Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS6208044 B1
Publication typeGrant
Application numberUS 08/969,374
Publication dateMar 27, 2001
Filing dateNov 13, 1997
Priority dateAug 13, 1993
Fee statusPaid
Also published asCA2196275A1, CA2196275C, DE69535998D1, EP0784826A1, EP0784826B1, US5818182, WO1996021194A1
Publication number08969374, 969374, US 6208044 B1, US 6208044B1, US-B1-6208044, US6208044 B1, US6208044B1
InventorsKrishna Viswanadham, David Law, Dennis Boyle, Matt Herron
Original AssigneeApple Computer, Inc.
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Removable media ejection system
US 6208044 B1
Abstract
A media ejection system includes a peripheral unit having a housing, an ejection mechanism, and a memory wire coupled to the ejection mechanism. The system further includes a digital processor for issuing ejection commands, and a controller responsive to the ejection command for controlling a current flow through the memory wire. When sufficient current flows through the memory wire, it contracts to activate the ejection mechanism, thereby ejecting a removable medium (such a PCMCIA card) from the housing of the peripheral unit. A method of the invention includes the steps of receiving an ejection request, issuing a ejection command in response to the ejection request, where the ejection command includes parameters for controlling current flow through the metal alloy, and electrically energizing the memory alloy in accordance with the parameters such that the memory alloy undergoes a dimensional change to activate a removable medium ejection mechanism.
Images(6)
Previous page
Next page
Claims(12)
What is claimed is:
1. A memory wire control system used to eject a removable medium from a housing, said memory wire control system comprising:
an elongated memory wire having a first end and a second end and an intrinsic electrical resistance; and
a pulse width modulator having a first output coupled to a first coupling location of said memory wire that is more proximate said first end than said second end and a second output coupled to a second coupling location of said wire that is more proximate to said second end than said first end, said pulse width modulator being operative to provide a pulse width modulated current to said memory wire, thereby causing said memory wire to heat due to said intrinsic electrical resistance and consequently causing said memory wire to contract between said first coupling portion and said second coupling portion due to said heating, whereby when said memory wire is caused to contract, said removable medium is caused to ejected from said housing.
2. A memory wire control system as recited in claim 1 wherein said memory wire is an alloy comprising nickel and titanium.
3. A memory wire control system as recited in claim 1 wherein said pulse width modulator is a portion of a digital controller.
4. A memory wire control system used to eject a removable medium from a housing, said memory wire control system comprising:
an elongated memory wire having a first end and a second end and an intrinsic electrical resistance; and
a digital controller including a pulse width modulator having a first output coupled to a first coupling location of said memory wire that is more proximate said first end than said second end and a second output coupled to a second coupling location of said wire that is more proximate to said second end than said first end, said pulse width modulator being operative to provide a pulse width modulated current to said memory wire, thereby causing said memory wire to heat due to said intrinsic electrical resistance and consequently causing said memory wire to contract between said first coupling portion and said second coupling portion due to said heating, whereby when said memory wire is caused to contract, said removable medium is caused to ejected from said housing,
wherein said digital controller includes at least one register that is programmable under software control, the operation of said pulse width modulator being controlled by said digital controller in accordance with at least one parameter stored in said at least one register.
5. A memory wire control system as recited in claim 4 wherein said at least one parameter is a duty cycle for the pulse with modulated current produced by said pulse width modulator.
6. A memory wire control system as recited in claim 5 wherein said pulse width modulator is responsive to at least a second parameter which is a frequency for the pulse with modulated current produced by said pulse width modulator.
7. A memory wire control system as recited in claim 4 wherein said at least one parameter is a frequency for the pulse with modulated current produced by said pulse width modulator.
8. A memory wire control system as recited in claim 4 wherein said digital controller includes a microprocessor, and wherein said microprocessor is responsive to an activation request, and is capable of issuing an activation command in response thereto.
9. A memory wire control system as recited in claim 8 wherein said memory wire activation command is stored in said at least one register.
10. A memory wire control system as recited in claim 9 further comprising a gate controlled by said memory activation command and coupled between said pulse width modulator and said memory wire.
11. A memory wire control system as recited in claim 10 wherein said memory activation command is further operative to activate said pulse width modulator.
12. A memory wire control system as recited in claim 9 wherein said activation command is operative to activate said pulse width modulator.
Description
CROSS-REFERENCE TO RELATED APPLICATION

This application is a divisional application of prior U.S. patent application Ser. No. 08/367,065 filed on Dec. 30, 1994, now U.S. Pat. No. 5,818,182, which is a continuation-in-part (CIP) of U.S. patent application Ser. No. 08/107,185 filed Aug. 13, 1993, now U.S. Pat. No. 5,466,166, the disclosures of which are hereby incorporated by reference, entitled “PCMCIA Card Ejection Mechanism”, and assigned to the assignee of the present invention, said patent application being incorporated herein by reference in its entirety for all purposes.

BACKGROUND OF THE INVENTION

This invention relates generally to computer peripherals, and more particularly to digital mass storage devices having removable storage media.

Computer systems and other digital processing systems often include digital memory “peripherals” used for the mass storage of data, Examples of such digital memory peripherals include hard disk drives, floppy disk drives, optical disk drives, and Personal Computer Memory Card International Association (PCMCIA) cards or devices (also referred to as PC Cards) or other types “flash” memory cards. With some of these peripherals, the storage medium is permanently housed within and forms a part of the peripheral. An example of digital storage peripheral which does not allow the removal of its storage medium is a standard Winchester-type hard disk drive. Other memory peripherals allow the removal and replacement of the digital media. Examples of such peripherals include floppy disk drives and PCMCIA peripheral units.

For most types of storage peripherals with removable media, the media is manually inserted into a slot against spring pressure until a latching mechanism is engaged. In many types of such peripheral units, the media is disengaged from the unit by manually depressing a release button or lever to release the latch and thereby allow the compressed spring to partially eject the storage medium. A protruding end of the medium is then removed from the peripheral unit by hand.

