Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS6091122 A
Publication typeGrant
Application numberUS 09/021,262
Publication dateJul 18, 2000
Filing dateFeb 10, 1998
Priority dateOct 30, 1996
Fee statusPaid
Also published asEP0840362A1, US5789312
Publication number021262, 09021262, US 6091122 A, US 6091122A, US-A-6091122, US6091122 A, US6091122A
InventorsDouglas Andrew Buchanan, Fenton Read McFeely, John Jacob Yurkas
Original AssigneeInternational Business Machines Corporation
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Fabrication of mid-cap metal gates compatible with ultra-thin dielectrics
US 6091122 A
Abstract
A method of fabricating a mid-gap workfunction tungsten gate or W electrode directly onto a gate dielectric material for use in high speed/high density advanced MOS and CMOS devices is provided which utilizes low temperature/low pressure CVD of a tungsten carbonyl. MOS and CMOS devices containing one or more of the CVD W gates or W electrodes manufactured by the present invention are also provided herein.
Images(6)
Previous page
Next page
Claims(14)
What is claimed is:
1. A MOS device comprising at least one mid-gap workfunction tungsten (W) gate on an ultra-thin gate dielectric material, said ultra-thin gate dielectric material having a thickness of less than 4.0 nm, wherein said mid-gap W gate is formed by
(a) depositing a layer of W onto said ultra-thin gate dielectric material, said ultra-thin gate dielectric material being positioned on a semiconductor substrate and said depositing step being carried out by chemical vapor deposition (CVD) using W(CO)6 as a source material; and
(b) patterning the structure formed in step (a).
2. A field effect transistor (FET) comprising at least one mid-gap work function tungsten (W) gate on an ultra-thin gate dielectric material, said ultra-thin gate dielectric material having a thickness of less than 4.0 nm, wherein said mid-gap W gate is formed by
(a) depositing a layer of W onto said ultra-thin gate dielectric material, said ultra-thin gate dielectric material being positioned on a semiconductor substrate and said depositing step being carried out by chemical vapor deposition (CVD) using W(CO)6 as a source material; and
(b) patterning the structure formed in step (a).
3. The MOS device of claim 1 wherein said ultra-thin gate dielectric material is selected from the group consisting of SiO2, nitrided SiO2, Si3 N4, metal oxides and mixtures thereof.
4. The MOS device of claim 3 wherein said ultra-thin gate dielectric is SiO2.
5. The MOS device of claim 1 wherein said semiconductor substrate contains at least one source and at least one drain region.
6. The MOS device of claim 5 wherein said semiconductor substrate is of the p-type or of the n-type.
7. The MOS device of claim 6 wherein said semiconductor substrate is a substrate composed of silicon, SiGe or GaAs.
8. The MOS device of claim 7 wherein said semiconductor substrate is composed of silicon.
9. The FET device of claim 2 wherein said ultra-thin gate dielectric material is selected from the group consisting of SiO2, nitrided SiO2, Si3 N4, metal oxides and mixtures thereof.
10. The FET device of claim 9 wherein said ultra-thin gate dielectric is SiO2.
11. The FET device of claim 2 wherein said semiconductor substrate contains at least one source and at least one drain region.
12. The FET device of claim 11 wherein said semiconductor substrate is of the p-type or of the n-type.
13. The FET device of claim 12 wherein said semiconductor substrate is a substrate composed of silicon, SiGe or GaAs.
14. The FET device of claim 13 wherein said semiconductor substrate is composed of silicon.
Description
RELATED APPLICATION

This application is a divisional application of U.S. Ser. No. 08/739,765, filed Oct. 30, 1996 now U.S. Pat. No. 5,789,312.

DESCRIPTION

1. Technical Field

The present invention relates to a method for fabricating mid-gap workfunction tungsten (W) gates directly onto gate dielectric materials such as ultra-thin gate dielectric materials for use in high speed/high density advanced metal oxide semiconductor (MOS) and complementary metal oxide semiconductor (CMOS) devices. Specifically, the mid-gap workfunction W gates of the instant invention are fabricated directly onto gate dielectric materials by employing a low temperature/low pressure chemical vapor deposition (CVD) technique using tungsten hexacarbonyl, W(CO)6, as the source material. The method of the present invention can also be used in fabricating w electrodes which may be employed in quantum devices.

