Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS6046667 A
Publication typeGrant
Application numberUS 08/996,977
Publication dateApr 4, 2000
Filing dateDec 23, 1997
Priority dateDec 23, 1997
Fee statusLapsed
Publication number08996977, 996977, US 6046667 A, US 6046667A, US-A-6046667, US6046667 A, US6046667A
InventorsMilton W. Mathias
Original AssigneeHoneywell Inc.
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Pressure transducer with porous material for media isolation
US 6046667 A
Abstract
A pressure transducer which has a housing containing a sensing element and a noncorrosive fluid in contact with the sensing element. A porous material isolates the fluid from a harsh liquid or a liquid containing solids while allowing transmission of the pressure of the liquid.
Images(1)
Previous page
Next page
Claims(14)
I claim:
1. A pressure transducer for measuring a pressure in a liquid media comprising:
a sensing element;
electrical connections to said sensing element, said connections accessible at said transducer;
a fluid contacting said sensing element;
a housing, said sensing element and said fluid located in said housing;
a porous material located between said liquid and said fluid, said porous material allowing transmission of said pressure to said fluid while isolating said liquid from said fluid.
2. Pressure transducer of claim 1 wherein said fluid enters pores located at a first side of said porous material and said liquid enters pores located at a second side of said porous material.
3. Pressure transducer of claim 1 wherein said porous material comprises a metallic material.
4. Pressure transducer of claim 1 wherein said porous material means comprises a ceramic material.
5. A pressure transducer for measuring a pressure of a liquid media comprising:
a housing;
a sensing element located in said housing;
electrical connection means located at an exterior of said housing and connected to said sensing element;
a fluid within said housing, said fluid in contact with said sensing element;
means for isolating located between said liquid and said fluid, said means for isolating comprising a porous material extending between said liquid and said fluid.
6. Pressure transducer of claim 3 wherein said porous material contains small passages that prevent particles in said liquid larger than a first size from passing through said porous material.
7. Pressure transducer of claim 6 wherein said porous material is at a plurality of locations in said housing.
8. Pressure transducer of claim 5 wherein said means for isolating comprises a metallic material.
9. Pressure transducer of claim 5 wherein said means for isolating comprises a ceramic material.
10. A pressure transducer for measuring a pressure in a liquid media comprising:
a sensing element;
a fluid contacting said sensing element;
a housing, said sensing element and said fluid located in said housing;
electrical connections to said sensing element, said electrical connections accessible at said housing;
a material having passages, said material located between said liquid and said fluid, said material allowing transmission of said pressure through said passages to said fluid while isolating said liquid from said fluid.
11. Pressure transducer of claim 10 wherein said fluid enters passages located at a first side of said material and said liquid enters passages located at a second side of said material.
12. Pressure transducer of claim 11 wherein said fluid is retained in said passages by capillary attraction.
13. Pressure transducer of claim 12 wherein said material comprises a porous metallic filter.
14. Pressure transducer of claim 12 wherein said material comprises a porous ceramic filter.
Description
BACKGROUND OF THE INVENTION

The present invention is related generally to pressure transducers and particularly to the isolation of the pressure sensing elements of the pressure transducer from the media that represents the pressure to be measured.

A barrier diaphragm is commonly used to separate pressure sensing elements from the media whose pressure is being measured. This is done in order to protect the pressure sensing element from electrically conductive or chemically active media. Frequently, the sensing element operates in some form of oil or hydraulic fluid which serves to transmit pressure from the back side of the barrier diaphragm to the sensing element. In this manner, the harsh media remains on the outside of the barrier diaphragm while the sensing element is protected in a benign fluid. Barrier diaphragms are typically made from stainless steel or similar material and are typically 0.002 includes to 0.004 inches thick, resulting in a delicate member which must be protected from physical contact with anything that might dent or deform the diaphragm. Pressure measurement errors of a temporary or permanent nature will result if the diaphragm is deformed from the shape that existed when the transducer was calibrated.

Certain applications of pressure transducers require the transducer to operate in an environment where the liquid media, whose pressure is being measured, is mixed with solid particles which have the capability to dent and deform a barrier diaphragm, thus producing temporary or permanent measurement errors. One example of this is when liquid media is trapped in the porous rock formations beneath the surface of the earth. In this example, the pressure transducer is forcibly inserted into the porous rock and the liquid media is allowed to enter the transducer where the pressure is measured. Rock fragments coming in contact with a barrier diaphragm would cause measurement errors. Another condition having the capability to damage barrier diaphragms are high acceleration forces present when a pressure transducer is forcibly inserted into porous rock. Under high g-forces, the mass of the diaphragm and the hydraulic fluid behind it can permanently deform the diaphragm, thus producing permanent calibration errors in the transducer.