In some computer systems, notably the Macintosh® computer system made by Apple Computer, Inc. of Cupertino, Calif., removable storage media can be automatically ejected by the computer system. More particularly, the Macintosh operating system can cause motors or electrical solenoids of the floppy drive unit to automatically eject a floppy disk.

Such automatic ejection of storage media has several advantages. For one, the computer can prevent the ejection of a floppy disk from the floppy disk drive if the system still needs or is processing data in conjunction with the floppy disk drive. Another advantage is that the floppy disk can be ejected automatically under certain conditions, such as during a power-down or power-up of the computer system. However, such automatic ejection systems have the disadvantage of increasing the cost of the floppy disk drive in that motors or solenoids must be provided, along with their attendant control circuitry.

An increasingly popular form of removable media is the PCMCIA memory card, which is typically a form of “flash” memory. As is well known to those skilled in the art, flash memory is form of non-volatile, solid-state, read-write memory, and PCMCIA cards are flash memory which conform to certain industry standards. Since PCMCIA cards are, themselves, quite small, and since they do not require drive motors or the like (as the case with disk drives) the PCMCIA peripheral unit can be made quite small and lightweight. This makes PCMCIA peripheral units quite attractive for small computers, such as laptop computers, Personal Digital Assistants (PDAs) such at the Newton® PDA, and other small, portable devices utilizing digital processors.

PCMCIA cards can be of other types than the aforementioned flash memory type. For example, there are PCMCIA cards which employ Static Random Access Memory (SRAM) and PCMCIA cards that are miniature hard disk drives. In addition, PCMCIA cards can include modem, cellular pager, and networking capabilities. The PCMCIA format is therefore quite flexible and is rapidly growing in popularity.

For a variety of reasons, in the past, PCMCIA peripheral units only permitted the manual ejection of the PCMCIA cards . For one, the addition of motors or solenoids to eject the PCMCIA card would substantially increase the size of the PCMCIA peripheral unit, which is considered very undesirable. For another, the motor or solenoid would add a significant cost to the PCMCIA peripheral unit.

SUMMARY OF THE INVENTION

The present invention includes a system and method for the automatic ejection of media. More particularly, the present invention includes a system and method for the automatic ejection of PCMCIA cards from PCMCIA peripheral units. This is accomplished using an electrically-controlled “memory wire” to eject a PCMCIA card without the use of motors or solenoids.

A memory wire control system in accordance with the present invention includes elongated memory wire and a pulse width modulator for controlling the electric current flowing through the wire. The electric current heats the wire, causing a dimensional change in the wire that can be used, for example, to release a catch on a PCMCIA peripheral unit to eject a PCMCIA card. The memory wire is preferably a bimetallic alloy comprising nickel and titanium, commonly known by the generic tradename Nitinol. The pulse width modulator is preferably computer controlled so that dimensional changes in the memory wire can be under software control.

A media ejection system of the present invention includes a peripheral unit having a housing receptive to removable medium, an ejection mechanism for ejecting the medium, and a memory wire coupled to the ejection mechanism. The system also includes a digital processor operative to issue a ejection command, and a controller responsive to the ejection command for controlling current flow in the memory wire of the peripheral unit. When the ejection command is received, current flows through the memory wire, causing it to contract, and thereby activating the ejection mechanism of the peripheral unit.

A method for ejecting a removable medium in accordance with the present invention includes the steps of: a) receiving a ejection request; b) issuing a ejection command in response to the ejection request, where the ejection command includes control parameters for a current that is to flow through a memory alloy; and c) passing an electrical current through the memory alloy in accordance with the control parameters so that the memory alloy undergoes a dimensional change to activate a removable medium ejection mechanism. Preferably, the method is computer implemented, and the step of energizing the memory alloy includes applying a pulse width modulated signal to the metal alloy in accordance with the parameters. Also preferably, the parameters included at least one of a duty cycle and a frequency for the pulse width modulated signal.

Since a memory wire or other memory or bimetallic alloy is used to activate the ejection mechanism of the peripheral, the need for motors, solenoids, or other electromagnetic actuators has been eliminated. This greatly reduces the cost of a peripheral unit having an automatic ejection mechanism. Furthermore, the memory wire does not increase the size of the peripheral unit, which is very desirable in view of the increasing miniaturization of computer systems.

These and other advantages of the present invention will become apparent to those skilled in the art upon a reading of the following descriptions of the invention and a study of the several figures of the drawing.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a perspective view of a housing for a PCMCIA peripheral unit in accordance with the present invention;

FIG. 2 is a block diagram of a computer system with a digital storage peripheral unit in accordance with the present invention;

FIG. 3 is a schematic of the ejection controller 50 of FIG. 2;

FIG. 3A is a diagram of a pulse width modulated (PWM) signal that can be applied to the memory wire of the present invention;

FIG. 4 is a flow diagram of the computer implemented process of the present invention;

FIG. 5 is a flow diagram of the illustrating the “performed eject sequence” step of FIG. 4 in greater detail; and

FIG. 5A is an illustration of various programmable registers used by the present invention.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

In FIG. 1, a PCMCIA peripheral unit 10 in accordance with the present invention includes a housing 12, an ejection mechanism indicated generally at 14, and memory wires 16A and 16B. The peripheral unit 10 also include other parts well known to those skilled in the art, such as a male connector (not shown) which engages a female connector provided at one end of a PCMCIA card (not shown). A complete description of the housing 12 and ejection mechanism 14 for the peripheral unit 10 can be found in copending U.S. patent application Ser. No. 08/107,185, the disclosure of which has been incorporated herein by reference.