The present invention also relates to high speed/high density advanced MOS and CMOS devices such as field effect transistors (FETs) and simple capacitors which contain at least one mid-gap workfunction W gate on a gate dielectric material, wherein said mid-gap workfunction W gate is fabricated by the method of the present invention.

2. Prior Art

In the field of advanced semiconductor manufacturing, high speed/high density MOS devices require extremely short channel lengths which are typically less than 0.1 μm. Straight scaling of existing MOS device structures to these short channel lengths is not practicable nor is it feasible.

Accordingly, several new types of MOS devices, e.g. silicon-on-insulators (SOIs)and double gate MOS devices, containing polysilicon gates have been developed to overcome the foregoing problem with prior art MOS devices. Common to all of these prior art devices, however, is the need for extremely thin gate dielectric materials which generally have a thickness of less than about 4.0 nm. A device with such a thin gate dielectric material must be operated with as low a bias voltage as possible.

In current practice, the threshold voltage, VT, is controlled by the adjustment of two parameters. First, the workfunction of the polysilicon gate is adjusted by doping the gate p+ or n+ for p-FETs and n-FETs, respectively. Second, the workfunction of the channel is adjusted by appropriately doping of the substrate to provide an acceptable workfunction difference between the channel and the gate. This workfunction difference provides a built-in potential, which, operating in conjunction with the externally applied bias, turns the device on and off.

For MOS devices far below 0.1 μm gate lengths, fluctuations in local dopant concentrations from one device to another results in an unacceptable large spread in VT. Advanced CMOS designs must therefore be fabricated with essentially intrinsic channels. This removes one of the parameters heretofore used to set VT. Only the gate workfunction remains.

In order to have the smallest possible externally applied bias voltage, the Fermi level of the gate should lie midway between the valence and conduction bands of silicon; i.e. at mid-gap. The existing technology, which consequently employs polysilicon gates, cannot satisfy this requirement. Thus, there is a need for developing a new gate material having a mid-gap workfunction, a good conductivity as well as being compatible with the processing of delicate ultra-thin dielectrics. This includes, but not limited to, an absence of energetic charged particles, ionizing radiation, corrosive reagents which may attack the ultra-thin gate dielectric material and any undesirable thermodynamically inherent interactions between the gate material and the dielectric, e.g. inter-diffusion, surface roughening or mutual chemical instability. It is noted that these latter inherent requirements are extremely stringent for ultra-thin dielectrics because unacceptable large leakage currents may be induced by very small absolute changes in the effective thickness of the dielectric.

These and other objectives are met by the present method which provides a mid-gap workfunction W gate or electrode that is deposited directly on a dielectric layer such as an ultra-thin dielectric material using a low temperature/low pressure CVD process with tungsten hexacarbonyl, W(CO)6, as the source material.

It is emphasized that the deposition of W using CVD techniques is well known in the art and it is generally applied as a wiring means in packaging applications. In those applications, tungsten hexafluoride, WF6, is typically used as the source material not W(CO)6. Little attention has been given to the use of tungsten carbonyls in wiring applications since relatively high temperatures are necessary to produce reasonably pure W films.

Mid-gap workfunction W gates using WF6 CVD chemistry have been previously disclosed in the prior art. This process, however, differs fundamentally from the present invention, in that WF6 cannot be used to deposit W directly onto ultra-thin gate dielectric materials. Instead, thick layers of silicon must first be deposited onto the gate dielectric material in a chemical activation step, and then the silicon is reacted away (to form SiF4) leaving W in its stead. Moreover, it has been determined that exposure of even quite thick oxide films (250 nm) to WF6 causes, without any exceptions, complete device failure owning to massive gate dielectric leakage currents. Other techniques besides CVD have been employed, however, none of the prior art processes are capable of depositing W directly onto ultra-thin gate dielectric materials.

