US6042928A - Fluorocarbon resin sheet and glass laminate - Google Patents

Fluorocarbon resin sheet and glass laminate Download PDF

Info

Publication number
US6042928A
US6042928A US08/921,017 US92101797A US6042928A US 6042928 A US6042928 A US 6042928A US 92101797 A US92101797 A US 92101797A US 6042928 A US6042928 A US 6042928A
Authority
US
United States
Prior art keywords
fluorocarbon resin
resin sheet
adhesive layer
sheet
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US08/921,017
Inventor
Takanobu Suzuki
Kenji Nakamura
Eichi Watanabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Plastics Inc
Original Assignee
Mitsubishi Plastics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP23220096A external-priority patent/JP4124498B2/en
Priority claimed from JP23758196A external-priority patent/JP3961051B2/en
Priority claimed from JP26417296A external-priority patent/JP3673602B2/en
Priority claimed from JP591997A external-priority patent/JP3631869B2/en
Priority claimed from JP18637297A external-priority patent/JP3673619B2/en
Application filed by Mitsubishi Plastics Inc filed Critical Mitsubishi Plastics Inc
Assigned to MITSUBISHI PLASTICS INC. reassignment MITSUBISHI PLASTICS INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: NAKAMURA, KENJI, SUZUKI, TAKANOBU, WATANABE, EICHI
Application granted granted Critical
Publication of US6042928A publication Critical patent/US6042928A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10559Shape of the cross-section
    • B32B17/10577Surface roughness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0072Roughness, e.g. anti-slip
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2327/16Homopolymers or copolymers of vinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2327/18Homopolymers or copolymers of tetrafluoroethylene
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/92Fire or heat protection feature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/92Fire or heat protection feature
    • Y10S428/921Fire or flameproofing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24355Continuous and nonuniform or irregular surface on layer or component [e.g., roofing, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24355Continuous and nonuniform or irregular surface on layer or component [e.g., roofing, etc.]
    • Y10T428/24364Continuous and nonuniform or irregular surface on layer or component [e.g., roofing, etc.] with transparent or protective coating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/3154Of fluorinated addition polymer from unsaturated monomers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/3154Of fluorinated addition polymer from unsaturated monomers
    • Y10T428/31544Addition polymer is perhalogenated