The housing 12 is elongated, rectangular, box-like structure which is capable of simultaneously receiving two PCMCIA cards. A first card may be engaged with a slot 18 of housing 12, and a second card may be engaged with a slot 20 of housing 12. The two PCMCIA cards (not shown) can be inserted and ejected from the housing 12 separately or simultaneously by the ejection mechanism 14. To eject a PCMCIA card from slot 18, an eject button 22 is pressed, and to eject PCMCIA card from slot 20 a button 24 is pressed. Both of the PCMCIA cards can ejected simultaneously by pressing the buttons 22 and 24 at the same time. The buttons 22 and 24 are coupled to the ejection mechanism 14 by unlatch bars 26 and 28, respectively, which slide longitudinally within the housing 12.

Memory wires 16A and 16B of the peripheral unit 10 allow for an automated, software-controlled ejection of PCMCIA cards from slots 18 and 20, respectively. Memory wires 16A and 16B are made from a material exhibiting “shape memory effect”, which was first noted over 50 years ago. Preferably, the memory wires 16A and 16b are made from an essentially bi-metallic alloy comprising nickel and titanium, under such trademarks as Flexinol™ by Dynalloy, Inc. of Irvine Calif. or under the generic tradename Nitinol by a number of vendors. The memory wires 16A or 16B of the present invention are approximately 8.4 centimeters long, and have an intrinsic, end-to-end resistance of 1.4 ohms.

Because the memory wires have an intrinsic resistance, a dimensional change in the memory wires 16A and 16B can be made by passing a current though the wires, thereby causing them to heat to degree sufficient to cause a significant contraction of the wire. In other words, the intrinsic resistances of the memory wires 16A and 16B are used as resistance heaters to cause the wires to shrink and to thereby selectively activate the ejection mechanism 14.

Preferably, the memory wires 16A and 16B are anchored at one end to flanges (such as flange 30) of the unlatched bars 26 and 28, respectively, by anchors 32 and 34, respectively, the other end of the memory wire 16 are anchored to a fixed portion of the housing 12. In the present invention, the anchors 32 and 34 are conductive and couple ends of the memory wires 16A and 16B to ground. The anchors going to the fixed portion of the housing should electrically insulate the other ends of the memory wires, such that they are not grounded.

When currents are passed through the memory wires 16A and 16B, their contraction pulls unlatch bars 26 and 28, respectively, towards the ejection mechanism 14, thereby activating the ejection mechanism 14 in the same manner as if the button 22 or 24 respectively, had been pressed. The wires can also be provided in other releasing configurations, such as in a configuration where it pulls directly on a latch plate of the ejection mechanism 14, or where it pulls a wedge between a pair of latch plates of the ejection mechanism 14.

Preferably, first end portions of the wires 16A and 16B are electrically coupled to ground by means of the grounded, metal unlatch bars 26 and 28, respectively, and the other end portions of the wires 16A and 16B (which are not grounded) are connected to control circuitry by wires 36 and 38, respectively. It should be noted that the point of electrical contact between the wires 16A and 16B are preferably at, or approximate to, its two ends. However, alternate embodiments of the present invention may have coupling points located at some distance from the two ends such that only a more central portion of the wire is electrically heated.

In FIG. 2, a digital computer system 40 is shown attached the PCMCIA peripheral unit 10. The digital computer system 40 includes a microprocessor 42, Random Access Memory (RAM) 44, Read Only Memory (ROM) 46, an Application Specific Integrated Circuit (ASIC) 48, and an ejection controller 50. The majority of the components of the computer system 40 communicate with each other, either directly or indirectly, by means of a system bus 52, as is well known to those skilled in the art.

The microprocessor 42, RAM 44, and RAM 46 operate in a conventional manner which need not be described herein. The ASIC 48 (which is often referred to as “chip set”) provides much of the functionality of the computer 40 as far as providing control signals for RAM 44 and ROM 46, peripheral control signals for the peripheral unit 10, etc. In the present invention the ASIC 48 includes four registers 54 that store parameters used to control the current flowing through the memory wires of the peripheral unit 10. In addition, the ASIC 48 includes a timer circuit 56 which provides pulse width modulation (PWM) signals for the ejection controller 50, and a free-running counter 57 which is used to time timeouts. It should be noted that the ASIC 48 provides a great deal functionality, only a small part of which is related to the ejection of PCMCIA cards. Again, such functionality is well known to those skilled in the art of ASIC and chip set design.

In FIG. 3, the ejection controller 50 is illustrated in greater detail. As noted, the ejection controller 50 is coupled to ASIC 48 by a bus 58 which provides various signals to the ejection controller 50. One of these signals is a PWM signal S, which can be used to control current flow in either or both of memory wires 16A and 16B. An exemplary waveform of the signal S is illustrated in FIG. 3A and will be discussed in greater detail subsequently. Another signal on bus 58 is the “Eject Power Enable” signal, which will also be discussed in greater detail subsequently.

The controller 50 includes Metal Oxide Semiconductor Field Effect Transistors (MOSFETS) 60, 62, 64, and 68. These MOSFETS can be discrete MOSFET devices or they can be partially or wholly integrated. For example, MOSFET 64 and 68 are preferably provided as a MOSFET SI9956 device available from Siliconix of Santa Clara, Calif. In the present implementation, MOSFETS 60 and 62 are discrete transistors devices, such as a 2N7002 transistors available from Motorola of Schaumberg, Ill. The gates of MOSFET 60 and 62 are coupled to bus 58 by lines 61 and 63, respectively, and the sources of MOSFET 60 and 62 are coupled to ground. The drain of MOSFET 60 is coupled to a node 68 by a resistor 70, and the drain of MOSFET 62 is coupled to a node 70 by a resistor 72. Resistors 70 and 72 are preferably about 100 kΩ resistors and nodes 68 and 70 are coupled to a positive terminal of a 12 volt power supply. The drain of MOSFET 60 is coupled to the gate of MOSFET 64, and the drain of MOSFET 62 is coupled to the gate of MOSFET 68. The drains of both MOSFETS 64 and 68 are coupled to a node 71 and to one terminal of a 10 μF capacitor 74. The other terminal of the capacitor 74 is grounded, and the node 71 is coupled to a 3.3 volt power supply. The source of MOSFET 64 is coupled to one end of slot 0 memory wire 16A by wire 36 (see also FIG. 1), and the source of MOSFET 68 is coupled to one end of the slot 1 memory wire 16B by wire 38 (see also FIG. 1). The other end of the memory wires are grounded, as described previously.

