Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS6232356 B1
Publication typeGrant
Application numberUS 08/879,472
Publication dateMay 15, 2001
Filing dateJun 20, 1997
Priority dateMay 5, 1997
Fee statusPaid
Also published asCN1201801A, CN1204159C, DE69826361D1, DE69826361T2, EP0877042A1, EP0877042B1, US6201033
Publication number08879472, 879472, US 6232356 B1, US 6232356B1, US-B1-6232356, US6232356 B1, US6232356B1
InventorsLisa Ann Mercando, Mark Leo Listemann, Michael John Kimock
Original AssigneeAir Products And Chemicals, Inc.
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Reactive catalyst compositions for improving water blown polyurethane foam performance
US 6232356 B1
Abstract
The present invention provides a reactive catalyst composition for making a water blown flexible polyurethane foam. The catalyst composition comprises a tertiary amino alkyl urea and/or bis(tertiary amino alkyl) urea in combination with either a gelling catalyst or blowing catalyst. The use of such catalyst composition improves the physical properties of the polyurethane foam.
Images(6)
Previous page
Next page
Claims(11)
What is claimed is:
1. In a method for preparing a flexible polyurethane foam by reacting an organic polyisocyanate and a polyol in the presence of water as a blowing agent, a cell stabilizer and a catalyst composition, the improvement for reducing the force-to-crush and/or improving airflow of the foam which comprises using a catalyst composition comprising a urea catalyst selected from the group consisting of 2-dimethylaminoethyl urea; N,N′-bis(2-dimethylaminoethyl) urea; N,N-bis(2-dimethylaminoethyl) urea; 3-dimethylamino-propyl urea; N,N′-bis(3-dimethylaminopropyl) urea; N,N-bis(3-dimethylaminopropyl) urea; 1-(N-methyl-3-pyrrolidino)methyl urea; 1,3-bis(N-methyl-3-pyrrolidino)methyl urea; 3-piperidinopropyl urea; N,N′-bis(3-piperidinopropyl) urea; 2-piperidinoethyl urea; N,N′-bis(2-piperidinoethyl) urea; and mixtures thereof, in conjunction with a blowing catalyst which is not a urea compound.
2. The method of claim 1 in which the urea catalyst is selected from the group consisting of 3-dimethylaminopropyl urea, N,N′-bis(3-dimethylaminopropyl) urea, 1-(N-methyl-3pyrrolidino)methyl urea, 1,3-bis(N-methyl-3-pyrrolidino)methyl urea, a mixture of 3-dimethylaminopropyl urea and N,N′-bis(3-dimethylaminopropyl) urea, or a mixture of 1-(N-methyl-3-pyrrolidino)methyl urea and 1,3-bis(N-methyl-3-pyrrolidino)methyl urea.
3. The method of claim 1 in which the blowing catalyst is selected from the group consisting of bisdimethylaminoethyl ether and permethylated polyamines.
4. The method of claim 2 in which the blowing catalyst is selected from the group consisting of bisdimethylaminoethyl ether and permethylated polyamines.
5. In a method for preparing a flexible polyurethane foam by reacting an organic polyisocyanate and a polyol in the presence of water as a blowing agent, a cell stabilizer and a catalyst composition, the improvement for improving the load bearing properties of the foam which comprises using a catalyst composition comprising a urea catalyst selected from the group consisting of 2-dimethylaminoethyl urea; N,N′-bis(2-dimethylaminoethyl) urea; N,N-bis(2-dimethylaminoethyl) urea; 3-dimethylaminopropyl urea; N,N′-bis(3-dimethylaminopropyl) urea; N,N-bis(3-dimethylaminopropyl) urea; 1-(N-methyl-3-pyrrolidino)methyl urea; 1,3-bis(N-methyl-3-pyrrolidino)methyl urea; 3-piperidinopropyl urea; N,N′-bis(3-piperidinopropyl) urea; 2-piperidinoethyl urea; N,N′-bis(2-piperidinoethyl) urea; and mixtures thereof, in conjunction with a gelling catalyst selected from the group consisting of triethylenediamine; quinuclidine; a substituted quinuclidine; a substituted pyrrolizidine and a substituted pyrrolidine.