Definitions

  • the present invention relates to a fluorocarbon resin sheet and a glass laminate employing it. More particularly, it relates to a fluorocarbon resin sheet which is excellent in transparency and flame retardancy and which at the same time is excellent in processability for lamination with a glass plate, and a glass laminate.
  • a glass plate is a material having transparency and strength, but is poor in impact resistance. To complement such poor impact resistance, it is common to employ a glass laminate having a plastic sheet laminated on such a glass plate.
  • a usual plastic sheet is effective for preventing scattering of glass fragments upon breakage of the glass plate, but at the time of a fire, the plastic sheet is likely to burn, whereby flame retardancy can not be satisfied. Therefore, a glass laminate having a fluorocarbon resin sheet laminated on a glass plate, has been proposed as a glass product which has fire-proofing and flame-proofing properties and which also has a property for preventing scattering of glass fragments even when broken.
  • a conventional glass laminate employing a fluorocarbon resin sheet had problems such that no adequate consideration was made with respect to optimum properties required for such a sheet for its lamination, and bubbles were likely to be included during the production of a glass laminate, whereby the desired functions of a laminated glass from the viewpoint of its appearance and physical properties, can hardly be obtained.
  • the present invention is based on a discovery of a fluorocarbon resin sheet and a glass laminate which can solve such problems.
  • the present invention provides:
  • a fluorocarbon resin sheet having a fluorine content of at least 55% and a melting point of from 60 to 220° C., made solely of a polymer comprising at least one fluorine-containing monomer, or made of a blend of such a polymer with other polymer, which has a total light transmittance of at least 80% and a tensile modulus of elasticity within a range of from 1 ⁇ 10 7 to 4 ⁇ 10 9 Pa within an entire measuring temperature range of from 0 to 30° C., or such a fluorocarbon resin sheet provided with an adhesive layer formed on one side or each side of the fluorocarbon resin sheet, wherein the surface of the resin sheet, or the surface of the adhesive layer, is embossed to have a center line average roughness Ra of from 0.05 to 2.0 ⁇ m and a number of peaks Pc of from 5 to 500 peaks/8 mm; and
  • a fluorocarbon resin sheet provided with an adhesive layer which comprises a fluorocarbon resin sheet having a fluorine content of at least 55% and a melting point of from 60 to 220° C., made solely of a polymer comprising at least one fluorine-containing monomer, or made of a blend of such a polymer with other polymer, which sheet has a tensile modulus of elasticity within a range of from 1 ⁇ 10 7 to 4 ⁇ 10 9 Pa within an entire measuring temperature range of from 0 to 30° C., and an adhesive layer formed on one side or each side of the fluorocarbon resin sheet, wherein the total light transmittance Tb of the fluorocarbon resin sheet is at least 90%, the thickness Da of the adhesive layer is from 0.03 to 10 ⁇ m, and the absolute value of Na-Nb, i.e.
  • the present invention provides:
  • a glass laminate comprising at least two glass plates and a fluorocarbon resin sheet interposed between the glass plates, said resin sheet being a fluorocarbon resin sheet having a fluorine content of at least 55% and a melting point of from 60 to 220° C., made solely of a polymer comprising at least one fluorine-containing monomer, or made of a blend of such a polymer with other polymer, which has a total light transmittance of at least 80% and a tensile modulus of elasticity within a range of from 1 ⁇ 10 7 to 4 ⁇ 10 9 Pa within an entire measuring temperature range of from 0 to 30° C., wherein the surface of the resin sheet is embossed to have a center line average roughness Ra of from 0.05 to 2.0 ⁇ m and a number of peaks Pc of from 5 to 500 peaks/8 mm; and
  • a glass laminate comprising a glass plate and a fluorocarbon resin sheet which are laminated by an adhesive layer
  • said resin sheet being a fluorocarbon resin sheet having a fluorine content of at least 55% and a melting point of from 60 to 220° C., made solely of a polymer comprising at least one fluorine-containing monomer, or made of a blend of such a polymer with other polymer, which sheet has a tensile modulus of elasticity within a range of from 1 ⁇ 10 7 to 4 ⁇ 10 9 Pa within an entire measuring temperature range of from 0 to 30° C., wherein the total light transmittance Tb of the fluorocarbon resin sheet is at least 90%, the thickness Da of the adhesive layer is from 0.03 to 10 ⁇ m, and the absolute value of Na-Nb, i.e.
  • FIG. 1 is a view illustrating the method of counting the number of peaks of an emboss.
  • the fluorocarbon resin sheet is made solely of a polymer comprising at least one fluorine-containing monomer, or made of a blend of such a polymer with other polymer.
  • the fluorine-containing monomer component may, for example, be vinyl fluoride, vinylidene fluoride, trifluoroethylene, tetrafluoroethylene, pentafluoropropylene or hexafluoropropylene.
  • the resin sheet is made of a homopolymer or copolymer of such fluorine-containing monomer, or a copolymer prepared by using a vinyl monomer such as ethylene or an alkyl vinyl ether, in combination with the fluorine-containing monomer, or a blend thereof.
  • Such a material is useful so long as it can be formed into a sheet and can be embossed, i.e. it is hot-melt moldable.
  • fluorocarbon resins other than a homopolymer of tetrafluoroethylene (PTFE), can be used without any particular restriction.
  • a tetrafluoroethylene/perfluoroalkylvinyl ether copolymer, a tetrafluoroethylene/hexafluoropropylene copolymer, a tetrafluoroethylene/vinylidene fluoride/hexafluoropropylene copolymer or a polyvinylidene fluoride may, for example, be mentioned.
  • the fluorocarbon resin sheet having such a composition is required to have a fluorine content of at least 55% and a melting point within a range of from 60 to 220° C. If the fluorine content is less than 55%, the flame retardancy of the sheet tends to be poor, and the fire-proofing and flame-proofing properties of the glass laminate will be impaired.
  • Adjustment of the melting point within the above range can be made by adjusting e.g. the crystallinity or the monomer compositional ratio of the resin to be used.
  • an additional component such as an ultraviolet absorber may suitably be added to the resin within a range not to impair the adhesiveness or transparency.
  • the thickness of the fluorocarbon resin sheet of the present invention is not particularly limited, but is usually preferably within a range of from 0.05 to 1 mm from the viewpoint of the impact resistance or the handing efficiency during lamination to glass plates. Also with respect to a method for forming the sheet, a commonly known method may be employed.
  • thermoplastic molding method such as extrusion molding or calender molding.
  • the fluorocarbon resin sheet obtained by the above described method is required to have a total light transmittance of at least 80% and a tensile modulus of elasticity within a specified range within a measuring temperature range of from 0 to 30° C.
  • the method for measuring the total light transmittance is in accordance with JIS K7105. By adjusting the total light transmittance to a level of at least 80%, transparency will not be impaired when it is laminated with a glass plate. Further, it is required that the tensile modulus of elasticity is within a range of from 1 ⁇ 10 7 to 4 ⁇ 10 9 Pa within an entire measuring temperature range of from 0 to 30° C.
  • the range of the measuring temperature of from 0 to 30° C. corresponds to a common atmospheric temperature and also corresponds to the temperature of the atmosphere during the preparation of a glass laminate.
  • the method for measuring the tensile modulus of elasticity is such that the dynamic visco-elasticity is measured by a tensile method at a cycle of 1 Hz, and the storage elastic modulus is thereby obtained.
  • the fluorocarbon resin sheet tends to be hard, whereby compatibility (wettability) with a glass plate tends to be poor, and there will be a problem such that such a fluorocarbon resin sheet is likely to slip when it is set on a glass plate for lamination, and displacement of the glass plates is likely to occur during the process until completion of lamination, such as during transportation or during pressing.
  • the fluorocarbon resin sheet tends to be soft, there will be a problem that not only its handling during lamination tends to be difficult, but also its affinity to a glass plate tends to be excessive, and slippage tends to be poor, when it is set on a glass plate for lamination, whereby the sheet can not be set at a predetermined position, and bubbles are likely to be locally trapped at the interface with the glass plate, so that the appearance as a glass laminate tends to be impaired.
  • the tensile modulus of elasticity can be adjusted within the above range by adjusting e.g. the crystallinity or the monomer compositional ratio of the resin to be used.
  • the surface of the resin sheet is embossed to have a center line average roughness Ra within a range of from 0.05 to 2 ⁇ m and a number of peaks Pc within a range of from 5 to 500 peaks/8 mm.
  • the center line average roughness Ra is the one stipulated as an arithmetic mean roughness Ra in JIS B0601.
  • the number of peaks Pc is determined in such a manner that as shown in FIG.
  • Ra is less than 0.05 ⁇ m
  • slippage of the sheet tends to be poor when it is set on a glass plate for lamination therewith, and it is likely to be contacted with the glass plate in such a state that the sheet is waved or sagging, whereby air between the sheet and the glass plate can not adequately be removed, and bubbles are likely to remain.
  • Ra exceeds 2 ⁇ m
  • peaks of the emboss tends to be too high, whereby the glass plate is likely to slip at the time of setting, and displacement of the glass plates is likely to occur during subsequent transportation or pressing, and the appearance as a glass laminate tends to be impaired.
  • Pc is less than 5 peaks/8 mm, the distances between peaks of the sheet tend to be so large that even valleys are likely to contact the glass at an early stage of the heat melting, whereby bubbles tend to remain at irregular positions to present a poor appearance.
  • Pc exceeds 500, the distances between peaks tend to be too short, whereby bubbles are likely to be trapped between the peaks during a process wherein the peaks are melted under heating, to present a poor appearance.
  • a particularly preferred emboss is such that the center line average roughness Ra is within a range of from 0.1 to 0.5 ⁇ m, and the number of peaks Pc is within a range of from 50 to 200 peaks/8 mm. Within such ranges, the balance of slippage and displacement of glass plates is good, and remaining bubbles will remarkably be reduced.
  • the difference between the maximum value and the minimum value of thickness within a range of optional 5 cm in the fluorocarbon resin sheet is at most 15 ⁇ m. If the difference exceeds 15 ⁇ m, the irregularity at such portion tends to be so large that the convex portion is likely to melt and bond to glass by heating before bubbles are sufficiently removed from the surrounding concave portions, thus leading to a poor appearance.
  • a method for imparting such an emboss to the resin surface is not particularly limited. For example, there may be mentioned a method wherein a fluorocarbon resin sheet is preheated, and a heated embossing roll or an embossing belt is pressed thereon, a method of pressing with an embossing plate by a hot plate method, or a method wherein a transfer sheet having an emboss is hot-pressed, and then peeled.
  • the glass plate to be laminated with the above fluorocarbon resin sheet is not particularly limited and may be one commonly used for industrial purpose. Glass plates for the same type or different types may be selected for use from soda lime glass, borosilicate glass, crystallized glass and wired sheet glass.
  • the thickness of the glass plate is suitably selected depending upon the nature of application, and it is usually within a range of from 1 to 20 mm.
  • the surface of the glass plate is preferably finished to have little weaving so as to facilitate removal of bubbles and to minimize retention of bubbles between the glass plate and the fluorocarbon resin sheet when the glass plate is laminated with the resin sheet.
  • the fluorocarbon resin sheet as described above may be used in the form having an adhesive layer formed on one side or both sides thereof. Otherwise, such an adhesive layer may be formed on the glass plate side.
  • a sheet provided with such an adhesive layer preferred is one wherein the surface of the adhesive layer is embossed to have a center line average roughness Ra, as mentioned above, within a range of from 0.1 to 0.5 ⁇ m and a number of peaks Pc within a range of from 50 to 200 peaks/8 mm.
  • the adhesive layer may be any coating layer, so long as it is industrially used and has an adhesive property to both the glass plate and the fluorocarbon resin.
  • an adhesive e.g. an ethylene/vinyl acetate copolymer, polyvinyl ether type, polyester type, acrylic type, epoxy type, polyurethane type, rubber type or silicone type, may be employed.
  • an adhesive comprising from 40 to 80 wt %, preferably from 50 to 70 wt %, of a fluorocarbon resin component and from 20 to 60 wt %, preferably from 30 to 50 wt %, of an acrylic resin component, may be used. If the fluorocarbon resin component is less than 40 wt %, the adhesive property to the fluorocarbon resin sheet tends to be poor, and if the fluorocarbon resin component exceeds 80 wt % (the acrylic resin component being less than 20 wt %), the adhesive property to the glass plate tends to be poor.
  • These two components may be in the form of a block copolymer comprising blocks of fluorine-containing monomer and blocks of (meth)acrylic acid ester, or a graft copolymer having one of the resin components grafted on the other resin component.
  • a blend of a fluorocarbon resin and an acrylic resin is practically preferred in view of the costs and the production efficiency of the resins.
  • the fluorocarbon resin component one consisting mainly of vinylidene fluoride as the monomer component may be used. Specifically, one comprising from 50 to 100 wt % of vinylidene fluoride, from 0 to 40 wt % of tetrafluoroethylene and from 0 to 30 wt % of hexafluoropropylene, is preferred.
  • an ester such as methyl, ethyl, propyl, butyl, isobutyl, n-hexyl, 2-ethylhexyl, lauryl or stearyl ester of (meth)acrylic acid may be mentioned.
  • methyl methacrylate is an essential component, and is required to be contained in a proportion of at least 90 wt % in the acrylic resin components. If it is less than 90 wt %, the adhesion to the glass plate tends to be inadequate when bonded to the glass plate.
  • alkyl (meth)acrylate monomers methyl acrylate, butyl acrylate, butyl methacrylate and isobutyl methacrylate may, for example, be employed.
  • an acid monomer such as acrylic acid, methacrylic acid, fumaric acid or itaconic acid may preferably be added.
  • the adhesive is a blend of a fluorocarbon resin component and an acrylic resin component
  • the compatibility can be adjusted by adjusting the molecular weight of the two components or incorporating the above-mentioned copolymer component to the two resin components.
  • the number average molecular weight Mn of the fluorocarbon resin component is preferably from 40,000 to 150,000, and the number average molecular weight Mn of the acrylic resin component is preferably from 2,000 to 50,000.
  • an adhesive component one containing a vinylidene fluoride type fluorocarbon resin is preferred. Accordingly, if a fluorocarbon resin sheet containing vinylidene fluoride as a common component is used, the degree of adhesion between the sheet and the adhesive will be high, such being desirable.
  • an adhesive one comprising from 90 to 99 wt % of a fluorocarbon resin component and from 1 to 10 wt % of an amino type silane coupling agent, is also preferred.
  • the fluorocarbon resin component the one having the above-described composition is preferably used.
  • the amino type silane coupling agent ⁇ -aminoalkylsilane is used. Specifically, ⁇ -aminopropyltriethoxysilane, or N-( ⁇ -aminoethyl). ⁇ -aminopropylmethyldimethoxysilane may, for example, be mentioned.
  • the sheet provided with the above adhesive coating layer is very useful, as it can be wound up by a usual method after drying the adhesive layer, and its storage is easy.
  • Coating of the adhesive layer to the fluorocarbon resin sheet can be carried out by a conventional method.
  • a polyester film having a prescribed surface roughness may be press-bonded to the adhesive layer after its formation, so that fine irregularities of the surface will be transferred to the adhesive layer, whereby an emboss to facilitate removal of bubbles, can be formed.
  • the emboss may be imparted by a method wherein the adhesive layer is heated to some extent, and then a heated embossing roll or embossing belt is pressed against it, or a method of pressing with an embossing plate by a hot press method.
