Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS6203689 B1
Publication typeGrant
Application numberUS 09/159,212
Publication dateMar 20, 2001
Filing dateSep 23, 1998
Priority dateSep 23, 1997
Fee statusLapsed
Publication number09159212, 159212, US 6203689 B1, US 6203689B1, US-B1-6203689, US6203689 B1, US6203689B1
InventorsJeong Du Kim, Min Seog Choi
Original AssigneeKorea Advanced Institute Science And Technology
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
For polishing inner face of deep hole of article
US 6203689 B1
Abstract
An electropolishing apparatus for polishing an inner face of a deep hole of an article comprises a support for holding an article so that the article is maintained to erect in an electrolytic bath, and an electrode to be inserted into a deep hole of the article. The electrode is a hollow member having a through hole formed longitudinally. Electrolyte is supplied into the through hole of the electrode from upside. The electrolyte flows through the through hole of the electrode, a gap between the lower end of the electrode and the bottom of the hole, and another gap to be between an outer face of the electrode and an inner face of the hole. A plurality of removers consisting of nonwoven fabric may be fixed around the electrode. The support and the article rotate, while the electrode moves up and down. Furthermore, a plurality of magnets may be arranged around the article so that a magnetic field is formed in a zone including the article. A body in which the magnet are embedded may be translated with the electrode to move up and down throughout the length of the article.
Images(5)
Previous page
Next page
Claims(3)
What is claimed is:
1. An electropolishing apparatus for polishing an inner face of a deep hole of an article comprising:
a support for holding the article with the hole opening facing upward;
an electrode adapted for insertion into the hole;
flow guiding means for directing up electrolyte along the inner face of the hole, said flow guiding means comprising a through hole disposed in the electrode longitudinally, said flow guiding means adapted to form a gap between an outer face of the electrode and the inner face of the hole;
a plurality of magnets adapted for arrangement around the article for forming a magnetic field in a zone including the article; and
a plurality of removers fixed on a outer face of the electrode to remove an electrolysis coat from the inner face of the hole, said electrode adapted for moving up and down in the hole, and said support adapted for rotating the article held thereon.
2. The electropolishing apparatus according to claim 1, wherein said magnets are adapted for moving up and down throughout the length of the article.
3. An electropolishing method for polishing an inner face of a deep hole of an article comprising steps for:
holding the article with the hole facing upward in an electrolytic bath;
supplying electric energy through an electrode adapted for insertion into the hole;
forming a magnetic field in a zone including the article using a plurality of magnets arranged around the article;
directing an electrolyte through a through hole drilled in the electrode longitudinally and through a gap located between an outer face of the electrode and the inner face of the hole; and
removing an electrolysis coat from the inner face of the hole.
Description
TECHNICAL FIELD OF THE INVENTION

This invention relates to an electropolishing apparatus and method, more particularly, the electropolishing apparatus and method for precisely and smoothly polishing an inner face of a deep hole in an article with any operation mark left.

BACKGROUND OF THE INVENTION

Generally, polishing a surface of an article is conducted by a mechanical polishing method in which the surface is abraded by a mechanical force or a physical force, by an electropolishing method in which the surface is electrochemically eroded.

In a representative mechanical polishing, a surface of an article is abraded by an abrasive stone. Such a method can not be applied to polishing an inner face of a hole having a small diameter so that an abrasive stone can not get into the hole. Moreover, there may be left scratches by crystalline particles in the abrasive stone, thermal strain due to high temperature during abrasion, and debris on the face after finishing to polish.

Although the electropolishing method does not involve problems related to scratches and thermal strain, bubbles generated during electrochemical reaction may become attached to the face to be polished to hinder electrolysis, whereby pits are left on the face after finishing to a polish. This problem is serious in an inner face of a deep hole. Moreover, in the case that the face to be polished is coated with the resultant from electrolysis, reaction rate is lowered, whereby the time taken to polish lengthens.

SUMMARY OF THE INVENTION

Therefore, this invention is to propose an electropolishing apparatus to polish an inner face of a deep hole by electropolishing with no pit left.

Furthermore, this invention is intended to promote electrochemical reaction in electrolysis by removing the resultant coated on the face to be polished.

According to an aspect of this invention, an electropolishing apparatus for polishing an inner face of a deep hole of an article is provided. The apparatus comprises a support for holding the article with the hole opened upward, an electrode adapted for insertion into the hole, and flow guiding means for flowing electrolyte up along the inner face of the hole.

The flow guiding means may be formed with a through hole drilled in the electrode longitudinally, and a gap adapted to be between an outer face of the electrode and the inner face of the hole.