Another example of a media that could damage a barrier diaphragm would be where a pressure transducer is used to measure the pressure of a mixture of a liquid and particles in a pipeline, such as a pipeline used for transporting a slurry.

Thus a need exists for a pressure transducer that isolates the media being measured from particles contained in the media and is tolerant of the high acceleration forces that the transducer may be subjected to in certain applications.

SUMMARY OF THE INVENTION

The present invention solves these and other needs by providing a pressure transducer including a housing containing a sensing element, electrical connections to the sensing element which are accessible at the transducer, and a fluid in contact with the sensing element. A porous material isolates the fluid from a harsh liquid, the pressure of which is to be measured while allowing transmission of the pressure of the harsh liquid to the fluid.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows a cross sectional view of a pressure transducer according to the teachings of the present invention.

FIG. 2 shows a greatly enlarged diagrammatic representation of a portion of the pressure transducer of FIG. 1.

FIG. 3 shows a partial cross section view of an alternate embodiment of a pressure transducer according to the teachings of the present invention.

DETAILED DESCRIPTION

A pressure transducer is shown in the drawings and generally designated 10.

Device 10 includes a housing 12. Housing 12 includes a cylindrical body 14 having an end 16. Housing 12 contains a sensing module 18. Sensing module 18 includes, for example, a silicon diaphragm sensing element 20 and may include a reference pressure section 22. Electrical connections, for example wire bonds 24, are typically made between sensing element 20 and conductive paths or package pins 26. Package pins 26 include a portion inside housing 12 and a portion extending to outside housing 12. An insulative material 28 surrounds pins 26 within housing 12. Sensing element 20 is in contact with an insulative noncorrosive fluid 30, such as hydraulic fluid or another suitable fluid. A porous material or filter 40 has an end or surface 43 in contact with fluid 30 and an end or surface 41 in contact with a liquid media 50, the pressure of which is to be measured.

Thus, porous filter 40 serves to separate hydraulic fluid 30 surrounding sensing element 20 which is placed on one side of filter 40 from the harsh liquid media being measured on the other side of the porous filter 40. The transducer 10 is constructed such that the hydraulic fluid 30 penetrates the tiny openings or passages in filter 40 and is retained by capillary attraction to the tiny openings. When subjected to liquid media 50, the media 50 also penetrates the pores 42 of filter 40 from the outside where it contacts the hydraulic fluid inside each pore. A hermetic barrier is not established. Rather, the hydraulic fluid is retained by capillary attraction to the many surfaces inside the filter. The barrier diaphragm of, for example, stainless steel, is eliminated, thus doing away with potential damage due to high acceleration forces. Although some mixing of media and hydraulic fluid will occur, the small openings inside filter 40 minimize the amount. Accurate pressure measurement in liquid media, mixed with solids, is possible.

The present invention involves the use of a porous filter 40 to separate hydraulic fluid 30 surrounding the sensing element 20 from the harsh liquid media 50. Porous filter 40 may be of metallic, ceramic or other material. As illustrated in greatly enlarged representation in FIG. 2, hydraulic fluid 30 penetrates tiny openings or pores 42 in filter 40 from the inside and is retained by capillary attraction within tiny openings 42. Liquid media 50 also penetrates pores 42 of filter 40 from the outside where it contacts the hydraulic fluid 30, for example at 45, inside each pore. Particles 52 are prevented from passing through pores 42 of filter 40 due to the small size of pores 42. However, the pressure of liquid 50 is transmitted through pores 42. The hydraulic fluid 30 is retained by capillary attraction to the many surfaces inside the filter. A unique feature of the present invention is the elimination of the barrier diaphragm which is brought about by allowing capillary attraction to retain the hydraulic fluid surrounding the pressure sensing element.

Porous materials that may be used for filter 40 are known in the art, for example, ceramic or stainless steel filters having pore sizes from fractions of microns to hundreds of microns are sold commercially in the form of disks, rods, plates and slabs for use in filtering liquids and gases. These filters are also available in a wide variety of metals, such as brass, bronze, aluminum, etc.