  • the fluorocarbon resin sheet having a predetermined emboss imparted on its surface or a fluorocarbon resin sheet provided with an adhesive layer having a predetermined emboss imparted on its surface, according to the present invention, may be sandwiched between glass plates and hot-pressed and melted to bond the glass plates to each other.
  • the obtained glass laminate has fire-proofing and flame-proofing properties and at the same time, has a property to prevent scattering of glass fragments when broken. Further, inclusion of bubbles is little, whereby the appearance is good, and the bonding strength is excellent.
  • the fluorocarbon resin sheet of the present invention can, of course, be applied also to a field where fire-proofing and flame-proofing properties are not required, by utilizing the feature that inclusion of bubbles is little.
  • it may be a sheet wherein both surface layers are made of a fluorocarbon resin, and the center is a layer of other polymer such as polyethylene terephthalate.
  • the fluorocarbon resin sheet provided with the adhesive layer is preferably such that in order to improve the transparency, the optical relation between the fluorocarbon resin sheet and the adhesive layer is adjusted as follows. Namely, it is a fluorocarbon resin sheet, wherein the total light transmittance Tb of the fluorocarbon resin sheet is at least 90%, the thickness Da of the adhesive layer is from 0.03 to 10 ⁇ m, and the absolute value of Na-Nb, i.e.
  • Da is preferably at least 0.01 ⁇ m, and preferably Da ⁇
  • the thickness Da of the adhesive coating laye is less than 0.03 ⁇ m, no adequate bonding strength will be obtained between the glass plate and the fluorocarbon resin sheet, and if it exceeds 10 ⁇ m, the transparency tends to be impaired when laminated with glass plates.
  • the absolute value of Na-Nb i.e.
  • the absolute value of Na-Nb is required to be at most 0.13. If
  • Da is at least 0.01 ⁇ m, and the product of Da and
  • the bonding strength between the glass plates and the fluorocarbon resin sheet is secured, and the transparency of the laminate can be maintained. If Da ⁇
  • a fluorocarbon resin comprising 30 wt % of vinylidene fluoride, 50 wt % of tetrafluoroethylene and 20 wt % of hexafluoropropylene, was extrusion-molded by an extruder into a sheet having a thickness of 200 ⁇ m, which was then heated and pressed by an embossing roll to obtain a fluorocarbon resin sheet having an emboss imparted to each side.
  • the obtained fluorocarbon resin sheet was sandwiched between a pair of glass plates (thickness: 3 mm, width: 900 mm, length: 2,000 mm) having an adhesive coated on their surfaces, to obtain a glass laminate.
  • test and evaluation methods of the respective items are as follows.
  • y mm is 0.25/measuring magnification
  • the measuring magnification was 5,000, but with respect to No. 7 where the peak was high, the measuring magnification was 500.
  • a polyvinylidene fluoride was molded into a sheet having a thickness of 200 ⁇ m by the same extruder as in No. 1, followed by embossing. This sheet was sandwiched between a pair of glass plates (thickness: 3 mm, width: 900 mm, length: 2,000 mm) at 200° C. in the same manner as in No. 1, to obtain a glass laminate.
  • the evaluations were carried out in the same manner as in No. 1.
  • An ethylene/tetrafluoroethylene copolymer was molded into a sheet having a thickness of 200 ⁇ m by the same extruder as in No. 1, followed by embossing.
  • This sheet was sandwiched between a pair of the same glass plates as used in No. 1 at 220° C., followed by heating and pressing, whereby the sheet did not bond to the glass plates at all. Therefore, the heating temperature was raised, and only by heating at 300° C., a glass laminate was prepared.
  • a vinylidene fluoride/hexafluoropropylene copolymer was formed into a sheet having a thickness of 300 ⁇ m by means of a calender roll, followed by embossing. This sheet was used to prepare a glass laminate in the same manner as in No. 1 at 120° C., whereby slippage during setting of the sheet was poor, and many bubbles remained after lamination.
  • a polyvinylidene fluoride was molded into a sheet having a thickness of 200 ⁇ m by an extruder, followed by embossing. This sheet was used to prepare a glass laminate in the same manner as in No. 1 at 200° C., whereby slippage tended to be too much in setting of the glass plates and the sheet, and there was a problem that positions of the pair of glass plates tended to be displacement during lamination.
  • a copolymer fluorocarbon resin comprising 30 wt % of vinylidene fluoride, 50 wt % of tetrafluoroethylene and 20 wt % of hexafluoropropylene, was molded into a sheet having a thickness of 200 ⁇ m by an extruder, followed by embossing.
  • This sheet was used for preparation of a glass laminate in the same manner as in No. 1 at 190° C., whereby slippage was poor in setting of the sheet and the glass plates, and setting was not properly done, and bubbles entered at that time, remained after lamination.
  • No. 1 to No. 3 representing the fluorocarbon resin sheet of the present invention and the glass laminate employing this sheet, are excellent in the lamination property for a glass laminate (the setting property during lamination and the appearance after assembled into a glass laminate).
  • No. 4 wherein the melting point of the sheet was too high, was poor in the lamination property and particularly had a problem that bubbles remained in the glass laminate.
  • No. 5 wherein the melting point and the tensile elastic modulus of the sheet were too low, was poor in slippage and thus inferior in the setting property.
  • No. 6 and No. 7 wherein the emboss shape was outside the range of the present invention, were poor in each of the setting property and the appearance of the lamination property.
  • the same fluorocarbon resin as used in No. 1 was melt-extruded, and then on the surface of each side of the molded sheet, the same adhesive as used in No. 1 was coated in a thickness of 1 ⁇ m. Before the adhesive was dried up, a polyester film having a variously embossed surface was pressed against the surface of the adhesive layer on each side to obtain a fluorocarbon resin sheet provided with an adhesive layer having a variously embossed surface on each side.
  • the fluorocarbon resin sheet provided with such an adhesive coating layer thus obtained was sandwiched between a pair of glass plates, followed by heating to obtain a glass laminate.
  • the appearance, etc. of the obtained glass laminate were evaluated, and the results are shown in Table 2.
  • the thickness of the sheet was measured by a unit of 1 ⁇ m.
  • the measured portions were two locations along the longitudinal direction of the sheet and two locations along the width direction of the sheet, and the measurement was made over a length of 50 cm at each location.
  • the four values of the difference between the maximum value and the minimum value at the four measured locations were averaged.
  • the appearance of the glass laminate was visually inspected, and the number of remaining bubbles was evaluated by the following three levels.
  • the sheets of the present invention (No. 8 to No. 12) had Ra, Pc and the difference in thickness within the prescribed ranges, and glass laminates obtained by using them had a good appearance with little remaining bubbles.
  • Ra is within a range of from 0.1 to 0.5 ⁇ m
  • Pc is within a range of from 50 to 200 peaks/8 mm
  • glass laminates were obtained wherein remaining bubbles were extremely little.
  • a copolymer fluorocarbon resin comprising 40 wt % of vinylidene fluoride, 40 wt % of tetrafluoroethylene and 20 wt % of hexafluoropropylene, was extruded at 180° C. by an extruder to obtain a fluorocarbon resin sheet having a thickness of 200 ⁇ m.
  • the same adhesive as used in No. 1 was directly coated as an adhesive and dried to form an adhesive layer having a thickness of 0.4 ⁇ m, and an emboss having the same shape as in No. 1 was formed on its surface.
  • the fluorocarbon resin sheet of the obtained sheet for lamination With respect to the fluorocarbon resin sheet of the obtained sheet for lamination, the fluorine content, the total light transmittance Db and the refractive index Mb were measured, and the refractive index Na of the adhesive layer alone and the thickness Db of the adhesive layer were measured. Further, using the sheet for lamination, a glass laminate was prepared, and its transparency and bonding strength were evaluated.
  • the same test as in No. 15 was carried out except that the thickness of the adhesive layer was changed to 0.1 ⁇ m.
  • the same test as in No. 15 was carried out except that the thickness of the adhesive layer was changed to 0.1 ⁇ m.
  • a silane coupling agent layer ( ⁇ -aminopropylethoxysilane) was formed as an adhesive layer in a thickness of 0.005 ⁇ m, and the same fluorocarbon resin sheet (without an adhesive layer) as used in No. 15 was sandwiched therebetween and laminated, and thereafter, the same test as in No. 15 was carried out.
  • the same test as in No. 15 was carried out except that the thickness of the adhesive layer was changed to 12 ⁇ m.
  • the refractive index Nb of the fluorocarbon resin sheet was directly measured.
  • Na of the adhesive layer was measured in such a manner that the adhesive was coated on a separate sheet of a tetrafluoroethylene having a thickness of 100 ⁇ m and dried, and then the sheet was peeled off and subjected to the measurement in the form of a film of the adhesive alone.
  • the cross section of the sheet for lamination was observed by a scanning electron microscope, and the thickness of the adhesive layer was measured.
  • the sheet for lamination was sandwiched between a pair of soda lime glass plates (50 mm ⁇ 150 mm) having a thickness of 3 mm and pressed at a temperature of 130° C. for 10 minutes under a pressure of 5 kg/cm 2 for lamination.
  • the transparency of the obtained laminate was visually evaluated by the following four standards.
  • the laminate was immersed in boiling water of 100° C. for 2 hours and then taken out, and a peeling test was carried out under the same conditions.
  • the strength thereby obtained was designated as boil strength.
  • the unit is gf/18 mm.
  • a copolymer fluorocarbon resin comprising 40 wt % of vinylidene fluoride, 20 wt % of tetrafluoroethylene and 40 wt % of tetrafluoroethylene, was extruded at 180° C. by an extruder to obtain a fluorocarbon resin sheet having a thickness of 200 ⁇ m.
  • an adhesive one prepared by blending a fluorocarbon resin comprising 61 wt % of vinylidene fluoride, 24 wt % of tetrafluoroethylene and 15 wt % of hexafluoropropylene, and an acrylic resin comprising 95 wt % of methyl methacrylate and 5 wt % of ethyl methacrylate, in a weight ratio of 70/30, was used, and this adhesive was dissolved in a solvent mixture comprising butyl acetate and methyl isobutyl ketone (weight ratio: 75/25). The solution thereby obtained was coated on the fluorocarbon resin sheet by a coater and heated in a heating furnace of 120° C. for 30 seconds to evaporate and remove the solvent, to form an adhesive layer having a thickness of 1 ⁇ m on one side of the fluorocarbon resin sheet.
  • the evaluation was carried out in the same manner as in No. 26 except that as the fluorocarbon resin sheet, a sheet of a copolymer fluorocarbon resin comprising 20 wt % of vinylidene fluoride, 60 wt % of tetrafluoroethylene and 20 wt % of hexafluoropropylene, was used.
  • the evaluation was carried out in the same manner as in No. 26 except that as the adhesive, one prepared by blending a fluorocarbon resin consisting of 100 wt % of vinylidene fluoride and an acrylic resin consisting of 100 wt % of methyl methacrylate in a weight ratio of 55/45, was used.
  • the evaluation was carried out in the same manner as in No. 26 except that a fluorocarbon resin sheet having no adhesive coating layer provided, was used.
  • the evaluation was carried out in the same manner as in No. 26 except that as the adhesive agent, an acrylic copolymer comprising 95 wt % of methyl methacrylate and 5 wt % of ethyl methacrylate, was used, and the thickness of the adhesive layer was changed to 1.5 ⁇ m.
  • the adhesive agent an acrylic copolymer comprising 95 wt % of methyl methacrylate and 5 wt % of ethyl methacrylate
  • the evaluation was carried out in the same manner as in No. 26 except that as the adhesive, a fluorocarbon resin comprising 61 wt % of vinylidene fluoride, 24 wt % of tetrafluoroethylene and 15 wt % of hexafluoropropylene, was used, and the thickness of the adhesive layer was changed to 1.5 ⁇ m.
  • a fluorocarbon resin comprising 61 wt % of vinylidene fluoride, 24 wt % of tetrafluoroethylene and 15 wt % of hexafluoropropylene, was used, and the thickness of the adhesive layer was changed to 1.5 ⁇ m.
  • the evaluation was carried out in the same manner as in No. 26 except that as the adhesive, a tetrafluoroethylene-vinyl ester copolymer (Cefral coat A-402B, manufactured by Central Glass Co., Ltd.) was used, and the thickness of the adhesive layer was changed to 1.5 ⁇ m.
  • a tetrafluoroethylene-vinyl ester copolymer (Cefral coat A-402B, manufactured by Central Glass Co., Ltd.) was used, and the thickness of the adhesive layer was changed to 1.5 ⁇ m.
  • the evaluation was carried out in the same manner as in No. 26 except that as the adhesive, a partially saponified ethylene vinyl acetate copolymer resin (Takemerto SD-181, manufactured by Takeda Chemical Industries, Ltd.) was used, and the thickness of the adhesive layer was changed to 2 ⁇ m.
  • a partially saponified ethylene vinyl acetate copolymer resin Takemerto SD-181, manufactured by Takeda Chemical Industries, Ltd.
  • the evaluation was carried out in the same manner as in No. 26 except that as the adhesive, a polyvinyl butyral resin (manufactured by Sekisui Chemical Co., Ltd.) was used, and the thickness of the adhesive layer was changed to 2 ⁇ m.
  • a polyvinyl butyral resin manufactured by Sekisui Chemical Co., Ltd.
  • the evaluation was carried out in the same manner as in No. 26 except that as the adhesive, an epoxy type adhesive (Araldite AER 280, manufactured by Chiba Geigy AG) was used, and the thickness of the adhesive layer was changed to 5 pm.
  • an epoxy type adhesive Aldite AER 280, manufactured by Chiba Geigy AG
  • the evaluation was carried out in the same manner as in No. 26 except that as the adhesive, a silicone type adhesive (Bond MOS-7, manufactured by Konishi K.K.) was used, and the thickness of the adhesive layer was changed to 5 ⁇ m.
  • a silicone type adhesive (Bond MOS-7, manufactured by Konishi K.K.) was used, and the thickness of the adhesive layer was changed to 5 ⁇ m.
  • the adhesive one prepared by blending a fluorocarbon resin comprising 61 wt % of vinylidene fluoride, 24 wt % of tetrafluoroethylene and 15 wt % of hexafluoropropylene, and ⁇ -aminopropyltriethoxysilane, in a weight ratio of 95/5, was used.
  • This adhesive was dissolved in 2-butanone and coated on the fluorocarbon resin sheet by a coater and heated in a heating furnace of 80° C. for 30 seconds to evaporate and remove the solvent, to form an adhesive layer having a thickness of 1 ⁇ m on one side of the fluorocarbon resin sheet.
  • the evaluation was carried out in the same manner as in No. 37 except that as the fluorocarbon resin for the fluorocarbon resin sheet and the adhesive, a copolymer fluorocarbon resin comprising 20 wt % of vinylidene fluoride, 60 wt % of tetrafluoroethylene and 20 wt % of hexafluoropropylene, was used.
  • the evaluation was carried out in the same manner as in No. 37 except that as the adhesive, one prepared by blending a fluorocarbon resin comprising 40 wt % of vinylidene fluoride, 40 wt % of tetrafluoroethylene and 20 wt % of hexafluoropropylene, and ⁇ -aminopropyltriethoxysilane, in a weight ratio of 99.5/0.5, was used.
  • a fluorocarbon resin comprising 40 wt % of vinylidene fluoride, 40 wt % of tetrafluoroethylene and 20 wt % of hexafluoropropylene, and ⁇ -aminopropyltriethoxysilane, in a weight ratio of 99.5/0.5
  • the evaluation was carried out in the same manner as in No. 37 except that as the adhesive, one prepared by blending a fluorocarbon resin comprising 40 wt % of vinylidene fluoride, 40 wt % of tetrafluoroethylene and 20 wt % of hexafluoropropylene, and ⁇ -aminopropyltriethoxysilane, in a weight ratio of 85/15, was used.
  • the evaluation was carried out in the same manner as in No. 37 except that as the adhesive, one prepared by blending a fluorocarbon resin comprising 40 wt % of vinylidene fluoride, 40 wt % of tetrafluoroethylene and 20 wt % of hexafluoropropylene, and ⁇ -glycidoxypropyltrimethoxysilane, in a weight ratio of 95/5, was used.
  • a fluorocarbon resin comprising 40 wt % of vinylidene fluoride, 40 wt % of tetrafluoroethylene and 20 wt % of hexafluoropropylene, and ⁇ -glycidoxypropyltrimethoxysilane, in a weight ratio of 95/5, was used.
  • the recited percentage of fluorine content of the fluorocarbon resin is in weight percent.
  • the fluorocarbon resin sheet and the glass laminate of the present invention are excellent in the lamination property of the sheet and the glass plates, and thus have a merit that the glass laminate thereby obtained is excellent in the transparency and the flame retardancy.