6. The method of claim 5 in which the urea catalyst is selected from the group consisting of 3-dimethylaminopropyl urea, N,N′-bis(3-dimethylaminopropyl) urea, 1-(N-methyl-3methyl-3-pyrrolidino)methyl urea, 1,3-bis(N-methyl-3-pyrrolidino)methyl urea, a mixture of 3-dimethylaminopropyl urea and N,N′-bis(3-dimethylaminopropyl) urea, or a mixture of 1-(N-methyl-3pyrrolidino)methyl urea and 1,3-bis(N-methyl-3-pyrrolidino)methyl urea.
7. The method of claim 1 in which the catalyst composition is used in combination with another tertiary amine, organotin, or carboxylate urethane catalyst.
8. The method of claim 5 in which the catalyst composition is used in combination with another tertiary amine, organotin, or carboxylate urethane catalyst.
9. In a method for making a polyurethane flexible foam having a 1-3 lb/ft3 (16-48 kg/m3) density by reacting the following components in parts by weight (pbw):
Polyol  20-100 Polymer Polyol 80-0  Silicone Surfactant   1-2.5 Water (Blowing Agent)   2-4.5 Crosslinker 0.5-2   Catalyst Composition 0.5-2   Isocyanate Index  70-115
the improvement for reducing the force-to-crush and/or improving airflow of the foam which comprises using a catalyst composition comprising a urea catalyst selected from the group consisting of 2-dimethylaminoethyl urea; N,N′-bis(2-dimethylaminoethyl) urea; N,N-bis(2-dimethylaminoethyl) urea; 3-dimethylaminopropyl urea; N,N′-bis(3-dimethylaminopropyl) urea; N,N-bis(3-dimethylaminopropyl) urea; 1-(N-methyl-3-pyrrolidino)methyl urea; 1,3-bis(N-methyl-3-pyrrolidino)methyl urea; 3-piperidinopropyl urea; N,N′-bis(3-piperidinopropyl) urea; 2-piperidinoethyl urea; N,N′-bis(2-piperidinoethyl) urea; and mixtures thereof and a blowing catalyst which is not a urea compound.
10. The method of claim 9 in which the blowing catalyst is selected from the group consisting of bisdimethylaminoethyl ether and permethylated polyamines.
11. In a method for making a polyurethane flexible foam having a 1-3 lb/ft3 (16-48 kg/m3) density by reacting the following components in parts by weight (pbw):
Polyol  20-100 Polymer Polyol 80-0  Silicone Surfactant   1-2.5 Water (Blowing Agent)   2-4.5 Crosslinker 0.5-2   Catalyst Composition 0.5-2   Isocyanate Index  70-115
the improvement for increasing the load bearing properties of the foam which comprises using a catalyst composition comprising a urea catalyst selected from the group consisting of 2-dimethyl-aminoethyl urea; N,N′-bis(2-dimethylaminoethyl) urea; N,N-bis(2-dimethylaminoethyl) urea; 3-dimethylaminopropyl urea; N,N′-bis(3-dimethylaminopropyl) urea; N,N-bis(3-dimethyl-aminopropyl) urea; 1-(N-methyl-3-pyrrolidino)methyl urea; 1,3-bis(N-methyl-3-pyrrolidino)-methyl urea; 3-piperidinopropyl urea; N,N′-bis(3-piperidinopropyl) urea; 2-piperidinoethyl urea; N,N′-bis(2-piperidinoethyl) urea; and mixtures thereof and a gelling catalyst selected from the group consisting of triethylenediamine; quinuclidine; a substituted quinuclidine; a substituted pyrrolizidine and a substituted pyrrolidine.
Description
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation-in-part of both application Ser. No. 08/850,985 filed May 6, 1997 now U.S. Pat. No. 5,824,711 entitled “N,N,N′-Trimethylbis(aminoethyl)ether Substituted Urea Compositions For The Production Of Polyurethanes” and application Ser. No. 08/851,652 filed May 6, 1997 entitled “Aminomethyl Pyrrolidine Urea Compositions For The Production Of Polyurethanes”.

