4, 2005Mar 15, 2007Miles Mark WSystem and method for charge control in a MEMS device
US20070096300 *Oct 28, 2005May 3, 2007Hsin-Fu WangDiffusion barrier layer for MEMS devices
US20070147688 *Dec 22, 2005Jun 28, 2007Mithran MathewSystem and method for power reduction when decompressing video streams for interferometric modulator displays
US20070170540 *Jan 18, 2006Jul 26, 2007Chung Won SukSilicon-rich silicon nitrides as etch stops in MEMS manufature
US20070177129 *Jun 15, 2006Aug 2, 2007Manish KothariSystem and method for providing residual stress test structures
US20070182707 *Feb 9, 2006Aug 9, 2007Manish KothariMethod and system for writing data to MEMS display elements
US20070189654 *Jan 13, 2006Aug 16, 2007Lasiter Jon BInterconnect structure for MEMS device
US20070194414 *Feb 21, 2006Aug 23, 2007Chen-Jean ChouMethod for providing and removing discharging interconnect for chip-on-glass output leads and structures thereof
US20070194630 *Feb 23, 2006Aug 23, 2007Marc MignardMEMS device having a layer movable at asymmetric rates
US20070196944 *Feb 22, 2006Aug 23, 2007Chen-Jean ChouElectrical conditioning of MEMS device and insulating layer thereof
US20070206267 *Mar 2, 2006Sep 6, 2007Ming-Hau TungMethods for producing MEMS with protective coatings using multi-component sacrificial layers
US20070222556 *Sep 14, 2005Sep 27, 2007Robbins Gene ATracking system for distributable objects which are marked in single laser shot events with dynamically variable images
US20070242008 *Apr 17, 2006Oct 18, 2007William CummingsMode indicator for interferometric modulator displays
US20070247419 *Apr 24, 2006Oct 25, 2007Sampsell Jeffrey BPower consumption optimized display update
US20070249078 *Apr 19, 2006Oct 25, 2007Ming-Hau TungNon-planar surface structures and process for microelectromechanical systems
US20070249081 *Apr 19, 2006Oct 25, 2007Qi LuoNon-planar surface structures and process for microelectromechanical systems
US20070258123 *May 3, 2006Nov 8, 2007Gang XuElectrode and interconnect materials for MEMS devices
US20070269748 *Aug 1, 2007Nov 22, 2007Idc, Llc.Method for manufacturing an array of interferometric modulators
US20070279729 *Jun 1, 2006Dec 6, 2007Manish KothariAnalog interferometric modulator device with electrostatic actuation and release
US20070290961 *Jun 15, 2006Dec 20, 2007Sampsell Jeffrey BMethod and apparatus for low range bit depth enhancement for MEMS display architectures
US20080002210 *Jun 30, 2006Jan 3, 2008Kostadin DjordjevDetermination of interferometric modulator mirror curvature and airgap variation using digital photographs
US20080003710 *Jun 28, 2006Jan 3, 2008Lior KogutSupport structure for free-standing MEMS device and methods for forming the same
US20080003737 *Jun 30, 2006Jan 3, 2008Ming-Hau TungMethod of manufacturing MEMS devices providing air gap control
US20080025849 *Jul 31, 2007Jan 31, 2008Hitachi, Ltd.High-Pressure Fuel Pump Control Apparatus for an Internal Combustion Engine
US20080026328 *Jul 30, 2007Jan 31, 2008Idc, LlcMethod for fabricating a structure for a microelectromechanical systems (mems) device
US20080030825 *Oct 9, 2007Feb 7, 2008Qualcomm IncorporatedMicroelectromechanical device and method utilizing a porous surface
US20080032439 *Aug 2, 2006Feb 7, 2008Xiaoming YanSelective etching of MEMS using gaseous halides and reactive co-etchants
US20080041817 *Oct 26, 2007Feb 21, 2008Qualcomm Mems Technologies, Inc.Structure of a micro electro mechanical system and the manufacturing method thereof
US20080043315 *Aug 15, 2006Feb 21, 2008Cummings William JHigh profile contacts for microelectromechanical systems
US20080055699 *Oct 26, 2007Mar 6, 2008Qualcomm Mems Technologies, IncStructure of a micro electro mechanical system and the manufacturing method thereof