Abstract

A fluorocarbon resin sheet having a fluorine content of at least 55% and a melting point of from 60 to 220° C., made solely of a polymer comprising at least one fluorine-containing monomer, or made of a blend of such a polymer with other polymer, which has a total light transmittance of at least 80% and a tensile modulus of elasticity within a range of from 1×107 to 4×109 Pa within an entire measuring temperature range of from 0 to 30° C., wherein the surface of the resin sheet is embossed to have a center line average roughness Ra of from 0.05 to 2.0 μm and a number of peaks Pc of from 5 to 500 peaks/8 mm.

Description

The present invention relates to a fluorocarbon resin sheet and a glass laminate employing it. More particularly, it relates to a fluorocarbon resin sheet which is excellent in transparency and flame retardancy and which at the same time is excellent in processability for lamination with a glass plate, and a glass laminate.
A glass plate is a material having transparency and strength, but is poor in impact resistance. To complement such poor impact resistance, it is common to employ a glass laminate having a plastic sheet laminated on such a glass plate. A usual plastic sheet is effective for preventing scattering of glass fragments upon breakage of the glass plate, but at the time of a fire, the plastic sheet is likely to burn, whereby flame retardancy can not be satisfied. Therefore, a glass laminate having a fluorocarbon resin sheet laminated on a glass plate, has been proposed as a glass product which has fire-proofing and flame-proofing properties and which also has a property for preventing scattering of glass fragments even when broken.
However, a conventional glass laminate employing a fluorocarbon resin sheet had problems such that no adequate consideration was made with respect to optimum properties required for such a sheet for its lamination, and bubbles were likely to be included during the production of a glass laminate, whereby the desired functions of a laminated glass from the viewpoint of its appearance and physical properties, can hardly be obtained.
The present invention is based on a discovery of a fluorocarbon resin sheet and a glass laminate which can solve such problems.
With respect to the fluorocarbon resin sheet, the present invention provides:
(1) a fluorocarbon resin sheet having a fluorine content of at least 55% and a melting point of from 60 to 220° C., made solely of a polymer comprising at least one fluorine-containing monomer, or made of a blend of such a polymer with other polymer, which has a total light transmittance of at least 80% and a tensile modulus of elasticity within a range of from 1×107 to 4×109 Pa within an entire measuring temperature range of from 0 to 30° C., or such a fluorocarbon resin sheet provided with an adhesive layer formed on one side or each side of the fluorocarbon resin sheet, wherein the surface of the resin sheet, or the surface of the adhesive layer, is embossed to have a center line average roughness Ra of from 0.05 to 2.0 μm and a number of peaks Pc of from 5 to 500 peaks/8 mm; and
(2) a fluorocarbon resin sheet provided with an adhesive layer, which comprises a fluorocarbon resin sheet having a fluorine content of at least 55% and a melting point of from 60 to 220° C., made solely of a polymer comprising at least one fluorine-containing monomer, or made of a blend of such a polymer with other polymer, which sheet has a tensile modulus of elasticity within a range of from 1×107 to 4×109 Pa within an entire measuring temperature range of from 0 to 30° C., and an adhesive layer formed on one side or each side of the fluorocarbon resin sheet, wherein the total light transmittance Tb of the fluorocarbon resin sheet is at least 90%, the thickness Da of the adhesive layer is from 0.03 to 10 μm, and the absolute value of Na-Nb, i.e. |Na-Nb|, is at most 0.13, where Na is the refractive index of the adhesive layer, and Nb is the refractive index of the fluorocarbon resin sheet.
With respect to the glass laminate, the present invention provides:
(1) a glass laminate comprising at least two glass plates and a fluorocarbon resin sheet interposed between the glass plates, said resin sheet being a fluorocarbon resin sheet having a fluorine content of at least 55% and a melting point of from 60 to 220° C., made solely of a polymer comprising at least one fluorine-containing monomer, or made of a blend of such a polymer with other polymer, which has a total light transmittance of at least 80% and a tensile modulus of elasticity within a range of from 1×107 to 4×109 Pa within an entire measuring temperature range of from 0 to 30° C., wherein the surface of the resin sheet is embossed to have a center line average roughness Ra of from 0.05 to 2.0 μm and a number of peaks Pc of from 5 to 500 peaks/8 mm; and
(2) a glass laminate comprising a glass plate and a fluorocarbon resin sheet which are laminated by an adhesive layer, said resin sheet being a fluorocarbon resin sheet having a fluorine content of at least 55% and a melting point of from 60 to 220° C., made solely of a polymer comprising at least one fluorine-containing monomer, or made of a blend of such a polymer with other polymer, which sheet has a tensile modulus of elasticity within a range of from 1×107 to 4×109 Pa within an entire measuring temperature range of from 0 to 30° C., wherein the total light transmittance Tb of the fluorocarbon resin sheet is at least 90%, the thickness Da of the adhesive layer is from 0.03 to 10 μm, and the absolute value of Na-Nb, i.e. |Na-Nb|, is at most 0.13, where Na is the refractive index of the adhesive layer, and Nb is the refractive index of the fluorocarbon resin sheet.
In the accompanying drawing, FIG. 1 is a view illustrating the method of counting the number of peaks of an emboss.
Now, the present invention will be described in detail with reference to the preferred embodiments.
In the present invention, the fluorocarbon resin sheet is made solely of a polymer comprising at least one fluorine-containing monomer, or made of a blend of such a polymer with other polymer. The fluorine-containing monomer component may, for example, be vinyl fluoride, vinylidene fluoride, trifluoroethylene, tetrafluoroethylene, pentafluoropropylene or hexafluoropropylene. The resin sheet is made of a homopolymer or copolymer of such fluorine-containing monomer, or a copolymer prepared by using a vinyl monomer such as ethylene or an alkyl vinyl ether, in combination with the fluorine-containing monomer, or a blend thereof.
Such a material is useful so long as it can be formed into a sheet and can be embossed, i.e. it is hot-melt moldable. Particularly, fluorocarbon resins other than a homopolymer of tetrafluoroethylene (PTFE), can be used without any particular restriction.
Specifically, a tetrafluoroethylene/perfluoroalkylvinyl ether copolymer, a tetrafluoroethylene/hexafluoropropylene copolymer, a tetrafluoroethylene/vinylidene fluoride/hexafluoropropylene copolymer or a polyvinylidene fluoride, may, for example, be mentioned.
Here, the fluorocarbon resin sheet having such a composition, is required to have a fluorine content of at least 55% and a melting point within a range of from 60 to 220° C. If the fluorine content is less than 55%, the flame retardancy of the sheet tends to be poor, and the fire-proofing and flame-proofing properties of the glass laminate will be impaired.
Further, with one having a melting point of less than 60° C., there will be a problem that heat resistance during lamination with a glass plate tends to be inadequate, and especially in summer time, softening tends to be remarkable, whereby handling tends to be difficult, and consequently the heat resistance of a laminated glass thereby obtained tends to be low, and there will be a problem that glass plates are likely to be displaced.
With one having a melting point exceeding 220° C., no suitable material is available as a pressing medium which dose not damage a glass plate during the lamination and which also has adequate heat resistance. Accordingly, lamination has to be done at a temperature lower than 220° C., whereby the sheet will not melt and bond to the glass surface, whereby there will be a problem that both the strength and the appearance tend to be impaired. A method may be conceivable in which no pressure is exerted after heating the material to a temperature of at least 220° C. However, by such a method, a sheet can not adequately follow the waving of the glass plate surface and will not adequately bond to the glass plate except for local bonding, whereby there will be a problem that both the strength and the appearance tend to be impaired, and satisfactory lamination can hardly be attained.
Adjustment of the melting point within the above range can be made by adjusting e.g. the crystallinity or the monomer compositional ratio of the resin to be used.
Further, an additional component such as an ultraviolet absorber may suitably be added to the resin within a range not to impair the adhesiveness or transparency.
The thickness of the fluorocarbon resin sheet of the present invention is not particularly limited, but is usually preferably within a range of from 0.05 to 1 mm from the viewpoint of the impact resistance or the handing efficiency during lamination to glass plates. Also with respect to a method for forming the sheet, a commonly known method may be employed. For example, it is possible to employ a method in which the resin material is dissolved in an organic solvent and uniformly coated on a substrate having a release property, and then the organic solvent is removed by drying, followed by peeling the sheet from the substrate, a method in which the material is formed into an aqueous emulsion, which is uniformly coated on a substrate having a release property, and then water is removed by drying, followed by peeling the sheet from the substrate, or a thermoplastic molding method such as extrusion molding or calender molding.
The fluorocarbon resin sheet obtained by the above described method, is required to have a total light transmittance of at least 80% and a tensile modulus of elasticity within a specified range within a measuring temperature range of from 0 to 30° C. The method for measuring the total light transmittance is in accordance with JIS K7105. By adjusting the total light transmittance to a level of at least 80%, transparency will not be impaired when it is laminated with a glass plate. Further, it is required that the tensile modulus of elasticity is within a range of from 1×107 to 4×109 Pa within an entire measuring temperature range of from 0 to 30° C.
The range of the measuring temperature of from 0 to 30° C. corresponds to a common atmospheric temperature and also corresponds to the temperature of the atmosphere during the preparation of a glass laminate. The method for measuring the tensile modulus of elasticity is such that the dynamic visco-elasticity is measured by a tensile method at a cycle of 1 Hz, and the storage elastic modulus is thereby obtained.
If the above tensile modulus of elasticity exceeds 4×109 Pa, the fluorocarbon resin sheet tends to be hard, whereby compatibility (wettability) with a glass plate tends to be poor, and there will be a problem such that such a fluorocarbon resin sheet is likely to slip when it is set on a glass plate for lamination, and displacement of the glass plates is likely to occur during the process until completion of lamination, such as during transportation or during pressing. On the other hand, if the tensile modulus of elasticity is less than 1×107 Pa, the fluorocarbon resin sheet tends to be soft, there will be a problem that not only its handling during lamination tends to be difficult, but also its affinity to a glass plate tends to be excessive, and slippage tends to be poor, when it is set on a glass plate for lamination, whereby the sheet can not be set at a predetermined position, and bubbles are likely to be locally trapped at the interface with the glass plate, so that the appearance as a glass laminate tends to be impaired.
Like adjustment of the melting point, the tensile modulus of elasticity can be adjusted within the above range by adjusting e.g. the crystallinity or the monomer compositional ratio of the resin to be used.
Further, it is necessary to form a certain specific emboss on the surface of the above fluorocarbon resin sheet. Namely, the surface of the resin sheet is embossed to have a center line average roughness Ra within a range of from 0.05 to 2 μm and a number of peaks Pc within a range of from 5 to 500 peaks/8 mm. Here, the center line average roughness Ra is the one stipulated as an arithmetic mean roughness Ra in JIS B0601. The number of peaks Pc is determined in such a manner that as shown in FIG. 1, two parallel lines are drawn at distances of ±y mm from the center line of the roughness curve obtained as above, and a section of the curve which starts from the -y line, reaches the +y line and returns again to -y line, is counted as one peak.
If Ra is less than 0.05 μm, slippage of the sheet tends to be poor when it is set on a glass plate for lamination therewith, and it is likely to be contacted with the glass plate in such a state that the sheet is waved or sagging, whereby air between the sheet and the glass plate can not adequately be removed, and bubbles are likely to remain. On the other hand, if Ra exceeds 2 μm, peaks of the emboss tends to be too high, whereby the glass plate is likely to slip at the time of setting, and displacement of the glass plates is likely to occur during subsequent transportation or pressing, and the appearance as a glass laminate tends to be impaired.
If Pc is less than 5 peaks/8 mm, the distances between peaks of the sheet tend to be so large that even valleys are likely to contact the glass at an early stage of the heat melting, whereby bubbles tend to remain at irregular positions to present a poor appearance. On the other hand, if Pc exceeds 500, the distances between peaks tend to be too short, whereby bubbles are likely to be trapped between the peaks during a process wherein the peaks are melted under heating, to present a poor appearance.
A particularly preferred emboss is such that the center line average roughness Ra is within a range of from 0.1 to 0.5 μm, and the number of peaks Pc is within a range of from 50 to 200 peaks/8 mm. Within such ranges, the balance of slippage and displacement of glass plates is good, and remaining bubbles will remarkably be reduced.
Further, it is preferred that the difference between the maximum value and the minimum value of thickness within a range of optional 5 cm in the fluorocarbon resin sheet is at most 15 μm. If the difference exceeds 15 μm, the irregularity at such portion tends to be so large that the convex portion is likely to melt and bond to glass by heating before bubbles are sufficiently removed from the surrounding concave portions, thus leading to a poor appearance.
A method for imparting such an emboss to the resin surface is not particularly limited. For example, there may be mentioned a method wherein a fluorocarbon resin sheet is preheated, and a heated embossing roll or an embossing belt is pressed thereon, a method of pressing with an embossing plate by a hot plate method, or a method wherein a transfer sheet having an emboss is hot-pressed, and then peeled.
The glass plate to be laminated with the above fluorocarbon resin sheet is not particularly limited and may be one commonly used for industrial purpose. Glass plates for the same type or different types may be selected for use from soda lime glass, borosilicate glass, crystallized glass and wired sheet glass.
The thickness of the glass plate is suitably selected depending upon the nature of application, and it is usually within a range of from 1 to 20 mm.
Further, the surface of the glass plate is preferably finished to have little weaving so as to facilitate removal of bubbles and to minimize retention of bubbles between the glass plate and the fluorocarbon resin sheet when the glass plate is laminated with the resin sheet.
The fluorocarbon resin sheet as described above may be used in the form having an adhesive layer formed on one side or both sides thereof. Otherwise, such an adhesive layer may be formed on the glass plate side.
As a sheet provided with such an adhesive layer, preferred is one wherein the surface of the adhesive layer is embossed to have a center line average roughness Ra, as mentioned above, within a range of from 0.1 to 0.5 μm and a number of peaks Pc within a range of from 50 to 200 peaks/8 mm.
The adhesive layer may be any coating layer, so long as it is industrially used and has an adhesive property to both the glass plate and the fluorocarbon resin. For example, an adhesive of e.g. an ethylene/vinyl acetate copolymer, polyvinyl ether type, polyester type, acrylic type, epoxy type, polyurethane type, rubber type or silicone type, may be employed.
Here, as a preferred adhesive, an adhesive comprising from 40 to 80 wt %, preferably from 50 to 70 wt %, of a fluorocarbon resin component and from 20 to 60 wt %, preferably from 30 to 50 wt %, of an acrylic resin component, may be used. If the fluorocarbon resin component is less than 40 wt %, the adhesive property to the fluorocarbon resin sheet tends to be poor, and if the fluorocarbon resin component exceeds 80 wt % (the acrylic resin component being less than 20 wt %), the adhesive property to the glass plate tends to be poor.
These two components may be in the form of a block copolymer comprising blocks of fluorine-containing monomer and blocks of (meth)acrylic acid ester, or a graft copolymer having one of the resin components grafted on the other resin component. However, a blend of a fluorocarbon resin and an acrylic resin is practically preferred in view of the costs and the production efficiency of the resins.
As the fluorocarbon resin component, one consisting mainly of vinylidene fluoride as the monomer component may be used. Specifically, one comprising from 50 to 100 wt % of vinylidene fluoride, from 0 to 40 wt % of tetrafluoroethylene and from 0 to 30 wt % of hexafluoropropylene, is preferred.
On the other hand, as a monomer for the acrylic resin, an ester such as methyl, ethyl, propyl, butyl, isobutyl, n-hexyl, 2-ethylhexyl, lauryl or stearyl ester of (meth)acrylic acid may be mentioned. However, methyl methacrylate is an essential component, and is required to be contained in a proportion of at least 90 wt % in the acrylic resin components. If it is less than 90 wt %, the adhesion to the glass plate tends to be inadequate when bonded to the glass plate. Further, as other alkyl (meth)acrylate monomers, methyl acrylate, butyl acrylate, butyl methacrylate and isobutyl methacrylate may, for example, be employed.
Further, in order to improve the adhesion to the glass plate, an acid monomer such as acrylic acid, methacrylic acid, fumaric acid or itaconic acid may preferably be added.