BACKGROUND OF THE INVENTION

The present invention relates to tertiary amine catalysts for producing polyurethane foam.

Polyurethane foams are widely known and used in automotive, housing and other industries. Such foams are produced by reaction of a polyisocyanate with a polyol in the presence of various additives. One such additive is a chlorofluorocarbon (CFC) blowing agent which vaporizes as a result of the reaction exotherm, causing the polymerizing mass to form a foam. The discovery that CFCs deplete ozone in the stratosphere has resulted in mandates diminishing CFC use. Production of water-blown foams, in which blowing is performed with CO2 generated by the reaction of water with the polyisocyanate, has therefore become increasingly important. Tertiary amine catalysts are typically used to accelerate blowing (reaction of water with isocyanate to generate CO2) and gelling (reaction of polyol with isocyanate).

The ability of the tertiary amine catalyst to selectively promote either blowing or gelling is an important consideration in selecting a catalyst for the production of a particular polyurethane foam. If a catalyst promotes the blowing reaction to a too high degree, much of the CO2 will be evolved before sufficient reaction of isocyanate with polyol has occurred, and the CO2 will bubble out of the formulation, resulting in collapse of the foam. A foam of poor quality will be produced. In contrast, if a catalyst too strongly promotes the gelling reaction, a substantial portion of the CO2 will be evolved after a significant degree of polymerization has occurred. Again, a poor quality foam, this time characterized by high density, broken or poorly defined cells, or other undesirable features, will be produced.

Tertiary amine catalysts generally are malodorous and offensive and many have high volatility due to their low molecular weight. Release of tertiary amines during foam processing may present significant safety and toxicity problems, and release of residual amines from consumer products is generally undesirable.

Amine catalysts which contain urea functionality have an increase in molecular weight and hydrogen bonding and reduced volatility and odor when compared to related structures which lack this functionality. Furthermore, catalysts which contain urea functionality chemically bond into the urethane during the reaction and are not released from the finished product. Catalyst structures which embody this concept are typically of low to moderate activity and promote both the blowing (water-isocyanate) and the gelling (polyol-isocyanate) reactions to varying extents.

U.S. Pat. No. 4,644,017 discloses the use of certain diffusion stable amino alkyl ureas having tertiary amino groups in the production of a polyisocyanate addition product which do not discolor or change the constitution of surrounding materials. Specifically taught are Catalyst A and Catalyst D which are reaction products of dimethylaminopropylamine and urea.

U.S. Pat. No. 4,007,140 discloses the use of N,N′-bis(3dimethylaminopropyl)urea as a low odor catalyst for the manufacture of polyurethanes.

U.S. Pat. No. 4,194,069 discloses the use of N-(3-dimethylaminopropyl)-N′-(3-morpholino-propyl)urea; N,N′-bis(3-dimethylaminopropyl)urea and N,N′-bis(3-morpholinopropyl)urea as catalysts for producing polyurethane foams.

U.S. Pat. No. 4,094,827 discloses the use of certain alkyl substituted ureas including N,N-bis(3-dimethylaminopropyl)urea which provide lower odor and a delay in the foaming reaction that aids in the production of polyurethane foam.

U.S. Pat. No. 4,330,656 discloses the use of N-alkyl ureas as catalysts for the reaction of 1,5-napthylene diisocyanate with polyols or for the chain extension of prepolymers based upon 1,5-napthylene diisocyanate without accelerating atmospheric oxidation.

DE 30 27 796 A discloses the use of higher molecular weight dialkyl aminoalkyl ureas as reduced odor catalysts for the production of polyurethane foam.

EP 499 873 discloses the preparation and use of pyrrolidines as catalysts for the polyisocyanate polyaddition process.

SUMMARY OF THE INVENTION

The present invention provides a reactive catalyst composition for making a water blown flexible polyurethane foam. The catalyst composition comprises a tertiary amino alkyl urea and/or bis(tertiary amino alkyl) urea in combination with either a gelling catalyst or blowing catalyst. The use of such catalyst composition improves the physical properties of the polyurethane foam.