The apparatus may further comprise a plurality of removers fixed on a outer face of the electrode to remove an electrolysis coat on the inner face of the hole, said electrode adapted for moving up and down in the hole, and said support adapted for rotating the article held thereon.

The apparatus may further comprise a plurality of magnets arranged around the article to form a magnetic field in a zone including the article.

The magnet may move up and down throughout the length of the article.

According to another aspect of this invention, an electropolishing method for polishing an inner face of a deep hole of an article is provided. The method comprises steps for holding the article with the hole opened upward in an electrolytic bath, supplying electric energy through an electrode adapted for insertion into the hole, and flowing electrolyte up along the inner face of the hole.

In the flowing step, the electrolyte flows through a through hole drilled in the electrode longitudinally, and a gap adapted to be between an outer face of the electrode and the inner face of the hole.

The method may further comprise a step for removing an electrolysis coat on the inner face of the hole.

The method may further comprise a step for forming a magnetic field in a zone including the article using a plurality of magnets arranged around the article.

Other advantages and features of the present invention will become apparent from the following description, including the drawings and claims.

BRIEF DESCRIPTION OF THE DRAWING

FIG. 1 shows a schematic view of general constituents of an electropolishing apparatus according to this invention for exemplifying arrangement of the constituents.

FIG. 2 shows a schematic view of arrangement of an article to be polished, an electrode and a support for the article in an electrolytic bath of an embodiment of the electropolishing apparatus according to this invention for explaining flow of electrolyte.

FIG. 3 shows a schematic view of a scrubber and a magnet of another embodiment of the electropolishing apparatus according to this invention.

FIG. 4 shows a sectional view taken along line IV—IV in FIG. 3 for explaining arrangement of the magnets.

DESCRIPTION OF THE PREFERRED EMBODIMENTS

Hereinafter, preferred embodiments of electropolishing apparatus according to this invention are explained referring appended drawings.

As shown in FIG. 1 and FIG. 2, the electropolishing apparatus according to a preferred embodiment of this invention comprises a support 30 for holding an article 10 so that the article 10 is maintained erect in an electrolytic bath 20, and an electrode 40 to be inserted into a deep hole 11 of the article 10, which is to be polished. The electrode 40 is a hollow member having a through hole 41 formed longitudinally. In this embodiment, the electrode 40 acts as a cathode, while the article 10 acts as an anode.

As shown in FIG. 2, the article 10 is maintained on support 30 with the hole 11 opened upward during polishing. The electrode 40 inserted into the hole 11 from upside is maintained with a lower end 42 of the electrode 40 spaced from a bottom 12 of the hole 11.

Electrolyte 44 is supplied into the through hole 41 of the electrode 40 from upside. The electrolyte 44 flows through the hole 41 of the electrode 40, a gap between the lower end of the electrode 40 and the bottom 12 of the hole 11, and another gap adapted to be between an outer face 45 of the electrode 40 and an inner face 13 of the hole 11 as shown in FIG. 2.

Pressure and flow rate of the electrolyte 44 should be controlled to push up bubbles the gap between the outer face 45 of the electrode 40 and the inner face 13 of the hole 11.

Preferably, a flow resistance 46 is provided around an upper portion of the electrode 40 to resist flow of the electrolyte 44 flowing out of the hole 11. The flow resistance 46 makes the flow in the gap adapted to be between the outer face 45 of the electrode 40 and the inner face 13 of the hole 11 to be steady flow under a constant prevailing pressure. The flow resistance 46 is an annular member that is forcedly fitted around the electrode 40 so that the member displaced upwardly or downwardly to control its position on the electrode 40 only by a force greater than a given force.

The support 30 and/or the electrode 40 are preferred to be adaptable parts that are changeable to correspond to the size of the article 10. If the hole 11 of the article 10 is a bottomless hole, it is preferred to provide a recess corresponding to the diameter of the hole 11 of the article on the support 30.

Another embodiment of this invention, a plurality of removers 51 consisting of anything of nonwoven fabric, buff, abrasive stone and sponge are fixed around the electrode 40. In this embodiment, the support 30 and the article 10 rotate, while the electrode 40 moves up and down. Rotation of the support 30 and movement of the electrode 40 are performed by desirable transmitting trains from a motor 21 mounted on the electrolytic bath 20 as shown in FIG. 1.

As the support 30 rotates and the electrode 40 moves, the removers 51 rub off an electrolysis coat on the inner face 13 of the hole 11 of the article 10. It is preferred that the removers 51 clean out only coatings without leaving scratches on the inner face 13 of the hole 11 of the article 10. Preferably, the removers 51 are arranged in two or three rows, while each row comprises two or three removers.