When the adhesive is a blend of a fluorocarbon resin component and an acrylic resin component, it is important from the viewpoint of transparency and bonding strength that the compatibility of the two components is good. From this viewpoint, it is preferred to employ, as a fluorocarbon resin component, one comprising vinylidene fluoride having good compatibility with an acrylic resin, as the main monomer component.
Further, the compatibility can be adjusted by adjusting the molecular weight of the two components or incorporating the above-mentioned copolymer component to the two resin components.
In general, the number average molecular weight Mn of the fluorocarbon resin component is preferably from 40,000 to 150,000, and the number average molecular weight Mn of the acrylic resin component is preferably from 2,000 to 50,000. As such an adhesive component, one containing a vinylidene fluoride type fluorocarbon resin is preferred. Accordingly, if a fluorocarbon resin sheet containing vinylidene fluoride as a common component is used, the degree of adhesion between the sheet and the adhesive will be high, such being desirable. Further, as an adhesive, one comprising from 90 to 99 wt % of a fluorocarbon resin component and from 1 to 10 wt % of an amino type silane coupling agent, is also preferred. As the fluorocarbon resin component, the one having the above-described composition is preferably used. As the amino type silane coupling agent, ω-aminoalkylsilane is used. Specifically, γ-aminopropyltriethoxysilane, or N-(β-aminoethyl).γ-aminopropylmethyldimethoxysilane may, for example, be mentioned.
The sheet provided with the above adhesive coating layer is very useful, as it can be wound up by a usual method after drying the adhesive layer, and its storage is easy.
Coating of the adhesive layer to the fluorocarbon resin sheet can be carried out by a conventional method. To impart an emboss to the surface of the adhesive layer, a polyester film having a prescribed surface roughness may be press-bonded to the adhesive layer after its formation, so that fine irregularities of the surface will be transferred to the adhesive layer, whereby an emboss to facilitate removal of bubbles, can be formed. Otherwise, the emboss may be imparted by a method wherein the adhesive layer is heated to some extent, and then a heated embossing roll or embossing belt is pressed against it, or a method of pressing with an embossing plate by a hot press method.
The fluorocarbon resin sheet having a predetermined emboss imparted on its surface or a fluorocarbon resin sheet provided with an adhesive layer having a predetermined emboss imparted on its surface, according to the present invention, may be sandwiched between glass plates and hot-pressed and melted to bond the glass plates to each other. The obtained glass laminate has fire-proofing and flame-proofing properties and at the same time, has a property to prevent scattering of glass fragments when broken. Further, inclusion of bubbles is little, whereby the appearance is good, and the bonding strength is excellent. Further, the fluorocarbon resin sheet of the present invention can, of course, be applied also to a field where fire-proofing and flame-proofing properties are not required, by utilizing the feature that inclusion of bubbles is little. However, in such a case, it may be a sheet wherein both surface layers are made of a fluorocarbon resin, and the center is a layer of other polymer such as polyethylene terephthalate.
Here, the fluorocarbon resin sheet provided with the adhesive layer is preferably such that in order to improve the transparency, the optical relation between the fluorocarbon resin sheet and the adhesive layer is adjusted as follows. Namely, it is a fluorocarbon resin sheet, wherein the total light transmittance Tb of the fluorocarbon resin sheet is at least 90%, the thickness Da of the adhesive layer is from 0.03 to 10 μm, and the absolute value of Na-Nb, i.e. |Na-Nb|, is at most 0.13, where Na is the refractive index of the adhesive layer, and Nb is the refractive index of the fluorocarbon resin sheet.
In this fluorocarbon resin sheet provided with the adhesive layer, Da is preferably at least 0.01 μm, and preferably Da×|Na-Nb|≦0.1. More preferably, Da is within a range of from 0.05 to 0.5 μm, and Da×|Na-Nb|≦0.03.
Here, if the thickness Da of the adhesive coating laye is less than 0.03 μm, no adequate bonding strength will be obtained between the glass plate and the fluorocarbon resin sheet, and if it exceeds 10 μm, the transparency tends to be impaired when laminated with glass plates.
Further, with respect to the relation between the fluorocarbon resin sheet and the adhesive layer, the absolute value of Na-Nb, i.e. |Na-Nb|, is required to be at most 0.13. If |Na-Nb| exceeds 0.13, fogging tends to increase due to the difference in refractive indices when bonded to glass plates. Preferably, Da is at least 0.01 μm, and the product of Da and |Na-Nb|, i.e. Da×|Na-Nb|, is at most 0.1.
Within these ranges, the bonding strength between the glass plates and the fluorocarbon resin sheet is secured, and the transparency of the laminate can be maintained. If Da×|Na-Nb| exceeds 0.1, the transparency of the laminate tends to gradually decrease. Particularly preferably,Da is within a range of from 0.05 to 0.5 μm, and Da×|Na-Nb|≦0.03.
Now, the present invention will be described in further detail with reference to Examples. However, it should be understood that the present invention is by no means restricted to such specific Examples.
No. 1 to No. 7
No. 1
A fluorocarbon resin comprising 30 wt % of vinylidene fluoride, 50 wt % of tetrafluoroethylene and 20 wt % of hexafluoropropylene, was extrusion-molded by an extruder into a sheet having a thickness of 200 μm, which was then heated and pressed by an embossing roll to obtain a fluorocarbon resin sheet having an emboss imparted to each side. The obtained fluorocarbon resin sheet was sandwiched between a pair of glass plates (thickness: 3 mm, width: 900 mm, length: 2,000 mm) having an adhesive coated on their surfaces, to obtain a glass laminate. The adhesive was made of a mixture comprising a fluorocarbon resin containing vinylidene fluoride as the main component and an acrylic resin containing methyl methacrylate as the main component, wherein the mixing ratio (weight ratio) was the fluorocarbon resin/the acrylic resin=55/45 (Nobafusso PF-250 C-2, tradename, manufactured by Dai Nippon Shikizai Kogyo K.K.), and this adhesive was directly coated and dried to form the adhesive layer having a thickness of 0.4 μm.
With respect to the fluorocarbon resin sheet and the glass laminate, physical properties of the following items were measured, and the lamination property for a glass laminate (including the setting property of the sheet with the glass plates at the time of lamination and the appearance after assembled into a glass laminate) was evaluated as an overall evaluation. The results are shown in Table 1. With respect to the setting property, symbol ◯ indicates that the sheet can easily be positioned on the glass plate, and after setting, the glass plates will not undergo slippage or displacement. With respect to the appearance, ◯ indicates that no bubbles or displacement of the glass plates are observed.
The test and evaluation methods of the respective items are as follows.
(1) With respect to light transmittance of a sheet, the total light transmittance (%) was measured in accordance with JIS K7105.
(2) With respect to the fluorine content in a sheet, the proportion (wt %) of the total weight of fluorine atoms to the total weight of the fluorocarbon resin-constituting atoms, was calculated from the monomer composition of the fluorocarbon resin.
(3) With respect to the melting point of a sheet, a differential scanning calorimetry was carried out at a temperature raising rate of 10° C./min, whereby the heat absorption peak temperature was obtained.
(4) With respect to the center line average roughness Ra and the number of peaks Pc, using a stylus surface roughness meter (SE-3FK, manufactured by Kabushiki Kaisha Kosaka Kenkyusho), the center line average roughness was measured with respect to an optional 8 mm distance in the resin surface under measuring conditions such that the stylus forward end diameter was 2 μm, the stylus load was 70 mg and the cut off value was 0.8 mm.
For the number of peaks Pc, as shown in FIG. 1, two parallel lines were drawn at distances of ±y mm from the center line of the roughness curve obtained as described above, and a section of the curve which starts from a -y line, reaches a +y line and again returns to a -y line, was counted as one peak.
Here, y mm is 0.25/measuring magnification, and the measuring magnification was 5,000, but with respect to No. 7 where the peak was high, the measuring magnification was 500.
No. 2 and No. 3
A polyvinylidene fluoride was molded into a sheet having a thickness of 200 μm by the same extruder as in No. 1, followed by embossing. This sheet was sandwiched between a pair of glass plates (thickness: 3 mm, width: 900 mm, length: 2,000 mm) at 200° C. in the same manner as in No. 1, to obtain a glass laminate. The evaluations were carried out in the same manner as in No. 1.
No. 4
An ethylene/tetrafluoroethylene copolymer was molded into a sheet having a thickness of 200 μm by the same extruder as in No. 1, followed by embossing. This sheet was sandwiched between a pair of the same glass plates as used in No. 1 at 220° C., followed by heating and pressing, whereby the sheet did not bond to the glass plates at all. Therefore, the heating temperature was raised, and only by heating at 300° C., a glass laminate was prepared.
No. 5
A vinylidene fluoride/hexafluoropropylene copolymer was formed into a sheet having a thickness of 300 μm by means of a calender roll, followed by embossing. This sheet was used to prepare a glass laminate in the same manner as in No. 1 at 120° C., whereby slippage during setting of the sheet was poor, and many bubbles remained after lamination.
No. 6
A polyvinylidene fluoride was molded into a sheet having a thickness of 200 μm by an extruder, followed by embossing. This sheet was used to prepare a glass laminate in the same manner as in No. 1 at 200° C., whereby slippage tended to be too much in setting of the glass plates and the sheet, and there was a problem that positions of the pair of glass plates tended to be displacement during lamination.
No. 7
A copolymer fluorocarbon resin comprising 30 wt % of vinylidene fluoride, 50 wt % of tetrafluoroethylene and 20 wt % of hexafluoropropylene, was molded into a sheet having a thickness of 200 μm by an extruder, followed by embossing. This sheet was used for preparation of a glass laminate in the same manner as in No. 1 at 190° C., whereby slippage was poor in setting of the sheet and the glass plates, and setting was not properly done, and bubbles entered at that time, remained after lamination.
                                  TABLE 1                                 
__________________________________________________________________________
           1   2   3   4    5    6      7                                 
__________________________________________________________________________
Light transmittance                                                       
           93  84  84  82   89   84     93                                
  (%)                                                                     
  Fluorine content (%) 72 59 59 59 62 59 72                               
  Melting point (° C.) 160 175 175 263 Fluidized 175 160           
       at room                                                            
       temp.                                                              
  Elastic modulus (Pa)                                                    
  Measuring temp = 0° C. 6 × 10.sup.8 3 × 10.sup.9 3   
                                        × 10.sup.9 1 ×        
                                        10.sup.9 8 × 10.sup.6 3     
                                        × 10.sup.9 6 ×        
                                        10.sup.5                          
  Measuring temp = 30° C. 1 × 10.sup.8 2 × 10.sup.9 2  
                                        × 10.sup.9 9 ×        
                                        10.sup.8 6 × 10.sup.6 2     
                                        × 10.sup.9 6 ×        
                                        10.sup.8                          
  Emboss                                                                  
  Ra (μm) 0.33 0.13 0.45 0.12 0.44 0.69 2.9                            
  Pc (μm) 99 68 179 110 97 560 4                                       
  Setting property ◯  ◯  ◯  .largecirc
                                        le.  Poor Too much Poor           
       slippage slippage slippage                                         
  Appearance ◯ ◯ ◯ Bubbles Bubbles    
                                        Displacement Bubbles              
      remained remained of glass remained                                 
        plates                                                            
  Lamination property ◯ ◯ ◯ X X X     
__________________________________________________________________________
                                        X                                 
From Table 1, it is evident that No. 1 to No. 3 representing the fluorocarbon resin sheet of the present invention and the glass laminate employing this sheet, are excellent in the lamination property for a glass laminate (the setting property during lamination and the appearance after assembled into a glass laminate). On the other hand, No. 4 wherein the melting point of the sheet was too high, was poor in the lamination property and particularly had a problem that bubbles remained in the glass laminate. Inversely, No. 5 wherein the melting point and the tensile elastic modulus of the sheet were too low, was poor in slippage and thus inferior in the setting property. Further, No. 6 and No. 7 wherein the emboss shape was outside the range of the present invention, were poor in each of the setting property and the appearance of the lamination property.
No. 8 to No. 14
The same fluorocarbon resin as used in No. 1 was melt-extruded, and then on the surface of each side of the molded sheet, the same adhesive as used in No. 1 was coated in a thickness of 1 μm. Before the adhesive was dried up, a polyester film having a variously embossed surface was pressed against the surface of the adhesive layer on each side to obtain a fluorocarbon resin sheet provided with an adhesive layer having a variously embossed surface on each side.
The fluorocarbon resin sheet provided with such an adhesive coating layer thus obtained, was sandwiched between a pair of glass plates, followed by heating to obtain a glass laminate. The appearance, etc. of the obtained glass laminate were evaluated, and the results are shown in Table 2.
The tests and evaluation methods other than the above-described items are as follows.
Difference Between the Maximum Value and the Minimum Value of the Thickness
Using a contact type continuous thickness meter, the thickness of the sheet was measured by a unit of 1 μm. The measured portions were two locations along the longitudinal direction of the sheet and two locations along the width direction of the sheet, and the measurement was made over a length of 50 cm at each location. In each measured length of 50 cm, a portion of 5 cm where the difference between the maximum value and the minimum value of the thickness was largest, was determined, and the difference between the maximum value and the minimum value was obtained. The four values of the difference between the maximum value and the minimum value at the four measured locations were averaged.
Appearance
The appearance of the glass laminate was visually inspected, and the number of remaining bubbles was evaluated by the following three levels.
◯: No substantial bubbles remained.
Δ: Small bubbles partially remained.
X: Bubbles remained over the entire surface.
              TABLE 2                                                     
______________________________________                                    
                           Difference                                     
   Ra Pc in thickness                                                     
  No. (μm) (peaks/8 mm) (μm) Appearance                             
______________________________________                                    
8      0.07   182          9       Δ                                
  9 0.10 102 5 ◯                                              
  10 0.27 124 13 ◯                                            
  11 0.28 170 8 ◯                                             
  12 1.2 22 9 Δ                                                     
  13 2.4 7 11 X                                                           
  14 0.26 128 17 X                                                        
______________________________________                                    
As is apparent from the results shown in Table 2, the sheets of the present invention (No. 8 to No. 12) had Ra, Pc and the difference in thickness within the prescribed ranges, and glass laminates obtained by using them had a good appearance with little remaining bubbles. Especially in No. 9 to No. 11 wherein Ra is within a range of from 0.1 to 0.5 μm, and the number of peaks Pc is within a range of from 50 to 200 peaks/8 mm, glass laminates were obtained wherein remaining bubbles were extremely little.
Whereas, in No. 13 and No. 14 wherein the emboss shape is outside the definition of the present invention, it was not possible to obtain a glass laminate having good appearance.
No. 15 to No. 25
No. 15
A copolymer fluorocarbon resin comprising 40 wt % of vinylidene fluoride, 40 wt % of tetrafluoroethylene and 20 wt % of hexafluoropropylene, was extruded at 180° C. by an extruder to obtain a fluorocarbon resin sheet having a thickness of 200 μm.
On each side of the fluorocarbon resin sheet, the same adhesive as used in No. 1 was directly coated as an adhesive and dried to form an adhesive layer having a thickness of 0.4 μm, and an emboss having the same shape as in No. 1 was formed on its surface.
With respect to the fluorocarbon resin sheet of the obtained sheet for lamination, the fluorine content, the total light transmittance Db and the refractive index Mb were measured, and the refractive index Na of the adhesive layer alone and the thickness Db of the adhesive layer were measured. Further, using the sheet for lamination, a glass laminate was prepared, and its transparency and bonding strength were evaluated.
No. 16
The same test as in No. 15 was carried out except that the thickness of the adhesive layer was changed to 0.1 μm.
No. 17
The same test as in No. 16 was carried out except that as the adhesive used, a solution of an acrylic resin comprising methyl methacrylate as the main component (Acrylic BZ-1161, tradename, manufactured by Dai Nippon Ink Kogyo K.K.) was used.