As seen in FIG. 3A, the signal S as created by timer 56 and carried by bus 58 is preferably a series of square waves. One cycle of the series of square waves is shown at C. The amplitude A of the square wave is taken along the Y axis, and typically it varies between 0 and 5 volts dc. Time t is shown along the X axis. The frequency of signal S is measured in cycles in per second or hertz which is equal to C/Δt, where Δt is the time t for one cycle C. It should be noted that a cycle need not be symmetrical. For example, cycle C in this illustration has a high value for a period of time a, and low value for period of time b. In the present invention, the memory wire 16A and/or 16B are electrically energized when the signal S is low (e.g. 0 volts) and are not energized when the signal S is high (e.g. 5 volts) due to a subsequent inversion stage to be discussed subsequently. Therefore, a “duty cycle” for the signal S is equal to b/c, which corresponds to the percentage of time that a current is being passed through a memory wire after the inversion of the signal S is applied to the memory wire.

As mentioned previously, the signal S can be applied to MOSFET 60 via a line 61, or to MOSFET 62 via a line 63. The ASIC 48 makes the determination which of lines 61 and 63 are to carry the signal S. Alternatively, the signal S can be applied to both lines 61 and 63 simultaneously, if the power supplies are sufficient to provide the necessary current to operate memory wires 16A and 16B simultaneously.

Memory wire 16A and 16B can be activated either singly, or in combination. Of course, if they are to be activated simultaneously, the power supplies must be of sufficient capacity so that the system is not adversely affected by the relatively large current drain. The activation of wire 16A will be discussed, it being understood that memory wire 16B can be activated in an analogous fashion.

To electrically energize the wire 16A such that it contracts and activates the ejection mechanism 14 to force the ejection of a PCMCIA card engaged with slot 0, the following sequence of events occur. First, an EJECT POWER ENABLE signal on a line 73 activates a 12 volt power supply 75 and a 3.3 volt power supply 77 in response to an “EJECT POWER” parameter. Next, timer circuit 56 of ASIC 48 is activated in response to an “EJECT COMMAND” parameter to produce the signal S on line 61. In consequence, the MOSFET 60, serves as amplifying inverter or inversion stage, in that when the signal at the gate of MOSFET 60 is low (0 volts) the voltage on line 76 will be high (+12 volts), and when the signal on the gate of MOSFET 60 is high (+5 volts) the MOSFET 60 will turn on causing the voltage on line 76 to go low (0 volts). The reason that this relatively high voltage (i.e. 12 volt) signal MOSFET 60 is that the power MOSFET 64 needs a gate enhancement (i.e. a gate-to-drain potential) of at least 4.5 volts to turn on. Since the drain is at 3.3 volts, this requires a minimum of 7.8 volts to be applied to the gate. Since the computer system of the present invention includes a 12 volt power supply, it is convenient to use this supply to control the gate of MOSFET 64.

Power MOSFET 64 passes a considerable amount of current to the memory wire 16A when activated via a +12 voltage level on line 76. To limit the maximum current, a relatively low voltage level of 3.3 volts has been chosen, which is also available in the system. This 3.3 volt supply is considered safer than using a 5 volts supply (which is also available in the system) because the maximum current through the memory wire is more limited. This reduces the chance of overheating the memory wire 16A, with possible melt-down and system failure.

With reference to MOSFET 64, the signal on line 76 will turn on MOSFET 64 when it is high (+12 volts) and will turn off MOSFET 64 when it is low (0 volts or ground). As mentioned previously, the drain of MOSFETS 64 and 68 are coupled to a 3.3 volt power supply and to a capacitor 74. The capacitor 74 is provided to give a fast surge of current when one or both of the MOSFETS 64 or 68 are activated. When the signal on line 76 is high (12 volts) the MOSFET 64 becomes conductive and the 3.3 volt power supply and capacitor 74 are connected to the power end of memory wire 16A by wire 36, causing a PWM signal to create a current flow in the memory wire 16A. Since the transistor 60 performed an inversion, and since transistor 64 did not perform an inversion, a PWM power waveform S* is created as the inversion of the control signal S and is applied to the memory wire 16A. As mentioned previously, MOSFETS 62 and 68 operate in manner analogous to MOSFETS 60 and 64 to control the current in the memory wire 16B.

Pulse width modulation is the preferred method for energizing the memory wires 16A and 16B because it provides an easy and inexpensive method for controlling the amount of current flow through the memory wires. Programmable timers and counters of the ASIC allow the frequency and duty cycle of this signal S to be modified under software control. Currently, the frequency has been chosen, for convenience, to be 256 kilohertz, and a duty cycle has been chosen to be 64/68. Of course, other frequencies and duty cycles can be selected depending upon the application.

FIG. 4 illustrates a computer implemented process 80 running on computer 40 to control the PCMCIA peripheral unit 10. The process begins at 82 with power-up of the system 40, and normal system operations occur in a normal system operation event loop 84. For the purpose of controlling the PCMCIA peripheral unit 10, the process 80 is waiting for one of four events, namely a card detected event, and card ejected event, a timeout event, and ejection request event. As used herein, the term “event” is used loosely to indicate any kind of event, interrupt, or redirection of processing which takes the process 80 out of the normal system operation loop 84. The term “event handler” will also be used loosely to describe software code which responds to an event. For example, an “event handler” can be a traditional event handler, an interrupt handler, a subroutine, etc.