Despite the potential use of tungsten carbonyls in wiring applications there is no disclosure of using W(CO)6 as the CVD source material for providing mid-gap workfunction W gates on dielectric materials such as ultra-thin gate dielectric materials.

SUMMARY OF THE INVENTION

One object of the present invention is to provide a method for fabricating mid-gap workfunction W gates directly onto gate dielectric materials such as ultra-thin gate dielectric materials for use in MOS and CMOS applications without the need of any preparatory chemical activation steps such as is generally required by most prior art processes.

Another object of the present invention is to provide a method of fabricating mid-gap workfunction W gates which are compatible with gate dielectric materials such as ultra-thin gate dielectric materials; have a highly purity (greater than 99.99%) and a resistivity value close to the ideal bulk value which is typically about 5 to about 6 μohm-cm.

Another object of the instant invention is to provide a method for fabricating W electrodes directly onto dielectric materials which comprises low temperature/low pressure CVD process using W(CO)6 as a source material.

A further object of the present invention relates to MOS and CMOS devices such as FETs which contain at least one W gate of the present invention deposited directly onto a gate dielectric material by CVD using W(CO)6 as the source material.

These as well as other objects are achieved by the present invention by using a low temperature/low pressure CVD technique with W(CO)6 as the source material. Specifically, the method of the present invention comprises the steps of: (a) depositing a uniform layer of W directly onto a dielectric material such as an ultra-thin gate dielectric material, said dielectric material being positioned on a semiconductor substrate, said deposition is carried out by CVD using W(CO)6 as the source material under conditions which are sufficient to form said W layer; and (b) patterning the structure formed in step (a) using standard lithographic techniques to form a MOS device containing said mid-gap workfunction W gate on said dielectric material. It is emphasized that no chemical activation step is required in the present invention to deposit the W layer onto the dielectric material.

The present invention also provides MOS devices such as FETs which comprise at least one mid-gap workfunction W gate prepared in accordance with the method of the present invention. The devices of the present invention exhibit gate leakage comparable to prior devices prepared in accordance with existing technology and they exhibit the theoretical value for metal-gate workfunction.

The present invention further provides a method of fabricating W electrodes for use in quantum devices. In accordance with this embodiment of the present invention, the W electrode is fabricated by a method which comprises the steps of: (a) depositing a layer of W onto a dielectric material, wherein said deposition is carried out by chemical vapor deposition (CVD) using W(CO6) as a source material; and (b) patterning said W layer to form said W electrode on said dielectric material.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a schmetic diagram of a typical CVD apparatus which can be used in the present invention to deposit W directly onto an ultra-thin gate dielectric material.

FIGS. 2A and 2B are cross-sectional views of a MOS device prepared in accordance with the method of the present invention: (A) after W deposition, and (B) after patterning.

FIG. 3 is a capacitance-voltage diagram for a W gate capacitor structure formed in accordance with the present invention having a thickness of 7.0 nm. Dotted line "---" as grown; solid line "--" after forming gas anneal (FGA).

FIG. 4 is a capacitance-voltage diagram for a W gate capacitor structure formed in accordance with the present invention having a thickness of 3.0 nm. Dotted line "----" as grown; solid line "--" after FGA.

FIG. 5 is a current-voltage diagram for a W gate capacitor structure formed in accordance with the present invention having a thickness of 3.0 nm. Dotted line "---" as grown; solid line "--" after FGA.

FIG. 6 is a current-voltage diagram for a W gate capacitor structure formed in accordance with the present invention having a thickness of 7.0 nm. Dotted line "---" as grown; solid line "--" after FGA.

DETAILED DESCRIPTION OF THE INVENTION

As stated above, the present invention provides a method of fabricating mid-gap workfunction W gates or W electrodes directly onto dielectric materials which are present on MOS devices without the need of any chemical activation steps. The mid-gap workfunction W gates and W electrodes produced in accordance with the present method are highly pure, compatible with ultra-thin gate dielectric materials found on MOS devices and have resistivity values close to the ideal bulk value.

In accordance with the method of the present invention, a layer of W is directly deposited on the surface of a dielectric material which is on top of a semiconductor substrate by employing CVD using W(CO)6 as the source material under conditions which are sufficient to form said W layer on the dielectric material. That structure containing the W layer is then patterned using conventional techniques well known to those skilled in the art.