No. 18
The same test as in No. 15 was carried out except that the thickness of the adhesive layer was changed to 0.1 μm.
No. 19
The same test as in No. 15 was carried out except that the thickness of the adhesive layer was changed to 0.03 μm.
No. 20
On two sheets of glass, a silane coupling agent layer (γ-aminopropylethoxysilane) was formed as an adhesive layer in a thickness of 0.005 μm, and the same fluorocarbon resin sheet (without an adhesive layer) as used in No. 15 was sandwiched therebetween and laminated, and thereafter, the same test as in No. 15 was carried out.
No. 21
The same test as in No. 15 was carried out except that the thickness of the adhesive layer was changed to 6 μm.
No. 22
The same test as in No. 16 was carried out except that using the same adhesive as used in No. 17, an adhesive layer having a thickness of 2 μm was formed.
No. 23
The same test as in No. 15 was carried out except that as the adhesive used, a solution of a mixture comprising polyvinyl chloride and polymethyl methacrylate in the equal weight proportions, was used.
No. 24
The same test as in No. 15 was carried out except that the thickness of the adhesive layer was changed to 12 μm.
No. 25
The same test as in No. 15 was carried out except that as the fluorocarbon resin sheet, a sheet of ethylene-tetrafluoroethylene copolymer was used.
The results of the foregoing are shown in Tables 3 and 4.
The tests and evaluation methods other than the above-described items are as follows.
Refractive Indices Nb and Na
These indices were measured by means of an Abbe refractometer using D ray of sodium as a light source.
The refractive index Nb of the fluorocarbon resin sheet was directly measured. Whereas, Na of the adhesive layer was measured in such a manner that the adhesive was coated on a separate sheet of a tetrafluoroethylene having a thickness of 100 μm and dried, and then the sheet was peeled off and subjected to the measurement in the form of a film of the adhesive alone.
Thickness Tb of the Adhesive Layer
The cross section of the sheet for lamination was observed by a scanning electron microscope, and the thickness of the adhesive layer was measured.
Transparency of the Glass Laminate
The sheet for lamination was sandwiched between a pair of soda lime glass plates (50 mm×150 mm) having a thickness of 3 mm and pressed at a temperature of 130° C. for 10 minutes under a pressure of 5 kg/cm2 for lamination. The transparency of the obtained laminate was visually evaluated by the following four standards.
⊚: Transparent
◯: Substantially transparent
Δ: Slightly fogged
X: Fogged
Bonding Strength of the Glass Laminate
Soda lime glass having a thickness of 3 mm (50 mm×150 mm)/a sheet for lamination/a film of polytetrafluoroethylene having a thickness of 100 μm, were laminated in this order and pressed at a temperature of 140° C. for 5 minutes under a pressure of 2 kg/cm2, for lamination, whereupon the polytetrafluoroethylene film was peeled off to obtain a laminate of the glass/the sheet for lamination. Then, two notches were imparted to the sheet for lamination at a distance of 18 mm, and the sheet between the notches was peeled in parallel with the notched direction at an angle of 180° at a rate of 5 mm/min at 23° C., whereby the peel strength was obtained (normal state strength).
Further, after lamination, the laminate was immersed in boiling water of 100° C. for 2 hours and then taken out, and a peeling test was carried out under the same conditions. The strength thereby obtained was designated as boil strength. The unit is gf/18 mm.
              TABLE 3                                                     
______________________________________                                    
          No.   No.    No.     No.  No.  No.                              
  15 16 17 18 19 20                                                       
______________________________________                                    
Fluorine content                                                          
            69      69     69    69   69   69                             
  Total light 96 96 96 96 96 96                                           
  transmittance Tb (%)                                                    
  Refractive index Nb 1.37 1.37 1.37 1.37 1.37 1.37                       
  Refractive index Na 1.42 1.42 1.49 1.42 1.42 1.43                       
  of adhesive coating                                                     
  layer                                                                   
  Thickness Da of 0.4 0.1 0.1 1.0 0.03 0.005                              
  adhesive coating                                                        
  layer (μm)                                                           
  |Na - Nb| 0.05 0.05 0.12 0.05 0.05 0.06               
  Da × |Na - Nb| 0.2 0.005 0.012 0.05 0.002       
                                           0.0003                         
  Transparency ⊚ ⊚ ⊚         
                                           ◯ ⊚ 
                                           ⊚               
  Boiling strength                                                        
  Normal state 1000 900 1300 1200 700 300                                 
  Boil 700 700 1100 900 200 100                                           
  Overall evaluation ⊚ ⊚ ⊚   
                                           ◯ ◯    
                                           Δ                        
______________________________________                                    
              TABLE 4                                                     
______________________________________                                    
           No. 21                                                         
                 No. 22  No. 23  No. 24                                   
                                       No. 25                             
______________________________________                                    
Fluorine content                                                          
             69      69      69    69    59                               
  Total light 96 96 96 96 87                                              
  transmittance Tb (%)                                                    
  Refractive index Nb 1.37 1.37 1.37 1.37 1.40                            
  Refractive index Na 1.42 1.49 1.52 1.42 1.42                            
  of adhesive coating                                                     
  layer                                                                   
  Thickness Da of 6 2 0.4 12 0.4                                          
  adhesive coating                                                        
  layer (μm)                                                           
  |Na - Nb| 0.05 0.12 0.15 0.05 0.02                    
  Da × |Na - Nb| 0.30 0.24 0.06 0.60 0.008        
                                          Transparency Δ Δ X  
                                         X X                              
  Boiling strength                                                        
  Normal state 1600 1700 0 1700 0                                         
  Boil 1100 1300 -- 1100 --                                               
  Overall evaluation Δ Δ X X X                                
______________________________________                                    
As is evident from the results shown in Tables 3 and 4, with those within the scope of the present invention, the overall evaluation is at least Δ and superior. No. 15 to No. 17 are particularly excellent, as both their transparency and bonding strength were at high levels.
No. 26 to No. 36
No. 26
A copolymer fluorocarbon resin comprising 40 wt % of vinylidene fluoride, 20 wt % of tetrafluoroethylene and 40 wt % of tetrafluoroethylene, was extruded at 180° C. by an extruder to obtain a fluorocarbon resin sheet having a thickness of 200 μm.
As an adhesive, one prepared by blending a fluorocarbon resin comprising 61 wt % of vinylidene fluoride, 24 wt % of tetrafluoroethylene and 15 wt % of hexafluoropropylene, and an acrylic resin comprising 95 wt % of methyl methacrylate and 5 wt % of ethyl methacrylate, in a weight ratio of 70/30, was used, and this adhesive was dissolved in a solvent mixture comprising butyl acetate and methyl isobutyl ketone (weight ratio: 75/25). The solution thereby obtained was coated on the fluorocarbon resin sheet by a coater and heated in a heating furnace of 120° C. for 30 seconds to evaporate and remove the solvent, to form an adhesive layer having a thickness of 1 μm on one side of the fluorocarbon resin sheet.
Using the obtained fluorocarbon resin sheet of the sheet for lamination, the bonding strength and the transparency were evaluated. The results are shown in Table 5. The evaluation methods were the same as described for the tests of the above No. 15 to No. 25.
No. 27
The evaluation was carried out in the same manner as in No. 26 except that as the fluorocarbon resin sheet, a sheet of a copolymer fluorocarbon resin comprising 20 wt % of vinylidene fluoride, 60 wt % of tetrafluoroethylene and 20 wt % of hexafluoropropylene, was used.
No. 28
The evaluation was carried out in the same manner as in No. 26 except that as the adhesive, one prepared by blending a fluorocarbon resin consisting of 100 wt % of vinylidene fluoride and an acrylic resin consisting of 100 wt % of methyl methacrylate in a weight ratio of 55/45, was used.
No. 29
The evaluation was carried out in the same manner as in No. 26 except that a fluorocarbon resin sheet having no adhesive coating layer provided, was used.
No. 30
The evaluation was carried out in the same manner as in No. 26 except that as the adhesive agent, an acrylic copolymer comprising 95 wt % of methyl methacrylate and 5 wt % of ethyl methacrylate, was used, and the thickness of the adhesive layer was changed to 1.5 μm.
No. 31
The evaluation was carried out in the same manner as in No. 26 except that as the adhesive, a fluorocarbon resin comprising 61 wt % of vinylidene fluoride, 24 wt % of tetrafluoroethylene and 15 wt % of hexafluoropropylene, was used, and the thickness of the adhesive layer was changed to 1.5 μm.
No. 32
The evaluation was carried out in the same manner as in No. 26 except that as the adhesive, a tetrafluoroethylene-vinyl ester copolymer (Cefral coat A-402B, manufactured by Central Glass Co., Ltd.) was used, and the thickness of the adhesive layer was changed to 1.5 μm.
No. 33
The evaluation was carried out in the same manner as in No. 26 except that as the adhesive, a partially saponified ethylene vinyl acetate copolymer resin (Takemerto SD-181, manufactured by Takeda Chemical Industries, Ltd.) was used, and the thickness of the adhesive layer was changed to 2 μm.
No. 34
The evaluation was carried out in the same manner as in No. 26 except that as the adhesive, a polyvinyl butyral resin (manufactured by Sekisui Chemical Co., Ltd.) was used, and the thickness of the adhesive layer was changed to 2 μm.
No. 35
The evaluation was carried out in the same manner as in No. 26 except that as the adhesive, an epoxy type adhesive (Araldite AER 280, manufactured by Chiba Geigy AG) was used, and the thickness of the adhesive layer was changed to 5 pm.
No. 36
The evaluation was carried out in the same manner as in No. 26 except that as the adhesive, a silicone type adhesive (Bond MOS-7, manufactured by Konishi K.K.) was used, and the thickness of the adhesive layer was changed to 5 μm.
The results of these evaluations are shown in Table 5.
              TABLE 5                                                     
______________________________________                                    
              Bonding                                                     
  strength                                                                
                Normal         Trans- Overall                             
  Adhesive state Boil parency evaluation                                  
______________________________________                                    
No. 26                                                                    
      Fluorocarbon resin +                                                
                    1200    900  ⊚                         
                                        ◯                     
   acrylic resin                                                          
  No. 27 Fluorocarbon resin + 1000 700 ⊚ ◯     
                                          acrylic resin                   
  No. 28 Fluorocarbon resin + 1200 1000 ⊚ ◯    
                                          acrylic resin                   
  No. 29 Nil 700 0 ⊚ X                                     
  No. 30 Acrylic resin 400 100 X X                                        
  No. 31 Fluorocarbon resin 200 0 ⊚ X                      
  No. 32 Fluorocarbon resin 700 200 ⊚ Δ              
  No. 33 Partially 100 10 X X                                             
   saponified EVA                                                         
  No. 34 Polyvinylbutyral 0 0 X X                                         
  No. 35 Epoxy 1600 0 X X                                                 
  No. 36 Silicone 1100 400 X X                                            
______________________________________                                    
As is evident from the results shown in Table 5, in No. 26 to No. 28 wherein an adhesive comprising a fluorocarbon resin component and an acrylic resin component, was used, it was possible to obtain glass laminates which were excellent in the transparency and the bonding strength.
No. 37 to No. 41
No. 37
The same fluorocarbon resin sheet as used in No. 26, was used. As the adhesive, one prepared by blending a fluorocarbon resin comprising 61 wt % of vinylidene fluoride, 24 wt % of tetrafluoroethylene and 15 wt % of hexafluoropropylene, and γ-aminopropyltriethoxysilane, in a weight ratio of 95/5, was used. This adhesive was dissolved in 2-butanone and coated on the fluorocarbon resin sheet by a coater and heated in a heating furnace of 80° C. for 30 seconds to evaporate and remove the solvent, to form an adhesive layer having a thickness of 1 μm on one side of the fluorocarbon resin sheet.
Using the obtained fluorocarbon resin sheet of a sheet for lamination, the bonding strength and the transparency were evaluated. The results are shown in Table 6. The evaluation methods were the same as described in the above tests.
No. 38
The evaluation was carried out in the same manner as in No. 37 except that as the fluorocarbon resin for the fluorocarbon resin sheet and the adhesive, a copolymer fluorocarbon resin comprising 20 wt % of vinylidene fluoride, 60 wt % of tetrafluoroethylene and 20 wt % of hexafluoropropylene, was used.
No. 39
The evaluation was carried out in the same manner as in No. 37 except that as the adhesive, one prepared by blending a fluorocarbon resin comprising 40 wt % of vinylidene fluoride, 40 wt % of tetrafluoroethylene and 20 wt % of hexafluoropropylene, and γ-aminopropyltriethoxysilane, in a weight ratio of 99.5/0.5, was used.
No. 40
The evaluation was carried out in the same manner as in No. 37 except that as the adhesive, one prepared by blending a fluorocarbon resin comprising 40 wt % of vinylidene fluoride, 40 wt % of tetrafluoroethylene and 20 wt % of hexafluoropropylene, and γ-aminopropyltriethoxysilane, in a weight ratio of 85/15, was used.
With this adhesive, the adhesive solution underwent a viscosity increase toward the latter half of the coating time during coating of the adhesive layer, whereby the coating operation became impossible.
No. 41
The evaluation was carried out in the same manner as in No. 37 except that as the adhesive, one prepared by blending a fluorocarbon resin comprising 40 wt % of vinylidene fluoride, 40 wt % of tetrafluoroethylene and 20 wt % of hexafluoropropylene, and γ-glycidoxypropyltrimethoxysilane, in a weight ratio of 95/5, was used.
The results of these evaluations are shown in Table 6.
              TABLE 6                                                     
______________________________________                                    
              Bonding                                                     
  strength                                                                
                Normal         Trans- Overall                             
  Adhesive state Boil parency evaluation                                  
______________________________________                                    
No. 37                                                                    
      Fluorocarbon resin +                                                
                    1600    1500 ⊚                         
                                        ◯                     
   silane coupling agent                                                  
   (amino type)                                                           
   95/5                                                                   
  No. 38 Fluorocarbon resin + 1100 1000 ⊚ ◯    
                                          silane coupling agent           
   (amino type)                                                           
   95/5                                                                   
  No. 39 Fluorocarbon resin + 1000 0 ⊚ X                   
   silane coupling agent                                                  
   (amino type)                                                           
   99.5/0.5                                                               
  No. 40 Fluorocarbon resin + 1900 1900 X X                               
   silane coupling agent                                                  
   (amino type)                                                           
   85/15                                                                  
  No. 41 Fluorocarbon resin + 900 100 ⊚ X                  
   silane coupling agent                                                  
   (epoxy type)                                                           
   95/5                                                                   
______________________________________                                    
As is evident from the results shown in Table 6, in No. 37 and No. 38 wherein an adhesive containing a fluorocarbon resin and an amino type silane coupling agent within the prescribed ranges, was used, glass laminates excellent in the transparency and the bonding strength were obtained.
As used herein, the recited percentage of fluorine content of the fluorocarbon resin is in weight percent.
As described in the foregoing, the fluorocarbon resin sheet and the glass laminate of the present invention, are excellent in the lamination property of the sheet and the glass plates, and thus have a merit that the glass laminate thereby obtained is excellent in the transparency and the flame retardancy.