In the case of card detected event, a PCMCIA card has been inserted into a slot of the peripheral unit 10. This is detected by the system, and the card is mounted and integrated functionally into the system in a step 88 by methods well known to those skilled in the art. If a card ejected event has been detected, the card is dismounted and its functionality is removed from the system in a step 90, again in a manner well known to those skilled in the art. After either of steps 88 or 90 are performed, process control is returned to the event loop 84.

If a ejection request is detected, an eject sequence is performed in a step 92, and then process control is returned to the normal system operation loop 84. It should be noted that the ejection request can be initiated by a user, or may be initiated independently and/or automatically by the computer system.

If a timeout is detected, a decision step 94 determines whether this timeout (TIMEOUT) is less than the maximum timeout (MAXTIMEOUT) and, if so, step 92 is performed. Otherwise, an error message is developed at 96 and process control is returned to the normal system operation event loop 84. Typically, MAXTIMEOUT will be set to 2 such that the system attempts to eject twice before giving the error in step 96.

The eject sequence step 92 is illustrated in greater detail in FIG. 5. The process starts at 98 and, in a step 100 the eject pulse register is set. Next, in a step 102, the eject timer register is set, and in a step 104 the slot control register is set. These parameters will control the way in which current is applied to the memory wires. The process 92 is completed at 106, at which time process control is returned to the normal system operation 84 as described previously.

The registers 54 of ASIC 48 are illustrated in greater detail in FIG. 5A. The registers 54 include an eject timer register 108, an eject pulse register 110, a slot 0 control register 112, and slot 1 control register 114. In the eject timer register 108, the lowest 4 bits (3::0) program the timeout period in seconds, while the upper 4 bits (7::4) program the prescale value. A typical number of seconds for the timeout is three seconds, and a typical value for the prescale value is one. The timeout period, which is loaded into free-running timer 57 of ASIC 48 which creates the timeout event of FIG. 4, can be from 1 to 16 seconds in the present embodiment of this invention. Likewise, the prescale value, which sets the frequency of the signal S, can be set from 1 to 16, and is used to divide a clock signal provided to the timer 56 by the ASIC 48.

For eject pulse register 110, the lowest 4 bits (3::0) program the low pulse, while the top 4 bits (7::4) program the high pulse. For the slot 0 control register and slot 1 control register only bits 6 and 7 are used. Bit 6 is the eject power which activates the +12 volt power supply at nodes 60 and 70 (see FIG. 3). Bit 7 is the eject power command, either one of which will turn on the timer circuit 56.

It is therefore apparent that the process 92 of FIG. 5 controls the current flowing through the memory wires 16A and 16B. The parameters set in the registers 54 provide a control over the duty cycle and frequency of signal S and the appropriate timeout period. Once these parameters have been set, one or both of the slot ejection mechanisms can be activated by bits 6 and 7 of registers 112 and 114.

It is considered important to provide both an eject command and eject power bit in the slot control registers 112 and 114. This because of a single device (such as MOSFET) can always fail, which could cause an excess amount of current to flow through the memory wire 16A and/or 16B, thereby possibly damaging the peripheral unit or presenting a safety hazard. Therefore, by having, basically, two “switches” (i.e. an eject command bit and an eject power bit) that must be activated in order to apply a power waveform to the memory wire 16A and 16B, the chance for an accidental over-heating of the memory wires is virtually illuminated.

As used herein, “switches”, “gates”, “MOSFETS”, “transistors”, “registers” and the like are often used synonymously to refer to devices which can switch or gate signals or control the switching or gating of signals. For example, a two-input NAND gate can be used in place of a switch by using one of the inputs to the NAND gate for a signal, and by using the other input of the NAND gate as the switch activation signal.