The reactive catalysts contain ureido functionality which enables the catalyst to react into the polyurethane matrix. These reactive catalysts can be used as gelling catalysts or blowing catalysts with complementary blowing or gelling co-catalysts, respectively, which may or may not contain reactive functional groups to produce polyurethane foam materials. The reactive catalysts produce polyurethane foams which have no amine emissions.

The use of these catalysts in conjunction with complementary gelling or blowing co-catalysts improves physical properties and enhances processibility of the foam. As gelling catalysts, these urea catalysts in conjunction with blowing co-catalysts improve the airflow of the foam. Improved airflow means improved porosity and openness of the foam which is an indication of improved dimensional stability of the foam. As gelling catalysts, these urea catalysts in conjunction with blowing co-catalysts also improve, i.e., reduce, the force-to-crush of the foam. Reduced force-to-crush means the foam is more easily compressed which is an important advantage for minimizing foam shrinkage during processing. As blowing catalysts, these urea catalysts in conjunction with gelling co-catalysts improve the load bearing properties of the foam.

DETAILED DESCRIPTION OF THE INVENTION

The catalyst compositions according to the invention catalyze the reaction between an isocyanate functionality and an active hydrogen-containing compound, i.e. an alcohol, a polyol, an amine or water, especially the urethane (gelling) reaction of polyol hydroxyls with isocyanate to make polyurethanes and the blowing reaction of water with isocyanate to release carbon dioxide for making foamed polyurethanes.

The flexible polyurethane foam products, slab and molded, are prepared using any suitable organic polyisocyanates well known in the art including, for example, hexamethylene diisocyanate, phenylene diisocyanate, toluene diisocyanate (“TDI”) and 4,4′-diphenylmethane diisocyanate (“MDI”). Especially suitable are the 2,4- and 2,6-TDI's individually or together as their commercially available mixtures. Other suitable isocyanates are mixtures of diisocyanates known commercially as “crude MDI”, marketed as PAPI by Dow Chemical, which contain about 60% of 4,4′-diphenylmethane diisocyanate along with other isomeric and analogous higher polyisocyanates. Also suitable are “prepolymers” of these polyisocyanates comprising a partially prereacted mixture of a polyisocyanate and a polyether or polyester polyol.

Illustrative of suitable polyols as a component of the polyurethane composition are the polyalkylene ether and polyester polyols. The polyalkylene ether polyols include the poly(alkylene oxide) polymers such as poly(ethyiene oxide) and poly(propylene oxide) polymers and copolymers with terminal hydroxyl groups derived from polyhydric compounds, including diols and triols; for example, among others, ethylene glycol, propylene glycol, 1,3-butane diol, 1,4-butane diol, 1,6-hexane diol, neopentyl glycol, diethylene glycol, dipropylene glycol, pentaerythritol, glycerol, diglycerol, trimethylol propane and like low molecular weight polyols.

In the practice of this invention, a single high molecular weight polyether polyol may be used. Also, mixtures of high molecular weight polyether polyols such as mixtures of di- and trifunctional materials and/or different molecular weight or different chemical composition materials may be used.

Useful polyester polyols include those produced by reacting a dicarboxylic acid with an excess of a diol, for example, adipic acid with ethylene glycol or butanediol, or reacting a lactone with an excess of a diol such as caprolactone with propylene glycol.

In addition to the polyether and polyester polyols, the masterbatches, or premix compositions, frequently contain a polymer polyol. Polymer polyols are used in polyurethane foam to increase the foam's resistance to deformation, i.e. to increase the load-bearing properties of the foam. Currently, two different types of polymer polyols are used to achieve load-bearing improvement. The first type, described as a graft polyol, consists of a triol in which vinyl monomers are graft copolymerized. Styrene and acrylonitrile are the usual monomers of choice. The second type, a polyurea modified polyol, is a polyol containing a polyurea dispersion formed by the reaction of a diamine and TDI. Since TDI is used in excess, some of the TDI may react with both the polyol and polyurea. This second type of polymer polyol has a variant called PIPA polyol which is formed by the in-situ polymerization of TDI and alkanolamine in the polyol. Depending on the load-bearing requirements, polymer polyols may comprise 20-80% of the polyol portion of the masterbatch.