Claims (20)

What is claimed is:
1. A fluorocarbon resin sheet having a fluorine content of at least 55 wt. % and a melting point of from 60 to 220° C., made solely of a polymer comprising at least one fluorine-containing monomer, or made of a blend of such a polymer with other polymer, which has a total light transmittance of at least 80% and a tensile modulus of elasticity within a range of from 1×107 to 4×109 Pa within an entire measuring temperature range of from 0 to 30° C., wherein the surface of the resin sheet is embossed to have a center line average roughness Ra of from 0.05 to 2.0 μm and a number of peaks Pc of from 5 to 500 peaks/8 mm.
2. The fluorocarbon resin sheet according to claim 1, wherein the surface of the fluorocarbon resin sheet is embossed to have a center line average roughness Ra of from 0.1 to 0.5 μm and a number of peaks Pc of from 50 to 200 peaks/8 mm, and the difference between the maximum value and the minimum value of thickness within a range of 5 cm of the sheet, is at most 15 μm.
3. The fluorocarbon resin sheet provided with an adhesive layer according to claim 1, wherein the surface of the adhesive layer is embossed to have a center line average roughness Ra of from 0.1 to 0.5 μm and a number of peaks Pc of from 50 to 200 peaks/8 mm, and the difference between the maximum value and the minimum value of thickness within optional 5 cm of the sheet, is at most 15 μm.
4. A fluorocarbon resin sheet provided with an adhesive layer, which comprises a fluorocarbon resin sheet having a fluorine content of at least 55 wt. % and a melting point of from 60 to 220° C., made solely of a polymer comprising at least one fluorine-containing monomer, or made of a blend of such a polymer with other polymer, which sheet has a total light transmittance of at least 80% and a tensile modulus of elasticity within a range of from 1×107 to 4×109 Pa within an entire measuring temperature range of from 0 to 30° C., and an adhesive layer formed on one side or each side of the fluorocarbon resin sheet, wherein the surface of the adhesive layer is embossed to have a center line average roughness Ra of from 0.05 to 2.0 μm and a number of peaks Pc of from 5 to 500 peaks/8 mm.
5. The fluorocarbon resin sheet provided with an adhesive layer according to claim 4, wherein the adhesive layer is made of an adhesive coating comprising from 40 to 80 wt. % of a fluorocarbon resin component and from 20 to 60 wt. % of an acrylic resin component, wherein said acrylic resin component is at least 90 wt. % of methyl methacrylate.
6. The fluorocarbon resin sheet provided with an adhesive layer according to claim 5, wherein the fluorocarbon resin component comprises from 50 to 100 wt. % of vinylidene fluoride, from 0 to 40 wt. % of tetrafluoroethylene, and from 0 to 30 wt. % of hexafluoropropylene.
7. The fluorocarbon resin sheet provided with an adhesive layer according to claim 5, wherein the fluorocarbon resin component has a number average molecular weight (Mn) of about 40,000 to 150,000.
8. The fluorocarbon resin provided with an adhesive layer according to claim 5, wherein the acrylic acid component has a number average molecular weight (Mn) of 2,000 to 50,000.
9. The fluorocarbon resin sheet provided with an adhesive layer according to claim 4, wherein the adhesive layer is made of an adhesive coating comprising from 90 to 99 wt % of a fluorocarbon resin component and from 1 to 10 wt % of an amino silane coupling agent.
10. A fluorocarbon resin sheet provided with an adhesive layer, which comprises a fluorocarbon resin sheet having a fluorine content of at least 55 wt. % and a melting point of from 60 to 220° C., made solely of a polymer comprising at least one fluorine-containing monomer, or made of a blend of such a polymer with other polymer, which sheet has a tensile modulus of elasticity within a range of from 1×107 to 4×109 Pa within an entire measuring temperature range of from 0 to 30° C., and an adhesive layer formed on one side or each side of the fluorocarbon resin sheet, wherein the total light transmittance Tb of the fluorocarbon resin sheet is at least 90%, the thickness Da of the adhesive layer is from 0.03 to 10 μm, and the absolute value of Na-Nb, i.e. |Na-Nb|, is at most 0.13, where Na is the refractive index of the adhesive layer, and Nb is the refractive index of the fluorocarbon resin sheet.
11. The fluorocarbon resin sheet provided with an adhesive layer according to claim 10, wherein Da is within a range of from 0.05 to 0.5, and Da×|Na-Nb|≦0.03.
12. A glass laminate comprising at least two glass plates and a fluorocarbon resin sheet interposed between the glass plates, said resin sheet being a fluorocarbon resin sheet having a fluorine content of at least 55 wt. % and a melting point of from 60 to 220° C., made solely of a polymer comprising at least one fluorine-containing monomer, or made of a blend of such a polymer with other polymer, which has a total light transmittance of at least 80% and a tensile modulus of elasticity within a range of from 1×107 to 4×109 Pa within an entire measuring temperature range of from 0 to 30° C., wherein the surface of the resin sheet is embossed to have a center line average roughness Ra of from 0.05 to 2.0 μm and a number of peaks Pc of from 5 to 500 peaks/8 mm.
13. A glass laminate comprising a glass plate and a fluorocarbon resin sheet which are laminated by an adhesive layer, said resin sheet being a fluorocarbon resin sheet having a fluorine content of at least 55 wt. % and a melting point of from 60 to 220° C., made solely of a polymer comprising at least one fluorine-containing monomer, or made of a blend of such a polymer with other polymer, which sheet has a tensile modulus of elasticity within a range of from 1×107 to 4×109 Pa within an entire measuring temperature range of from 0 to 30° C., wherein the total light transmittance Tb of the fluorocarbon resin sheet is at least 90%, the thickness Da of the adhesive layer is from 0.03 to 10 μm, and the absolute value of Na-Nb, i.e. |Na-Nb|, is at most 0.13, where Na is the refractive index of the adhesive layer, and Nb is the refractive index of the fluorocarbon resin sheet.
14. The glass laminate according to claim 13, wherein the glass plate and the fluorocarbon resin sheet are laminated by an adhesive layer comprising from 40 to 80 wt. % of a fluorocarbon resin component and from 20 to 60 wt. % of an acrylic resin component, wherein said acrylic resin component comprises at least 90 wt. % of methyl methacrylate.
15. The glass laminate according to claim 14, wherein the fluorocarbon resin component comprises from 50 to 100 wt. % of vinylidene fluoride, from 0 to 40 wt. % of tetrafluoroethylene, and from 0 to 30 wt. % of hexafluoropropylene.
16. The glass laminate according to claim 14, wherein the acrylic resin component has a number average molecular weight (Mn) of about 40,000 to 150,000.
17. The glass laminate according to claim 14, wherein the acrylic acid component has a number average molecular weight of about 2,000 to 50,000.
18. The glass laminate according to claim 13, wherein the glass plate and the fluorocarbon resin sheet are laminated by an adhesive layer comprising from 90 to 99 wt % of a fluorocarbon resin component and from 1 to 10 wt % of an amino silane coupling agent.
19. The glass laminate according to claim 13, wherein said adhesive layer further comprises an acid monomer selected from the group consisting of acrylic acid, methacrylic acid, fumaric acid and itacenic acid, thereby improving adhesion of said fluorocarbon resin sheet to said glass plate.
20. A fluorocarbon resin sheet provided with an adhesive layer, which comprises a fluorocarbon resin sheet having a fluorine content of at least 55% and a melting point of from 60 to 200° C., made solely of a polymer comprising at least one fluorine-containing monomer, or made of a blend of such a polymer with another polymer, which sheet has a tensile modulus of elasticity within a range of from 1×107 to 4×109 Pa within an entire measuring temperature range of from 0 to 30° C., and an adhesive layer formed on one side or each side of the fluorocarbon resin sheet, wherein the total light transmittance Tb of the fluorocarbon resin sheet is at least 90%, the thickness Da of the adhesive layer is at least 0.01 μm, and Da×|Na-Nb| is ≦to 0.1, where Na is the refractive index of the adhesive layer, and Nb is the refractive index of the fluorocarbon resin sheet.
US08/921,017 1996-09-02 1997-08-29 Fluorocarbon resin sheet and glass laminate Expired - Lifetime US6042928A (en)