While this invention has been described in terms of several preferred embodiments, it is contemplated that alternatives, modifications, permutations and equivalents thereof will become apparent to those skilled in the art upon a reading of the specification and study of the drawings. For example, the ejection mechanism can be used to eject other forms of digital and analog removable media, such as cassette tapes, videotapes, compact discs (CDs), etc., from their players. It is therefore intended that the following appended claims include all such alternatives, modifications, permutations and equivalents as fall within the true spirit and scope of the present invention.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US4654818Dec 16, 1983Mar 31, 1987Texas Instruments IncorporatedData processing device having memory selectively interfacing with computer
US4700541 *Oct 16, 1986Oct 20, 1987American Telephone And Telegraph Company, At&T Bell LaboratoriesShape memory alloy actuator
US4742478Sep 19, 1984May 3, 1988Data General CorporationHousing for a portable computer
US4747887Apr 13, 1987May 31, 1988Naomitsu TokiedaMethod and device for actuating shape memory alloy member
US4769764Aug 11, 1986Sep 6, 1988Isaac LevanonModular computer system with portable travel unit
US4788658Jul 3, 1986Nov 29, 1988Hanebuth Charles EApparatus for connecting computer components
US4884557May 11, 1988Dec 5, 1989Olympus Optical Co., Ltd.Endoscope for automatically adjusting an angle with a shape memory alloy
US4903222Oct 14, 1988Feb 20, 1990Compag Computer CorporationArrangement of components in a laptop computer system
US4969830Jun 12, 1989Nov 13, 1990Grid Systems CorporationConnection between portable computer components
US5008805Aug 3, 1989Apr 16, 1991International Business Machines CorporationReal time, fail safe process control system and method
US5030128Mar 6, 1989Jul 9, 1991Dynabook Technologies CorporationDocking module
US5032705Sep 8, 1989Jul 16, 1991Environwear, Inc.Electrically heated garment
US5041924Nov 30, 1988Aug 20, 1991Quantum CorporationRemovable and transportable hard disk subsystem
US5051101Jul 24, 1989Sep 24, 1991Hosiden Electronics Co., Ltd.Multi-pole connector
US5107400Nov 29, 1990Apr 21, 1992Kabushiki Kaisha ToshibaPortable apparatus having detachable storage unit with a lock mechanism operating a switch controlling power to the storage unit
US5117378Jul 11, 1990May 26, 1992Hertz HoLaptop computer with detachable interface card
US5126954Nov 29, 1990Jun 30, 1992Sotec Company, LimitedFunction expansion station for a portable computer
US5159533May 7, 1991Oct 27, 1992Kuang Ma HPortable note-book computer expansion device with disk drives
US5165897 *Aug 10, 1990Nov 24, 1992Tini Alloy CompanyProgrammable tactile stimulator array system and method of operation
US5175671Mar 20, 1991Dec 29, 1992Kabushiki Kaisha ToshibaExpanding apparatus for portable electronic apparatus
US5186646Jan 16, 1992Feb 16, 1993Pederson William AConnector device for computers
US5192222Sep 26, 1991Mar 9, 1993Ta Triumph-Adler AgPlug connection device for simultaneous mechanical and electrical connection of two electronic units
US5199888Jan 24, 1992Apr 6, 1993Compaq Computer CorporationApparatus for covering the electrical connectors of a notebook computer
US5212605Jan 30, 1991May 18, 1993Goldstar Co., Ltd.Ejecting and loading mechanism for a tape cassette with means for preventing unintentional ejection of the cassette
US5214574Apr 16, 1992May 25, 1993Chang Bo EPortable computer housing in combination with a portable computer
US5238005 *Nov 18, 1991Aug 24, 1993Intelliwire, Inc.Steerable catheter guidewire
US5297087Apr 29, 1993Mar 22, 1994Micron Semiconductor, Inc.Methods and devices for accelerating failure of marginally defective dielectric layers
US5305180Jun 6, 1991Apr 19, 1994Grid Systems CorporationIn a portable computer
US5313596Jan 5, 1993May 17, 1994Dell Usa LpMotorized portable computer/expansion chassis docking system
US5317697Jul 31, 1991May 31, 1994Synernetics Inc.Method and apparatus for live insertion and removal of electronic sub-assemblies
US5323291Oct 15, 1992Jun 21, 1994Apple Computer, Inc.Portable computer and docking station having an electromechanical docking/undocking mechanism and a plurality of cooperatively interacting failsafe mechanisms
US5325880 *Apr 19, 1993Jul 5, 1994Tini Alloy CompanyShape memory alloy film actuated microvalve
US5347425Oct 15, 1992Sep 13, 1994Apple Computer, Inc.Docking station for a portable computer
US5377685 *Dec 17, 1993Jan 3, 1995Baylis Medical Company, Inc.Ultrasound catheter with mechanically steerable beam
US5386567Oct 14, 1992Jan 31, 1995International Business Machines Corp.Hot removable and insertion of attachments on fully initialized computer systems
US5444644Jan 27, 1994Aug 22, 1995Johnson Service CompanyAuto-configured instrumentation interface
US5463261Oct 19, 1994Oct 31, 1995Minnesota Mining And Manufacturing CompanyPower conservation device for a peripheral interface module
US5466166Aug 13, 1993Nov 14, 1995Apple Computer, Inc.Ejection mechanism
US5473499Jun 30, 1993Dec 5, 1995Harris CorporationHot pluggable motherboard bus connection method
US5515515Feb 18, 1993May 7, 1996Ast Research, Inc.Live data storage array system having individually removable, and self-configuring data storage units
US5520644 *Jul 1, 1993May 28, 1996Intelliwire, Inc.Flexible elongate device having steerable distal extremity and apparatus for use therewith and method
US5526493Jun 3, 1993Jun 11, 1996Dell UsaDocking detection and suspend circuit for portable computer/expansion chassis docking system
US5531664Jul 25, 1994Jul 2, 1996Olympus Optical Co., Ltd.For use with an endoscope
US5548782May 7, 1993Aug 20, 1996National Semiconductor CorporationApparatus for preventing transferring of data with peripheral device for period of time in response to connection or disconnection of the device with the apparatus