Furthermore, a plurality of magnets 61, 62, 63 and 64 are arranged around the article 10 so that a magnetic field is formed in a zone including the article 10 as shown in FIG. 3 and FIG. 4. The magnetic field promotes electrolysis rate by activating electrolyzed ions by Lorentz' effect. The magnets 61, 62, 63 and 64 may be a natural magnet or an electric magnet.

In this embodiment shown in FIG. 3, the magnets 61, 62, 63 and 64 are formed in three layers, while magnets of each layer are arranged as shown in FIG. 4. Body 60 in which the magnets 61, 62, 63 and 64 are embedded is translated with the electrode 40 to move up and down throughout the length of the article 10.

Moreover, it is preferred that a reservoir 70 for reserving electrolyte is provided as shown in FIG. 1. The reservoir 70 is arranged under the electrolytic bath 20 to receive electrolyte influenced from the electrolytic bath 20 through a pipeline 71. The pipeline 71 is preferably installed at a lower portion of the electrolytic bath 20 so that debris settled to the electrolytic bath 20 are flowed out along with the electrolyte. In this case, a valve (not shown) is provided in the pipeline 71 to control flow rate of the electrolyte so that the level of the electrolyte in the electrolytic bath 20 is maintained constantly.

Furthermore, a heater 72 and a temperature sensor 73 are provided in the reservoir 70 to control the temperature of the electrolyte.

It is preferred that a partition wall 74 acting as a filter for filtrating debris flowed through the pipeline 71 is provided in the reservoir 70.

The electrolyte reserved in the reservoir 70 is pumped by a pump 75 and supplied into the through hole 41 of the electrode 40.

Both operational constituents and electrolysis conditions are controlled through control knobs 80 integrated on a control panel 81.

Although this invention is explained based on preferred embodiments shown in the drawings, the embodiments are not for limiting but exemplifying this invention. For example, arrangement of magnetic polarities may have an order, N-N-S-S unlike the order, N-S-N-S shown in FIG. 4.

As the electropolishing apparatus according to this invention, an inner face of a deep hole of an article can be easily and precisely polished with no pits left, while promoting electrolysis rate to shorten the required time.

It will be apparent to a skilled man in this technical field that alterations, changes or modulations from the aforementioned embodiments can be obtained without departing from technical idea of this invention.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2475586 *Apr 9, 1943Jul 12, 1949Thompson Prod IncMethod of electropolishing the internal surface of a hollow valve
US2764540 *Sep 10, 1952Sep 25, 1956Duddy Paul FMethod and means for electropolishing inner surfaces
US3183176 *Jul 28, 1960May 11, 1965Steel Improvement & Forge CoApparatus for electrolytically treating the interior of a bore
US3202598 *Mar 22, 1963Aug 24, 1965Titanium Metals CorpElectrolytic polishing tool
US3449226 *Oct 3, 1966Jun 10, 1969Anocut Eng CoElectrolytic deburring apparatus and method
US4294673 *Feb 22, 1980Oct 13, 1981Hitachi Shipbuilding & Engineering Co., Ltd.Abrasives and electrolysis
US4752367 *May 8, 1987Jun 21, 1988Cation CorporationRemoving a minimum of metal from the anode surface
US4826582 *Aug 5, 1986May 2, 1989FramatomeSurface treatment process and device for heat exchangers
US5294309 *Oct 30, 1990Mar 15, 1994Agency Of Industrial Science And TechnologyElectro-abrasive polishing of the inner surface of pipes to extra-smooth mirror finish
US5958195 *May 22, 1997Sep 28, 1999Therma Corporation, Inc.Tube inner surface electropolishing device
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US7063601 *Jan 19, 2005Jun 20, 2006Sejong University Industry-Academy Cooperation FoundationInternal magnetic-force polishing system
US7632390 *Dec 10, 2004Dec 15, 2009Ryszard RokickiApparatus and method for enhancing electropolishing utilizing magnetic fields
Classifications
U.S. Classification205/652, 205/686, 205/672, 204/224.00M, 204/DIG.5
International ClassificationC25F7/00, C25F3/00
Cooperative ClassificationY10S204/05, C25F7/00
European ClassificationC25F7/00
Legal Events
DateCodeEventDescription
May 17, 2005FPExpired due to failure to pay maintenance fee
Effective date: 20050320
Mar 21, 2005LAPSLapse for failure to pay maintenance fees
Oct 7, 2004REMIMaintenance fee reminder mailed
Nov 25, 1998ASAssignment
Owner name: KOREA ADVANCED INSTITUTE SCIENCE AND TECHNOLOGY, K
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KIM, JEONG DU;CHOI, MIN SEOG;REEL/FRAME:009679/0917;SIGNING DATES FROM 19981109 TO 19981118