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP23220096A JP4124498B2 (en) 1996-09-02 1996-09-02 Fluorine resin sheet
JP8-232200 1996-09-02
JP23758196A JP3961051B2 (en) 1996-09-09 1996-09-09 Glass laminate and sheet for bonding
JP8-237581 1996-09-09
JP26417296A JP3673602B2 (en) 1996-10-04 1996-10-04 Fluorine resin sheet for glass laminates and glass bonding
JP8-264172 1996-10-04
JP9-005919 1997-01-17
JP591997A JP3631869B2 (en) 1997-01-17 1997-01-17 Fluorine resin sheet and laminated glass
JP9-186372 1997-07-11
JP18637297A JP3673619B2 (en) 1997-07-11 1997-07-11 Fluorine resin sheet for glass laminates and glass bonding

Publications (1)

Publication Number Publication Date
US6042928A true US6042928A (en) 2000-03-28

Family

ID=27518649

Family Applications (1)

Application Number Title Priority Date Filing Date
US08/921,017 Expired - Lifetime US6042928A (en) 1996-09-02 1997-08-29 Fluorocarbon resin sheet and glass laminate

Country Status (4)

Country Link
US (1) US6042928A (en)
EP (1) EP0826722B1 (en)
DE (1) DE69726073T2 (en)
ES (1) ES2208799T3 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060093830A1 (en) * 2004-11-02 2006-05-04 Solutia, Inc. Polymer sheets comprising a fluoropolymer
US20060292359A1 (en) * 2003-05-14 2006-12-28 Mitsubishi Plastics, Inc. Fluororesin laminated film and method for producing same
US20070178292A1 (en) * 2004-03-02 2007-08-02 Mitsubishi Plastics, Inc. Multilayer resin film and laminated glass
US20090244710A1 (en) * 2008-03-31 2009-10-01 Nitto Denko Corporation Hard-coated antiglare film, and polarizing plate and image display including the same
US20110080645A1 (en) * 2009-10-07 2011-04-07 Nitto Denko Corporation Hard-coated antiglare film, polarizing plate and image display including the same, method for producing the same, and method for evaluating the same
US20110080644A1 (en) * 2009-10-07 2011-04-07 Nitto Denko Corporation Hard-coated antiglare film, polarizing plate and image display including the same, method for producing the same, and method for evaluating the same
US20110080643A1 (en) * 2009-10-07 2011-04-07 Nitto Denko Corporation Hard-coated antiglare film, polarizing plate and image display including the same, and method for evaluating the same
US20110095673A1 (en) * 2008-06-30 2011-04-28 Whitford Corporation Shatter containment coating
US8568868B2 (en) 2006-11-16 2013-10-29 Mitsubishi Plastics, Inc. Gas barrier film laminate
US20130316138A1 (en) * 2011-02-02 2013-11-28 Nitto Denko Corporation Protecting sheet for glasses

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6863956B1 (en) 1999-07-01 2005-03-08 Sekisui Chemical Co., Ltd. Interlayer for laminated glass and laminated glass
US6726979B2 (en) * 2002-02-26 2004-04-27 Saint-Gobain Performance Plastics Corporation Protective glazing laminate
KR20170066279A (en) * 2014-09-30 2017-06-14 세키스이가가쿠 고교가부시키가이샤 Interlayer film for laminated glass, roll-shaped body, laminated glass, method for manufacturing interlayer film for laminated glass, and method for manufacturing roll-shaped body
CN107902916A (en) * 2017-11-11 2018-04-13 蚌埠承永玻璃制品有限公司 A kind of preparation method of self-cleaning glass

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3373076A (en) * 1965-03-29 1968-03-12 Whittaker Corp Lamination of amorphous fluorocarbon polymer and glass and method of making same
US4452840A (en) * 1981-03-12 1984-06-05 Mitsubishi Monsanto Chemical Company Plastic interlayer for lamination with heights of 10 to 500 microns
EP0494538A1 (en) * 1990-12-26 1992-07-15 Nippon Electric Glass Company., Ltd. Fire-protection and safety composite glass panel
EP0525403A1 (en) * 1991-06-28 1993-02-03 Sekisui Kagaku Kogyo Kabushiki Kaisha Interlayer for laminated glass
EP0711654A2 (en) * 1994-11-09 1996-05-15 Nippon Electric Glass Company., Ltd. Fire-protection and safety composite glass panel
US5593786A (en) * 1994-11-09 1997-01-14 Libbey-Owens-Ford Company Self-adhering polyvinyl chloride safety glass interlayer
US5662977A (en) * 1989-10-19 1997-09-02 Avery Dennison Corporation Process for manufacturing plastic siding panels with outdoor weatherable embossed surfaces
US5705254A (en) * 1994-03-10 1998-01-06 Canon Kabushiki Kaisha Plastic molded article with a finished surface appearance
US5792560A (en) * 1995-09-28 1998-08-11 Norton Performance Plastics Corporation Thermoplastic interlayer film

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3373076A (en) * 1965-03-29 1968-03-12 Whittaker Corp Lamination of amorphous fluorocarbon polymer and glass and method of making same
US4452840A (en) * 1981-03-12 1984-06-05 Mitsubishi Monsanto Chemical Company Plastic interlayer for lamination with heights of 10 to 500 microns
US5662977A (en) * 1989-10-19 1997-09-02 Avery Dennison Corporation Process for manufacturing plastic siding panels with outdoor weatherable embossed surfaces
EP0494538A1 (en) * 1990-12-26 1992-07-15 Nippon Electric Glass Company., Ltd. Fire-protection and safety composite glass panel
US5230954A (en) * 1990-12-26 1993-07-27 Nippon Electric Glass Co., Ltd. Fire-protection and safety composite glass panel
EP0525403A1 (en) * 1991-06-28 1993-02-03 Sekisui Kagaku Kogyo Kabushiki Kaisha Interlayer for laminated glass
US5705254A (en) * 1994-03-10 1998-01-06 Canon Kabushiki Kaisha Plastic molded article with a finished surface appearance
EP0711654A2 (en) * 1994-11-09 1996-05-15 Nippon Electric Glass Company., Ltd. Fire-protection and safety composite glass panel
US5593786A (en) * 1994-11-09 1997-01-14 Libbey-Owens-Ford Company Self-adhering polyvinyl chloride safety glass interlayer
US5792560A (en) * 1995-09-28 1998-08-11 Norton Performance Plastics Corporation Thermoplastic interlayer film

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060292359A1 (en) * 2003-05-14 2006-12-28 Mitsubishi Plastics, Inc. Fluororesin laminated film and method for producing same
US7744715B2 (en) 2003-05-14 2010-06-29 Mitsubishi Plastics, Inc. Fluororesin laminated film and method for producing same
US20070178292A1 (en) * 2004-03-02 2007-08-02 Mitsubishi Plastics, Inc. Multilayer resin film and laminated glass
US7399525B2 (en) * 2004-11-02 2008-07-15 Solutia Incorporated Polymer sheets comprising a fluoropolymer
US20060093830A1 (en) * 2004-11-02 2006-05-04 Solutia, Inc. Polymer sheets comprising a fluoropolymer
US8568868B2 (en) 2006-11-16 2013-10-29 Mitsubishi Plastics, Inc. Gas barrier film laminate
US20090244710A1 (en) * 2008-03-31 2009-10-01 Nitto Denko Corporation Hard-coated antiglare film, and polarizing plate and image display including the same
US8215780B2 (en) * 2008-03-31 2012-07-10 Nitto Denko Corporation Hard-coated antiglare film, and polarizing plate and image display including the same
US20110095673A1 (en) * 2008-06-30 2011-04-28 Whitford Corporation Shatter containment coating
US20110080643A1 (en) * 2009-10-07 2011-04-07 Nitto Denko Corporation Hard-coated antiglare film, polarizing plate and image display including the same, and method for evaluating the same
US20110080644A1 (en) * 2009-10-07 2011-04-07 Nitto Denko Corporation Hard-coated antiglare film, polarizing plate and image display including the same, method for producing the same, and method for evaluating the same
US20110080645A1 (en) * 2009-10-07 2011-04-07 Nitto Denko Corporation Hard-coated antiglare film, polarizing plate and image display including the same, method for producing the same, and method for evaluating the same
US8591046B2 (en) * 2009-10-07 2013-11-26 Nitto Denko Corporation Hard-coated antiglare film, polarizing plate and image display including the same, and method for producing the same
TWI467215B (en) * 2009-10-07 2015-01-01 Nitto Denko Corp Hard-coated antiglare film, polarizing plate and image display including the same, and method for producing the same
US9244205B2 (en) * 2009-10-07 2016-01-26 Nitto Denko Corporation Hard-coated antiglare film, polarizing plate and image display including the same, method for producing the same, and method for evaluating the same
US20130316138A1 (en) * 2011-02-02 2013-11-28 Nitto Denko Corporation Protecting sheet for glasses

Also Published As

Publication number Publication date
DE69726073T2 (en) 2004-10-28
EP0826722A3 (en) 1998-12-02
ES2208799T3 (en) 2004-06-16
DE69726073D1 (en) 2003-12-18
EP0826722B1 (en) 2003-11-12
EP0826722A2 (en) 1998-03-04

Similar Documents

Publication Publication Date Title
US6042928A (en) Fluorocarbon resin sheet and glass laminate
TWI604942B (en) Systems, methods and apparatuses for direct embossment of a polymer melt sheet
JPWO2008075619A1 (en) Optical film
JPH06340029A (en) Laminate consisting of glass film and resin
KR20060018871A (en) Transparent gel self-adhesive agent, transparent gel self-adhesive sheet, optical filter for display
US6844053B2 (en) Acrylic resin film and injection molded article using the same
JP4398456B2 (en) Fluoropolymer laminated film
JP3631869B2 (en) Fluorine resin sheet and laminated glass
JP4449688B2 (en) Acrylic laminated film
JP3961051B2 (en) Glass laminate and sheet for bonding
JPS643666B2 (en)
JP3325666B2 (en) Matte vinylidene fluoride resin film
JP4124498B2 (en) Fluorine resin sheet
JP4395211B2 (en) Fluoropolymer laminated film
EP0058406B1 (en) Process for the preparation of laminate polymer articles and polymer article surface-protecting acrylic film for use in carrying out said process
EP1452310B1 (en) Carrier film and method for its production
JP2001030440A (en) Film material and its manufacture
JP7087669B2 (en) Adhesive for glass laminate, fluororesin sheet for glass laminate and glass laminate
JP2000167988A (en) Safety glass and fire prevention safety glass
JP3673619B2 (en) Fluorine resin sheet for glass laminates and glass bonding
JP3673602B2 (en) Fluorine resin sheet for glass laminates and glass bonding
JP4317371B2 (en) Cooling control method in production of embossed resin film coated metal sheet
JP4133404B2 (en) Embossing control method
JPH11268187A (en) Glass laminate and fluororesin sheet for glass lamination
JP7105047B2 (en) Transparent noncombustible sheet

Legal Events

Date Code Title Description
AS Assignment

Owner name: MITSUBISHI PLASTICS INC., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SUZUKI, TAKANOBU;NAKAMURA, KENJI;WATANABE, EICHI;REEL/FRAME:008779/0888;SIGNING DATES FROM 19970818 TO 19970819

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

FPAY Fee payment

Year of fee payment: 12