The embodiment of FIG. 1 shows porous material 40 at an end of a cylindrical body 14. Many other arrangements are possible. For example, an alternate embodiment is shown in FIG. 3 where filters 40a and 50b are located at openings or windows 44 and 46 in cylindrical body 14a. The liquid media, the pressure of which is to be measured, would be surrounding body 14a and would be in contact with surfaces 41a, 41b of filters 40a and 40b. A non-corrosive fluid, such as hydraulic oil 3afor example, would be in contact with surfaces 43a and 43b of filters 40a and 40b. A sensor module would sense the pressure of oil 30a at 46. Various arrangements for the location of the porous material filters can be devised. In addition, housing 12 may, of course, be of various shapes or combinations of shapes other than the cylindrical shape shown in the figures.

Thus since the invention disclosed herein may be embodied in other specific forms without departing from the spirit or general characteristics thereof, some of which forms have been indicated, the embodiments described herein are to be considered in all respects illustrative and not restrictive. The scope of the invention is to be indicated by the appended claims, rather than by the foregoing description, and all changes which come within the meaning and range of equivalency of the claims are intended to be embraced therein.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2747407 *Feb 6, 1953May 29, 1956Maihak AgApparatus for measuring the pressure of fluids located within bodies of solid material
US3374664 *Jun 1, 1966Mar 26, 1968Diamond Shamrock CorpDevice for measuring porefluid pressures
US4481808 *Feb 12, 1981Nov 13, 1984Kabushiki Kaisha Toyota Chuo KenkyushoMethod and apparatus for detecting the concentration of a component in a solution
US4912981 *Feb 6, 1989Apr 3, 1990J. I. Case CompanySensor protection for a compressed air tank
US4970898 *Sep 20, 1989Nov 20, 1990Rosemount Inc.Pressure transmitter with flame isolating plug
US5361627 *Dec 31, 1992Nov 8, 1994Johnson & Johnson Inc.Method and apparatus for the measuring the capillary attraction developed at a surface of an absorbent body
US5614659 *May 16, 1995Mar 25, 1997The United States Of America As Represented By The Secretary Of The ArmyPore-air pressure measurement device for use in high shock environments
US5693887 *Oct 3, 1995Dec 2, 1997Nt International, Inc.Pressure sensor module having non-contaminating body and isolation member
US5747694 *Jul 26, 1996May 5, 1998Nippondenso Co., Ltd.Pressure sensor with barrier in a pressure chamber
US5858224 *Mar 18, 1997Jan 12, 1999Nelson Industries, Inc.Filter with pressure sensor mounted in housing end
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US6807864 *Apr 4, 2001Oct 26, 2004Denso CorporationPressure sensor with water repellent filter
US6883378Mar 28, 2003Apr 26, 2005Honeywell International, Inc.Low TCE fill fluid for barrier diaphragm pressure sensors
US7992441 *Jul 16, 2009Aug 9, 2011Sensata Technologies, Inc.Pressure sensor for measuring pressure in a medium
US8544333 *Feb 26, 2009Oct 1, 2013Robert Bosch GmbhAir pressure sensor for impact recognition
US20110094305 *Feb 26, 2009Apr 28, 2011Boris AdamAir pressure sensor for impact recognition
WO2002082032A1 *Mar 21, 2002Oct 17, 2002Krupp Uhde GmbhPressure sensor, in particular for fluid bed reactors
WO2004088265A1 *Mar 26, 2004Oct 14, 2004Honeywell Int IncLow tce fill fluid for barrier diaphragm pressure sensors
Classifications
U.S. Classification338/36, 73/723
International ClassificationG01L9/00, H01C10/10, G01L19/06
Cooperative ClassificationG01L19/0636, H01C10/10
European ClassificationG01L19/06D2, G01L19/00B8, G01L19/00E4, H01C10/10
Legal Events
DateCodeEventDescription
May 22, 2012FPExpired due to failure to pay maintenance fee
Effective date: 20120404
Apr 4, 2012LAPSLapse for failure to pay maintenance fees
Nov 14, 2011REMIMaintenance fee reminder mailed
Sep 14, 2007FPAYFee payment
Year of fee payment: 8
Sep 26, 2003FPAYFee payment
Year of fee payment: 4
Nov 1, 1999ASAssignment
Owner name: SCHLUMBERGER TECHNOLOGY CORPORATION, TEXAS
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HONEYWELL, INC.;REEL/FRAME:010347/0507
Effective date: 19991021
Owner name: SCHLUMBERGER TECHNOLOGY CORPORATION 300 SCHLUMBERG
Dec 23, 1997ASAssignment
Owner name: HONEYWELL INC., MINNESOTA
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MATHIAS, MILTON W.;REEL/FRAME:008915/0683
Effective date: 19971218