Reference is made to FIG. 1 which shows a typical CVD apparatus 10 that can be employed in the present invention to deposit the W layer. Specifically, apparatus 10 includes a load-lock stainless steel reactor 12 which comprises a graphite sample holder cartridge, not shown in FIG. 1, wherein the test MOS wafer is placed. The reactor 12 further includes a heater assembly 18 for heating the sample during deposition and two ultra-high vacuums 20 and 16 for controlling the pressure during the deposition.

The source material 14, tungsten hexacarbonyl, W(CO)6, is introduced into reactor chamber 12 via a stainless steel valve 22 and is directed to a test MOS wafer which is contained within reactor 12 by tube 24.

Any grade of W(CO)6 can be used in the present invention. If a low purity W(CO)6 grade is used, it can be purified prior to being introduced into reactor chamber 12 using purification techniques well known to those skilled in the art.

CVD of W(CO)6 occurs at a temperature of from about 250 C. to about 600 C. More preferably, the CVD deposition of W occurs at a temperature of from about 275 C to about 500 C. The pressure of the reactor during CVD is from about 110-6 Torr to about 310-4 Torr. More preferably, the CVD of W(CO)6 occurs at a pressure of from about 110-4 Torr to about 210-4 Torr.

The CVD process typically is carried out for a time period of from about 3 minutes to about 4 hrs. Longer and shorter deposition times than these specified above are also contemplated herein.

It is noted that under the above conditions a layer of W having a thickness of from about 3.5 to about 200, more preferably from about 50 to about 100, nm is deposited directly onto the dielectric material.

A MOS wafer which can be employed in the present invention is shown in FIG. 2A. Specifically, the MOS wafer 48 that may be employed in the present invention comprises a semiconductor substrate 50 having at least one drain region 52 and at least one source region 54 embedded therein. The drain and source regions may also be located on top of the semiconductor substrate. On top of semiconductor substrate 50 is a layer of a dielectric material 56. A layer of W 58 is formed onto the upper surface of gate dielectric layer 56 by the CVD technique described hereinabove.

The semiconductor substrates 50 that may be employed in the present include, but are not limited to, silicon, SiGe or GaAs. Of these semiconductor substrates, silicon is most highly preferred.

The semiconductor substrates employed in the present invention can be of the p-type or the n-type depending upon the desired MOS device being manufactured. The substrates can be manufactured using techniques well known to those skilled in the art. The thickness of the semiconductor substrate is not critical to the method of the present invention and thus it may vary from one thickness to another depending upon the desired device being fabricated.

The ultra-thin dielectrics materials employed in the present invention include, but are not limited to, SiO2, nitrided SiO2, Si3 N4, metal oxides and mixtures or combinations thereof. The dielectrics employed in the present invention may be grown, deposited or reacted by using techniques well known to those skilled in the art. Of the gate dielectric materials mentioned hereinabove, SiO2 or lightly nitrided SiO2 (5% or less total nitride content) is highly preferred at present.

In another highly preferred embodiment of the present invention, ultra thin gate dielectric materials are employed. The term "ultra-thin" as used herein denotes a gate dielectric material as defined above which has a total thickness such that when it is incorporated into a device and operated under normal conditions the bulk of its gate leakage current is a result of direct tunneling. Specifically, for SiO2 this corresponds to a thickness of less than about 4.0 nm. More specifically, the term "ultra-thin" denotes a gate dielectric material which has a thickness of less than about 3.0 nm.

After depositing W layer 58, the MOS wafer shown in FIG. 2A is patterned using standard lithographic techniques well known to those skilled in this art. This includes, but not limited to, positioning photoresists on the surface of the CVD W layer; developing the photoresists and removing, via etching techniques, those areas that do not contain the photoresists. The final structure 60 formed after patterning is shown in FIG. 2B.