Other typical agents found in the polyurethane foam formulations include chain extenders such as ethylene glycol and butanediol; crosslinkers such as diethanolamine, diisopropanolamine, triethanolamine and tripropanolamine; blowing agents such as water, CFCs, HCFCs, HFCs, pentane, and the like; and cell stabilizers such as silicones.

A general polyurethane flexible foam formulation having a 1-3 lb/ft3 (16-48 kg/m3) density (e.g., automotive seating) containing a catalyst such as the catalyst composition according to the invention would comprise the following components in parts by weight (pbw):

Flexible Foam Formulation pbw
Polyol  20-100
Polymer Polyol 80-0 
Silicone Surfactant   1-2.5
Blowing Agent   2-4.5
Crosslinker 0.5-2  
Catalyst Composition 0.5-2  
Isocyanate Index  70-115

The catalyst composition comprises a mono(tertiary amino alkyl) urea and/or bis(tertiary amino alkyl) urea in combination with a gelling or blowing catalyst. The mono- and bis-ureas may be represented by the formula

in which

A represents CH or N,

R1 represents hydrogen or the group

n represents an integer from 1 to 6,

R2 and R3 each represent hydrogen or a C1-C6 alkyl group,

R4 and R5 each represent a C1-C6 alkyl group or together represent a C2-C6 alkylene group which may contain heteroatoms (such as oxygen or NR8 where R8 is hydrogen or a C1-C4 alkyl group) or the group

and

R6 and R7 which may be the same or different each represent hydrogen or the group

In the above general formula it is preferred that

R1, R2, R3, R6 and R7 each represent hydrogen,

R4 and R5 each represent a methyl group when A represents N or together represent CH2CH2N(CH3)CH2 when A represents CH, and

n represents 1-3, preferably 2 or 3.

Illustrative of suitable mono-ureas and bis-ureas are 2-dimethylaminoethyl urea; N,N′-bis(2-dimethylaminoethyl) urea; N,N-bis(2-dimethylaminoethyl) urea; 3-dimethyl-aminopropyl urea; N,N′-bis(3-dimethylaminopropyl) urea; N,N-bis(3-dimethylamino-propyl) urea; 1-(N-methyl-3-pyrrolidino)methyl urea; 1,3-bis(N-methyl-3-pyrrolidino)-methyl urea; 3-piperidinopropyl urea; N,N′-bis(3-piperidinopropyl) urea; 3-morpholino-propyl urea; N,N′-bis(3-morpholinopropyl) urea; 2-piperidinoethyl urea; N,N′-bis(2-piperidinoethyl) urea; 2-morpholinoethyl urea; and N,N′-bis(2-morpholinoethyl) urea. U.S. Pat. No. 4,644,017 teaches amino alkyl ureas useful in the practice of the present invention and is hereby incorporated by reference.

The preferred ureas are 3-dimethylaminopropyl urea, N,N′-bis(3-dimethylamino-propyl) urea, 1-(N-methyl-3-pyrrolidino)methyl urea, 1,3-bis(N-methyl-3-pyrrolidino)-methyl urea, a mixture of 3-dimethylaminopropyl urea and N,N′-bis(3-dimethylamino-propyl) urea, and a mixture of 1-(N-methyl-3-pyrrolidino)methyl urea and 1,3-bis(N-methyl-3-pyrrolidino)methyl urea, the mixtures preferably being in a 75:25 to 95:5 molar ratio of mono-urea to bis-urea.

The mono-ureas and bis-ureas are prepared by reacting urea and the corresponding tertiary alkylamine in the appropriate molar ratios under an inert atmosphere at elevated temperatures of from 80° to 150° C., preferably 100° to 130° C., with ammonia being driven off. The mono- and bis-ureas can be isolated individually by chromatographic techniques known in the synthesis art.

The mono-urea and/or bis-urea are used in conjunction with a gelling or a blowing catalyst depending upon the processing advantage desired. The gelling co-catalyst is any urethane catalyst known in the art with an initial selectivity less than about 0.45, and the blowing co-catalyst is any urethane catalyst known in the art with an initial selectivity greater than about 0.8. Catalyst selectivity is defined as the ratio of the rate of blowing (urea formation) to the rate of gelling (urethane formation) [J. Cell. Plastics, Vol. 28, 1992, pp. 360-398.]