US5556370Jul 28, 1993Sep 17, 1996The Board Of Trustees Of The Leland Stanford Junior UniversityElectrically activated multi-jointed manipulator
US5564024Aug 2, 1994Oct 8, 1996Pemberton; Adam C.Apparatus for connecting and disconnecting peripheral devices to a powered bus
US5573413Dec 7, 1994Nov 12, 1996Berg Technology, Inc.Eject activation mechanism for a memory card connector and method of use
US5594873Dec 8, 1994Jan 14, 1997Dell Usa, L.P.System and method for identifying expansion devices in a computer system
US5594874Sep 30, 1993Jan 14, 1997Cirrus Logic, Inc.Automatic bus setting, sensing and switching interface unit
US5608877Mar 24, 1995Mar 4, 1997Cirrus Logic, Inc.Reset based computer bus identification method and circuit resilient to power transience
US5818182 *Dec 30, 1994Oct 6, 1998Apple Computer, Inc.Removable media ejection system
EP0344850A2May 29, 1989Dec 6, 1989MICROELETTRICA SCIENTIFICA S.p.A.Safety device for detecting ground current and safety electrical plug equipped with said device
JPH02119588A * Title not available
JPH06218900A Title not available
JPS59104752A Title not available
JPS61290586A Title not available
Non-Patent Citations
Reference
1"Robot Hand with Shape Memory Musculature," IBM Techincal Disclosure Bulletin, Jun. 1995, vol. 28, No. 1, pp. 302-303.
2"Shape Memory Alloys," Raychem Corporation Manual, pp. 1-16, and 35-36.
3Dynalloy, Inc-Makers of Dynamic Alloys, Flexinol(TM) Newsletter.
4Dynalloy, Inc-Makers of Dynamic Alloys, Flexinol™ Newsletter.
5Morgenstern, David; "Power catches PCI wave with new line of clones," MacWeek vol. 9, No. 36, Sep. 11, 1995.
6Wilson, Ron; "PicoPower eyes hot-docking," Electronic Engineering Times No. 858, p. 14, Jul. 24, 1995.
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US6336567 *Jun 13, 1997Jan 8, 2002Kakizaki Manufacturing Co., Ltd.Magnetic secured container closure with release by movement of magnetic member
US6529992 *Jul 26, 1999Mar 4, 2003Iomega CorporationSelf-contained application disk for automatically launching application software or starting devices and peripherals
US6691920 *Aug 18, 2000Feb 17, 2004Sony CorporationRecording and/or reproducing device and method for loading storage medium
US6738690Aug 8, 2002May 18, 2004Pj Solutions, Inc.Information management of supply flow of dispensed objects
US6799226Oct 21, 2002Sep 28, 2004Apple Computer, Inc.Hot unpluggable media storage device
US7130251Sep 20, 2000Oct 31, 2006Sony CorporationCommunication system and its method and communication apparatus and its method
US7146437Aug 20, 2004Dec 5, 2006Apple Computer, Inc.Hot unpluggable media storage device
US7166791Oct 28, 2002Jan 23, 2007Apple Computer, Inc.Graphical user interface and methods of use thereof in a multimedia player
US7433546Oct 25, 2004Oct 7, 2008Apple Inc.Image scaling arrangement
US7464634 *Apr 21, 2006Dec 16, 2008Lockheed Martin CorporationCold launch system comprising shape-memory alloy actuator
US7521625Dec 7, 2006Apr 21, 2009Apple Inc.Graphical user interface and methods of use thereof in a multimedia player
US7536565Aug 24, 2005May 19, 2009Apple Inc.Techniques for improved playlist processing on media devices
US7560637Sep 28, 2005Jul 14, 2009Apple Inc.Graphical user interface and methods of use thereof in a multimedia player
US7565036May 16, 2007Jul 21, 2009Apple Inc.Image scaling arrangement
US7587554 *Sep 26, 2003Sep 8, 2009Netac Technology Co., Ltd.Device and method for providing data exchange and storage
US7589629Feb 28, 2007Sep 15, 2009Apple Inc.Event recorder for portable media device
US7590772Aug 22, 2005Sep 15, 2009Apple Inc.Audio status information for a portable electronic device
US7590773Oct 4, 2006Sep 15, 2009Apple Inc.Hot unpluggable media storage device
US7593782Aug 24, 2005Sep 22, 2009Apple Inc.Highly portable media device
US7617537Jan 31, 2005Nov 10, 2009Sony CorporationCommunication system and its method and communication apparatus and its method
US7623740Jun 24, 2008Nov 24, 2009Apple Inc.Image scaling arrangement
US7667124Nov 29, 2006Feb 23, 2010Apple Inc.Graphical user interface and methods of use thereof in a multimedia player
US7673238Jan 5, 2006Mar 2, 2010Apple Inc.Portable media device with video acceleration capabilities
US7680849Oct 25, 2004Mar 16, 2010Apple Inc.Multiple media type synchronization between host computer and media device
US7698472Aug 4, 2009Apr 13, 2010Apple Inc.Hot unpluggable media storage device
US7706637Sep 27, 2006Apr 27, 2010Apple Inc.Host configured for interoperation with coupled portable media player device
US7720929Jun 9, 2004May 18, 2010Sony CorporationCommunication system and its method and communication apparatus and its method
US7729791Sep 11, 2006Jun 1, 2010Apple Inc.Portable media playback device including user interface event passthrough to non-media-playback processing
US7765326Oct 21, 2002Jul 27, 2010Apple Inc.Intelligent interaction between media player and host computer
US7769903Jun 1, 2007Aug 3, 2010Apple Inc.Intelligent interaction between media player and host computer
US7797446Jul 16, 2002Sep 14, 2010Apple Inc.Method and system for updating playlists
US7797456Dec 15, 2000Sep 14, 2010Sony CorporationInformation processing apparatus and associated method of transferring grouped content
US7827259Apr 27, 2004Nov 2, 2010Apple Inc.Method and system for configurable automatic media selection
US7831199Sep 1, 2006Nov 9, 2010Apple Inc.Media data exchange, transfer or delivery for portable electronic devices
US7856564Mar 18, 2009Dec 21, 2010Apple Inc.Techniques for preserving media play mode information on media devices during power cycling
US7860830Apr 25, 2005Dec 28, 2010Apple Inc.Publishing, browsing and purchasing of groups of media items
US7865745Mar 3, 2009Jan 4, 2011Apple Inc.Techniques for improved playlist processing on media devices
US7881564Oct 12, 2009Feb 1, 2011Apple Inc.Image scaling arrangement