Etching may be carried out using wet or dry techniques well known to those skilled in the art. When wet etching is employed, the chemical etchant is selected from the group consisting of H2 O2, chromic acid, phosphoric acid, acetic acid, and the like thereof. The preferred chemical etchant employed in the present invention is H2 O2. Mixtures of the chemical etchants alone or with water are also contemplated herein.

When dry chemical etching is employed in the present invention, it may be carried out by reactive ion etching (RIE), ion beam etching (IBE) or laser ablation. Each of the aforementioned dry etching techniques are well known to those skilled in the art.

The present invention also relates to MOS devices which contain at least one mid-gap workfunction W gate on an ultra-thin gate dielectric material fabricated by the method of the present invention in its structure. A simplified MOS device containing one mid-gap W gate prepared in accordance with the method of the present invention is shown in FIG. 2B. Devices contain two or more W gates, such as dual gate MOS devices, are also contemplated herein.

Other MOS devices such as field effect transistors (FETs), simple capacitor structures, field emission devices and quantum devices are also contemplated herein. Common to all those structures is that they contain at least one mid-gap workfunction W gate or W electrode which is fabricated in accordance with the method of the present invention directly onto a dielectric material.

The following example is given to illustrate the scope of the present invention. Because this example is given for illustrative purposes only, the invention embodied therein should not be limited thereto.

EXAMPLE 1

Test structures were fabricated using thermally grown silicon dioxide thin films ranging in thickness from 2.8-7.0 nm to form MOS capacitors. Individual capacitors were isolated using a 100 nm thermally grown field oxide. Films were grown on both p-type and n-type wafers with resistivities of about 0.1 to 0.2 ohm-cm.

Tungsten films were deposited on the test wafers in blanket fashion. Specifically, W deposition was carried out in a load-locked, stainless steel reactor with a base pressure of about 10-9 torr. Tungsten hexacarbonyl, W(CO)6, was used as the source gas and it was emitted into the reactor via a stainless steel valve and directed onto the sample via a copper tube. The samples were introduced on a graphite sample holder cartridge which in turn was introduced into a heater assembly located within the reactor chamber. The deposition was conducted at a temperature of about 500 C. The growth rate in the system was typically about 1.5 nm/minute and was roughly temperature independent, indicative of a transport limited growth regime.

After deposition of the W films, devices were patterned using standard lithographic techniques. The tungsten film on each device was wet-etched using H2 O2. Capacitor structures were thus formed with areas ranging from about 10-6 to about 10-2 cm2.

The capacitor prepared above were tested using high frequency and quasi-static capacitance-voltage (C-V) and current-voltage techniques. FIGS. 3 and 4 show typical C-V data for W gate capacitors structures formed with W gate oxides having a thickness of about 3.0 and 7.0 nm capacitor. Data is shown for devices containing both p-type and n-type silicon wafers. The dotted and solid lines show the C-V data before and after a standard post metal gate deposition forming gas anneal (FGA) step which is carried out in 10% H2 in nitrogen at 450 C. for about 30 minutes. FIGS. 5 and 6 show the C-V characteristics for the as processed and FGA structures, respectively.

Analysis of the C-V data show interface state densities in the low 1011 cm-2 ev-1 for samples subjected to FGA. The flat band voltage is approximately 0.3 and -0.3 Volts for n-type and p-type substrates, respectively. This, in itself, demonstrate that the Fermi-level of the metal gate is situated very close to silicon mid-gap. This is also demonstrated by the symmetry of the C-V curves about the y-axis in FIGS. 3 and 4. Since the substrates are of approximately the same doping concentration for both the n-type and p-type substrates, one would expect a mid-gap metal workfunction gate to show complete symmetry about the voltage axis.

Current-voltage data from the aforementioned capacitors structures, as shown in FIGS. 5 and 6, show leakage currents which are consistent with the relative Fermi-level of the tungsten gate and the silicon substrate.

These data demonstrate that the tungsten gate capacitors have leakage currents as low as those exhibited by standard polysilicon based capacitors as shown in FIG. 5. (In order to make a valid comparison, leakage currents were compared as a function of the true gate dielectric voltage drop, Vox =Vgate -VFB). Note that this result was obtained for not only for the thick, 7.0 nm gate dielectric, but also for the ultra-thin 3.0 nm dielectric film. Previous attempts by other workers to make tungsten gates (by other techniques) were not able to achieve this requirement even for films in the 7.0 nm thick regime.