US20080055707 *Jun 28, 2006Mar 6, 2008Lior KogutSupport structure for free-standing MEMS device and methods for forming the same
US20080055709 *May 23, 2007Mar 6, 2008Miradia Inc.Method and apparatus for a reflective spatial light modulator with a flexible pedestal
US20080062503 *Jul 3, 2007Mar 13, 2008Miradia Inc.Fabrication of a high fill ratio reflective spatial light modulator with hidden hinge
US20080094686 *Oct 19, 2006Apr 24, 2008U Ren Gregory DavidSacrificial spacer process and resultant structure for MEMS support structure
US20080115569 *Jan 28, 2008May 22, 2008Idc, LlcSystem and method of testing humidity in a sealed mems device
US20080115596 *Jan 28, 2008May 22, 2008Idc, LlcSystem and method of testing humidity in a sealed mems device
US20080157413 *Mar 18, 2008Jul 3, 2008Qualcomm Mems Technologies, Inc.Method of manufacturing optical interference color display
US20080279498 *Sep 27, 2007Nov 13, 2008Qualcomm IncorporatedMems structures, methods of fabricating mems components on separate substrates and assembly of same
US20090009444 *Jul 3, 2007Jan 8, 2009Qualcomm IncorporatedMems devices having improved uniformity and methods for making them
US20090059346 *Aug 29, 2007Mar 5, 2009Qualcomm IncorporatedInterferometric Optical Modulator With Broadband Reflection Characteristics
US20090207159 *Feb 11, 2009Aug 20, 2009Qualcomm Mems Technologies, Inc.Method and apparatus for sensing, measurement or characterization of display elements integrated with the display drive scheme, and system and applications using the same
US20090219604 *Jan 26, 2009Sep 3, 2009Qualcomm Mems Technologies, Inc.Photonic mems and structures
US20100019336 *Jul 27, 2009Jan 28, 2010Qualcomm Mems Technologies, Inc.Mems devices having overlying support structures and methods of fabricating the same
US20100109102 *Nov 18, 2009May 6, 2010Miradia Inc.Method and structure for forming a gyroscope and accelerometer
US20100147790 *Feb 24, 2010Jun 17, 2010Qualcomm Mems Technologies, Inc.Support structure for mems device and methods therefor
US20100149627 *Feb 24, 2010Jun 17, 2010Qualcomm Mems Technologies, Inc.Support structure for mems device and methods therefor
US20100182675 *Jul 22, 2010Qualcomm Mems Technologies, Inc.Methods of fabricating mems with spacers between plates and devices formed by same
US20100202039 *Aug 12, 2010Qualcomm Mems Technologies, Inc.Mems devices having support structures with substantially vertical sidewalls and methods for fabricating the same
US20100245311 *Jan 20, 2010Sep 30, 2010Qualcomm Mems Technologies, Inc.Low voltage driver scheme for interferometric modulators
US20110053304 *Oct 14, 2010Mar 3, 2011Qualcomm Mems Technologies, Inc.Method of making an electronic device with a curved backplate
USRE42119Feb 8, 2011Qualcomm Mems Technologies, Inc.Microelectrochemical systems device and method for fabricating same
EP1872165A1 *Mar 13, 2006Jan 2, 2008Capella Photonic, Inc.Optical add-drop multiplexer architecture with reduced effect of mirror edge diffraction
WO2004074167A2 *Feb 15, 2004Sep 2, 2004Technion Research & Development Foundation Ltd.A device and method for stacked multi-level uncoupled electrostatic actuators
WO2004074167A3 *Feb 15, 2004Mar 10, 2005Ofir Bochobza-DeganiA device and method for stacked multi-level uncoupled electrostatic actuators
Classifications
U.S. Classification359/290, 359/224.1, 359/850
International ClassificationH04N5/74, G09F9/30, G02B26/08
Cooperative ClassificationG02B26/0841
European ClassificationG02B26/08M4E
Legal Events
DateCodeEventDescription
Aug 28, 2003FPAYFee payment
Year of fee payment: 4
Aug 20, 2007FPAYFee payment
Year of fee payment: 8
Aug 24, 2011FPAYFee payment
Year of fee payment: 12