US7889497Jul 30, 2007Feb 15, 2011Apple Inc.Highly portable media device
US7956272Dec 5, 2005Jun 7, 2011Apple Inc.Management of files in a personal communication device
US7958441Apr 1, 2005Jun 7, 2011Apple Inc.Media management for groups of media items
US8044795Aug 4, 2009Oct 25, 2011Apple Inc.Event recorder for portable media device
US8046369Sep 4, 2007Oct 25, 2011Apple Inc.Media asset rating system
US8090130Apr 24, 2007Jan 3, 2012Apple Inc.Highly portable media devices
US8103793Oct 20, 2009Jan 24, 2012Apple Inc.Method and system for updating playlists
US8108572Jul 13, 2010Jan 31, 2012Sony CorporationCommunication system and its method and communication apparatus and its method
US8112592Aug 30, 2002Feb 7, 2012Sony CorporationInformation processing apparatus and method
US8122163Feb 20, 2008Feb 21, 2012Sony CorporationCommunication system and its method and communication apparatus and its method
US8150937Nov 12, 2004Apr 3, 2012Apple Inc.Wireless synchronization between media player and host device
US8151063Mar 8, 2005Apr 3, 2012Sony CorporationInformation processing apparatus and method
US8151259Jan 3, 2006Apr 3, 2012Apple Inc.Remote content updates for portable media devices
US8188357May 12, 2009May 29, 2012Apple Inc.Graphical user interface and methods of use thereof in a multimedia player
US8200629Apr 6, 2009Jun 12, 2012Apple Inc.Image scaling arrangement
US8255640Oct 18, 2006Aug 28, 2012Apple Inc.Media device with intelligent cache utilization
US8259444Dec 27, 2010Sep 4, 2012Apple Inc.Highly portable media device
US8261246Sep 7, 2004Sep 4, 2012Apple Inc.Method and system for dynamically populating groups in a developer environment
US8291134Nov 16, 2011Oct 16, 2012Sony CorporationCommunication system and its method and communication apparatus and its method
US8300841Jun 3, 2005Oct 30, 2012Apple Inc.Techniques for presenting sound effects on a portable media player
US8321601Jul 16, 2009Nov 27, 2012Apple Inc.Audio status information for a portable electronic device
US8341524Sep 11, 2006Dec 25, 2012Apple Inc.Portable electronic device with local search capabilities
US8358273May 23, 2006Jan 22, 2013Apple Inc.Portable media device with power-managed display
US8386581Feb 4, 2010Feb 26, 2013Sony CorporationCommunication system and its method and communication apparatus and its method
US8396948Nov 14, 2011Mar 12, 2013Apple Inc.Remotely configured media device
US8443038Jul 1, 2011May 14, 2013Apple Inc.Network media device
US8463868Mar 10, 2005Jun 11, 2013Sony CorporationInformation processing apparatus and associated method of content exchange
US8473082Apr 21, 2010Jun 25, 2013Apple Inc.Portable media playback device including user interface event passthrough to non-media-playback processing
US8495246Jan 24, 2012Jul 23, 2013Apple Inc.Method and system for updating playlists
US8522150Jul 12, 2010Aug 27, 2013Sony CorporationInformation processing apparatus and associated method of content exchange
US8554888Apr 26, 2011Oct 8, 2013Sony CorporationContent management system for searching for and transmitting content
US8601243Jul 13, 2010Dec 3, 2013Sony CorporationCommunication system and its method and communication apparatus and its method
US8626952Jul 2, 2010Jan 7, 2014Apple Inc.Intelligent interaction between media player and host computer
US8631088Feb 26, 2007Jan 14, 2014Apple Inc.Prioritized data synchronization with host device
US8654993Dec 7, 2005Feb 18, 2014Apple Inc.Portable audio device providing automated control of audio volume parameters for hearing protection
US8683009Mar 29, 2012Mar 25, 2014Apple Inc.Wireless synchronization between media player and host device
US8688928Jul 20, 2012Apr 1, 2014Apple Inc.Media device with intelligent cache utilization
US8694024Oct 21, 2010Apr 8, 2014Apple Inc.Media data exchange, transfer or delivery for portable electronic devices
Classifications
U.S. Classification310/12.27, 60/528, 318/116, 318/135, 310/12.32, 310/12.04, 310/12.19
International ClassificationG06K13/08, H05K5/02, H02N2/06, G06F1/16, G06K7/00
Cooperative ClassificationH05K5/0265, G06K7/0047, G06K13/0806, H05K5/0291, G06K7/0086, G06K13/08
European ClassificationH05K5/02H6B, G06K13/08A, H05K5/02H2B, G06K7/00K9, G06K13/08, G06K7/00K4
Legal Events
DateCodeEventDescription
Aug 29, 2012FPAYFee payment
Year of fee payment: 12
Sep 17, 2008FPAYFee payment
Year of fee payment: 8
Mar 13, 2007ASAssignment
Owner name: APPLE INC., CALIFORNIA
Free format text: CHANGE OF NAME;ASSIGNOR:APPLE COMPUTER, INC.;REEL/FRAME:019000/0383
Effective date: 20070109
Owner name: APPLE INC.,CALIFORNIA
Free format text: CHANGE OF NAME;ASSIGNOR:APPLE COMPUTER, INC.;US-ASSIGNMENT DATABASE UPDATED:20100203;REEL/FRAME:19000/383
Free format text: CHANGE OF NAME;ASSIGNOR:APPLE COMPUTER, INC.;US-ASSIGNMENT DATABASE UPDATED:20100216;REEL/FRAME:19000/383
Free format text: CHANGE OF NAME;ASSIGNOR:APPLE COMPUTER, INC.;US-ASSIGNMENT DATABASE UPDATED:20100225;REEL/FRAME:19000/383
Free format text: CHANGE OF NAME;ASSIGNOR:APPLE COMPUTER, INC.;US-ASSIGNMENT DATABASE UPDATED:20100302;REEL/FRAME:19000/383
Free format text: CHANGE OF NAME;ASSIGNOR:APPLE COMPUTER, INC.;US-ASSIGNMENT DATABASE UPDATED:20100316;REEL/FRAME:19000/383
Free format text: CHANGE OF NAME;ASSIGNOR:APPLE COMPUTER, INC.;US-ASSIGNMENT DATABASE UPDATED:20100323;REEL/FRAME:19000/383
Free format text: CHANGE OF NAME;ASSIGNOR:APPLE COMPUTER, INC.;US-ASSIGNMENT DATABASE UPDATED:20100330;REEL/FRAME:19000/383
Free format text: CHANGE OF NAME;ASSIGNOR:APPLE COMPUTER, INC.;US-ASSIGNMENT DATABASE UPDATED:20100427;REEL/FRAME:19000/383
Free format text: CHANGE OF NAME;ASSIGNOR:APPLE COMPUTER, INC.;US-ASSIGNMENT DATABASE UPDATED:20100504;REEL/FRAME:19000/383
Free format text: CHANGE OF NAME;ASSIGNOR:APPLE COMPUTER, INC.;US-ASSIGNMENT DATABASE UPDATED:20100525;REEL/FRAME:19000/383
Free format text: CHANGE OF NAME;ASSIGNOR:APPLE COMPUTER, INC.;REEL/FRAME:19000/383
Aug 25, 2004FPAYFee payment
Year of fee payment: 4