While this invention has been particularly shown and described with respect to preferred embodiments thereof, it will be understood by those skilled in the art that the foregoing and other changes in form and details may be made therein without departing from the spirit and scope of the invention.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US4451503 *Jun 30, 1982May 29, 1984International Business Machines CorporationPhoto deposition of metals with far UV radiation
US4505028 *Jan 19, 1984Mar 19, 1985Hitachi, Ltd.Method of producing semiconductor device
US4619840 *May 23, 1983Oct 28, 1986Thermco Systems, Inc.Process and apparatus for low pressure chemical vapor deposition of refractory metal
US4811066 *Oct 19, 1987Mar 7, 1989Motorola, Inc.Compact multi-state ROM cell
US4817557 *Sep 4, 1987Apr 4, 1989Anicon, Inc.Process and apparatus for low pressure chemical vapor deposition of refractory metal
US5061647 *Oct 12, 1990Oct 29, 1991Motorola, Inc.Forming a conductive layer over a substrate having a gate dielectric, depositiong a work function adjusting material and etching to form an inverse-t-lightly-doped-drain
US5164805 *Jul 26, 1989Nov 17, 1992Massachusetts Institute Of TechnologyNear-intrinsic thin-film SOI FETS
US5212400 *Sep 3, 1991May 18, 1993International Business Machines CorporationMethod of depositing tungsten on silicon in a non-self-limiting CVD process and semiconductor device manufactured thereby
US5407852 *Jun 28, 1993Apr 18, 1995Sgs-Thomson Microelectronics, S.R.L.Method of making NOR-type ROM with LDD cells
US5539230 *Mar 16, 1995Jul 23, 1996International Business Machines CorporationIn an integrated circuit chip
US5596214 *May 30, 1995Jan 21, 1997Nec CorporationNon-volatile semiconductor memory device having a metal-insulator-semiconductor gate structure and method for fabricating the same
US5619051 *Jun 23, 1995Apr 8, 1997Nec CorporationSemiconductor nonvolatile memory cell
US5736767 *Jul 2, 1996Apr 7, 1998Kabushiki Kaisha ToshibaSemiconductor device including a CMOSFET of a single-gate
JPS61217576A * Title not available
Non-Patent Citations
Reference
1B. Davari, "Submicron Tungsten Gate Mosfet with 10 nm Gate Oxide", VLSI Symposium, Japan (1987).
2 *B. Davari, Submicron Tungsten Gate Mosfet with 10 nm Gate Oxide , VLSI Symposium, Japan (1987).
3Hiromasa Noda et al., "Tungsten Gate Technology For Quarter-Micron Application", International Conference on Solid State Devices & Materials, pp. 225-227 (1995).
4 *Hiromasa Noda et al., Tungsten Gate Technology For Quarter Micron Application , International Conference on Solid State Devices & Materials, pp. 225 227 (1995).
5Hiromasa Noda, "Tungsten Gate Technology for Quarter-Micron Application", Jpn. J. Appl. Phys. vol. 35, pp. 807-811 (1996).
6 *Hiromasa Noda, Tungsten Gate Technology for Quarter Micron Application , Jpn. J. Appl. Phys. vol. 35, pp. 807 811 (1996).
7J.R. Creighton, "Non-Selective Tungsten Chemical-Vapor Deposition Using Tungsten Hexacarbonyl", Deposition and Growth: Limits for Microelectronics, Anaheim, CA, USA, Nov. 3-5, 1987, ISSN 0094-243X, AIP Conference Proceedings, USA, pp. 192-201 (1988).
8 *J.R. Creighton, Non Selective Tungsten Chemical Vapor Deposition Using Tungsten Hexacarbonyl , Deposition and Growth: Limits for Microelectronics, Anaheim, CA, USA, Nov. 3 5, 1987, ISSN 0094 243X, AIP Conference Proceedings, USA, pp. 192 201 (1988).