Examples of suitable gelling catalysts include but are not restricted to diazabicyclooctane (triethylenediamine), supplied commercially as DABCO 33LV® catalyst by Air Products and Chemicals, Inc., quinuclidine and substituted quinuclidines (U.S. Pat. No. 5,143,944 and U.S. Pat. No. 5,233,039), substituted pyrrolizidines (U.S. Pat. No. 5,512,603), and substituted pyrrolidines (EP 499 873). Examples of suitable blowing catalysts include but are not restricted to bisdimethylaminoethyl ether, commercially supplied as DABCO® BL-11 catalyst by Air Products and Chemicals, Inc., pentamethyldiethylenetriamine and related compositions (U.S. Pat. No.5,039,713, U.S. Pat. No. 5,559,161), higher permethylated polyamines (U.S. Pat. No. 4,143,003), branched polyamines (U.S. Pat. No. 3,836,488), 2[N-(dimethylaminoethoxyethyl)-N-methylamino]ethanol and related structures (U.S. Pat. No. 4,338,408), alkoxylated polyamines (U.S. Pat. No. 5,508,314), imidazole-boron compositions (U.S. Pat. No. 5,539,007), and aminopropyl-bis(aminoethyl)ether compositions (Ser. No. 08/534,751 filed Sep. 27, 1995 and Ser. No. 08/850,985 filed May 6, 1997).

A catalytically effective amount of the catalyst composition comprising the urea and a gelling or blowing catalyst is used in the polyurethane formulation. More specifically, suitable amounts of the catalyst composition may range from about 0.01 to 10 parts by wt per 100 parts polyol (pphp) in the polyurethane formulation, preferably 0.05 to 2 pphp.

The catalyst composition may be used in combination with, or also comprise, other tertiary amine, organotin or carboxylate urethane catalysts well known in the urethane art.

EXAMPLE 1 Blend of 3-Dimethylaminopropyl Urea (I) and N,N′-Bis(3-dimethylaminopropyl) Urea (II)

A 94:6 mole ratio blend of 3-dimethylaminopropyl urea (I) and N,N′-bis(3-dimethylaminopropyl) urea (II) catalyst mixture was prepared using a one liter 3 neck round bottom flask fitted with the following: mechanical stirrer, reflux condenser, nitrogen bubbler, and a temperature controlled heating mantle. The flask was charged with 176.3 g of urea [CH4N2O] and 300.0 g of N,N-dimethylaminopropylamine [(CH3)2NCH2CH2CH2NH2]. The mixture was stirred at a constant rate while being slowly heated to 120° C. The reaction was controlled at 120° C. until all signs of NH3 evolution had ceased (as evidenced by bubbling in the N2 pressure relief device). The pale yellow liquid was cooled to 80° C. and the flask containing the liquid was evacuated via vacuum pump and refilled with N2 three times to remove any volatiles still present. Quantitative 13C NMR showed the final product to be 86 mole % 3-dimethylaminopropyl urea (I), 5 mole % N,N′-bis(3-dimethylaminopropyl) urea (II), and 9 mole % unreacted urea. The mono to bis mole ratio is 17.2 to 1, or 94:6 ratio of mono urea to bis urea.

EXAMPLE 2 Blend of 1-(N-Methyl-3-pyrrolidino)methyl urea (III) and 1,3-Bis(N-methyl-3-pyrrolidino)methyl urea (IV)

A one liter 3 neck round bottom flask was fitted with the following: mechanical stirrer, reflux condenser, nitrogen bubbler, and a temperature controlled heating mantle. The flask was charged with 45.75 g (0.762 mole) of urea (CH4N2O) and 86.84 g (0.762 mole) of N-methyl-3-aminomethyl pyrrolidine, (C6H14N2). The mixture was stirred at a constant rate while being slowly heated to 120° C. The reaction was controlled at 120° C. for two hours until all signs of NH3 evolution had ceased (as evidenced by bubbling in the N2 pressure relief device). The pale yellow liquid was cooled to 80° C. and the flask containing the liquid was evacuated via vacuum pump and refilled with N2 three time to remove any volatiles still present. Quantitative 13C NMR showed the product to be 81.7 mole % 1-(N-methyl-3-pyrrolidino)methyl urea (III), 7.0 mole % bis(N-methyl-3-pyrrolidino)methyl urea (IV) and 11.3 mole % unreacted urea.

EXAMPLE 3

In this example polyurethane foams were prepared in a conventional manner. The polyurethane formulation in parts by weight was:

COMPONENT PARTS
E-648 60
E-519 40
DC-5043 15
Diethanolamine 1.49
Water 3.5
TDI 80 105 Index

E-648—a conventional, ethylene oxide tipped polyether polyol from Arco Chemical

E-519—a styrene-acrylonitrile copolymer filled polyether polyol from Arco Chemical

DABCO® DC-5043—silicone surfactant marketed by Air Products and Chemicals, Inc.

DABCO® DC-5169—silicone surfactant marketed by Air Products and Chemicals, Inc.

TDI 80—a mixture of 80 wt % 2, 4TDI and 20 wt % 2, 6-TDI

Catalyst selectivity is defined as the ratio of the rate of blowing (urea formation) to the rate of gelling (urethane formation) [J. Cell. Plastics, Vol. 28, 1992, pp. 360-398.] A selectivity of “one” means that the amounts of blowing and gelling are equal at that point in the reaction. A selectivity substantially below “one”, for example about 0.45, is indicative of a strong gelling catalyst. A selectivity greater that about 0.8 indicates a catalyst with sufficient blowing selectivity to counterbalance a gelling or intermediate selectivity catalyst.

Tables I and II list the physical properties obtained using the catalysts from Examples 1 and 2 in conjunction with industry standard co-catalysts. The foams were made in a heated test block mold at 160° F. (71° C.). In all cases, the foam reactivity was matched by extrusion time which measures reaction progression and provides some indication of extent of cure. The foams tested met standard specifications listed in ASTM D 3453-91 and the physical property tests were performed using ASTM designation D 3574-95. The force-to-crush results were obtained using a mechanical device equipped with a 1000 pound (453.6 kg) capacity pressure transducer mounted between the 50 square inch (322.6 cm2) circular plate and the drive shaft. The Dayton motor specifications, model 4Z528, include ⅙ horsepower (124.3 J/s) with F/L rpm of 1800 and F/L torque of 5.63 in-lb (6.36×104 Nm). The actual pressure is shown on a digital display. The foam pad is compressed to 50% of its original thickness and the force necessary to achieve the compression is recorded in whole pounds (newtons). A cycle takes 24 seconds to complete and the actual crushing of the foam occurs within 7-8 seconds. This device mimics the ASTM D-3574, Indentation Force Deflection Test, and provides a numerical value for 1 minute post demolded foam initial hardness or softness.

TABLE I
Use Level Force-to-Crusha
Catalyst (pphp) (lbf; N)
Example 1 Catalyst/Dabco BL-11 0.41/0.10  91; 404
Dabco 33LV/Example 1 Catalyst 0.25/0.31 197; 875
Example 2 Catalyst/Dabco BL-11 0.24/0.10 183; 812
Dabco 33LV/Example 2 Catalyst 0.25/0.18 225; 999
aLower force-to-crush values mean the foam is more easily compressed

The first entry in Table I demonstrates that using Example 1 catalyst with Dabco BL-11 blowing catalyst provided lower force-to-crush than the second entry in which Example 1 catalyst was used with Dabco 33LV gelling catalyst. Similarly, entries three and four illustrate that using Example 2 catalyst with Dabco BL-11 blowing catalyst (entry three) also afforded lower force-to-crush values than when Example 2 catalyst was used with Dabco 33LV gelling catalyst (entry four).