9Jae Hyun Sone et al., "Formation of Low Pressure Chemically Vapour Deposited W Thin Film On Silicon Dioxide for Gate Electrode Application", Thin Solid Films, vol. 253, No. 1/02, pp. 377-381 (1994).
10 *Jae Hyun Sone et al., Formation of Low Pressure Chemically Vapour Deposited W Thin Film On Silicon Dioxide for Gate Electrode Application , Thin Solid Films, vol. 253, No. 1/02, pp. 377 381 (1994).
11 *Momose et al. ( High frequency AC characteristics of 1.5 nm gate oxide MOSFETs , Electron Devices Meeting, 1996, pp. 105 108).
12Momose et al. ("High-frequency AC characteristics of 1.5 nm gate oxide MOSFETs", Electron Devices Meeting, 1996, pp. 105-108).
13 *Nagai et al. ( Static characteristics of 2.3 nm gate oxide MOSFETs , Electron Devices, IEEE Transactions, vol. 35, Issue 7, Part 1, Jul. 1988, pp. 1145 1147).
14Nagai et al. ("Static characteristics of 2.3 nm gate oxide MOSFETs", Electron Devices, IEEE Transactions, vol. 35, Issue 7, Part 1, Jul. 1988, pp. 1145-1147).
15 *Toriumi et al. ( Performance and reliability concerns of ultra thin SOI and ultra thin gate oxide MOSFETs , Electron Devices Meeting, 1995, pp. 847 850).
16Toriumi et al. ("Performance and reliability concerns of ultra-thin SOI and ultra-thin gate oxide MOSFETs", Electron Devices Meeting, 1995, pp. 847-850).
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US6551942Jun 15, 2001Apr 22, 2003International Business Machines CorporationMethods for etching tungsten stack structures
US6603181Jan 16, 2001Aug 5, 2003International Business Machines CorporationMOS device having a passivated semiconductor-dielectric interface
US6607976Sep 25, 2001Aug 19, 2003Applied Materials, Inc.Copper interconnect barrier layer structure and formation method
US6762469Apr 19, 2002Jul 13, 2004International Business Machines CorporationHigh performance CMOS device structure with mid-gap metal gate
US6916698Mar 8, 2004Jul 12, 2005International Business Machines CorporationHigh performance CMOS device structure with mid-gap metal gate
US6989321Sep 30, 2003Jan 24, 2006Tokyo Electron LimitedLow-pressure deposition of metal layers from metal-carbonyl precursors
US7037816Jan 23, 2004May 2, 2006Taiwan Semiconductor Manufacturing Company, Ltd.System and method for integration of HfO2 and RTCVD poly-silicon
US7038284 *Sep 2, 2003May 2, 2006Asm International, N.V.Methods for making a dielectric stack in an integrated circuit
US7078341Sep 30, 2003Jul 18, 2006Tokyo Electron LimitedVapor deposition; overcoating semiconductor substrate
CN101019225BAug 10, 2005Jan 26, 2011Nxp股份有限公司Semiconductor device and method of manufacturing such a semiconductor device
WO2002079537A2 *Mar 25, 2002Oct 10, 2002Applied Materials IncW-cvd with fluorine-free tungsten nucleation
WO2006021906A1 *Aug 10, 2005Mar 2, 2006Koninkl Philips Electronics NvSemiconductor device and method of manufacturing such a semiconductor device
Classifications
U.S. Classification257/412, 257/388, 257/E21.295, 257/E21.202, 257/407
International ClassificationH01L29/78, H01L21/3205, C23C16/16, H01L21/28
Cooperative ClassificationH01L21/32051, H01L21/28079, C23C16/16
European ClassificationH01L21/28E2B5, H01L21/3205M, C23C16/16
Legal Events
DateCodeEventDescription
Jun 29, 2012SULPSurcharge for late payment
Year of fee payment: 11
Jun 29, 2012FPAYFee payment
Year of fee payment: 12
Feb 27, 2012REMIMaintenance fee reminder mailed
Sep 19, 2007FPAYFee payment
Year of fee payment: 8
Sep 25, 2003FPAYFee payment
Year of fee payment: 4