TABLE II
Dabco Dabco Example 1 Example 2
33LV/ 33LV/ Catalyst/ Catalyst/
Example 1 Example 2 Dabco Dabco
Catalyst Catalyst BL-11 BL-11
pphp 0.25/0.31 0.25/0.18 0.41/0.10 0.24/0.10
Density (lb/ft3; kg/m3) 2.0; 31.9 2.0; 31.9 2.0; 32.2 2.0; 31.5
Airflow (SCFM; L/min) 2.86; 81.1 3.18; 90.2 3.53; 99.8 3.30; 93.4
Tensile (psi; kN/m2) 21.7; 149 16.5; 114 18.6; 128 18.6; 128
Tear (pli; N/cm) 1.5; 2.6 1.5; 2.6 1.7; 3.0 1.5; 2.6
Elongation (%) 88.2 99.8 107.7 103.7
25% ILD (lbf; N) 27.0; 27.4; 24.4; 25.5;
119.7 121.5 108.2 112.6
65% ILD (lbf; N) 71.9; 70.6; 68.2; 67.1;
319.2 313.6 302.9 297.9
25%R ILD (lbf; N) 22.0; 22.5; 19.5; 20.6;
97.9 99.9 86.5 91.3
Ball Rebound (%) 52 52 51 53
50% H.A. Comp. Set 34.7 34.4 37.3 36.6
(%)
Japanese Wet Set (%) 29.4 30.9 33.0 32.7

The data in Table II demonstrate that using Example 1 or 2 catalyst with Dabco BL-11 blowing catalyst provided higher airflow and increased elongation than when Example 1 or 2 catalyst is used with Dabco 33LV gelling catalyst. Using Example 1 and 2 catalysts with Dabco 33LV catalyst increased the load bearing properties (ILD) of the foam.

In all of the prior art cited, the urea-substituted catalysts are taught as sole catalysts. This means that they promote both the blowing and gelling reactions simultaneously to a sufficient extent to produce acceptable foam. While co-catalysts can be used, the prior art does not indicate that certain foam physical properties can be systematically controlled by choice of co-catalysts.

The only patent which has an example of a urea-based catalyst used with a co-catalyst is German Patent No. DE 3027796 A1 which discloses the use of higher molecular weight dialkyl aminoalkyl ureas as reduced odor catalysts for the production of polyurethane foam. In this case, a portion (0.3 parts) of the gelling catalyst, diazabicyclooctane, was replaced with the urea catalyst synthesized from hexamethylene diisocyanate and N,N-bis(dimethylaminopropyl) amine (Example A). The results indicated that the foam properties were unchanged, except for lower amine odor (Example 1.2). Unexpectedly, Example 3 in the present application demonstrates that foam physical properties can be systematically varied by choosing blowing or gelling co-catalysts. Specifically, physical properties which can be significantly altered are force-to-crush, airflow, elongation and load bearing (ILD).

STATEMENT OF INDUSTRIAL APPLICATION

The invention provides catalyst compositions for making water blown flexible polyurethane foam.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US4007140Jan 8, 1975Feb 8, 1977Imperial Chemical Industries LimitedTertiary amines as catalysts in polyurethane manufacture
US4094827Oct 18, 1976Jun 13, 1978Texaco Development CorporationSubstituted ureas as polyurethane catalysts
US4194069Oct 16, 1978Mar 18, 1980Texaco Development CorporationUrea derivative and use as polyurethane catalyst
US4242467Jun 12, 1979Dec 30, 1980Texaco Development CorporationUrea derivatives and use as polyurethane catalysts
US4330656Oct 4, 1979May 18, 1982Bayer AktiengesellschaftActivated isocyanate prepolymers and a process for the production of elastomeric polyurethane resins
US4348536Feb 6, 1978Sep 7, 1982Bayer AktiengesellschaftOdorless catalysts for the synthesis of polyurethanes
US4644017Sep 12, 1985Feb 17, 1987Bayer AktiengesellschaftProcess for the production of polyisocyanate addition products and composite polyisocyanate addition products
CA2061168A1Feb 13, 1992Aug 18, 1992Richard WeiderThe preparation and use of 3, (4)-substituted pyrrolidines as catalysts for the polyisocyanate polyaddition process
DE3027796A1Jul 23, 1980Feb 18, 1982Bayer AgOpt. foamed polyurethane prodn. - catalysed by di:alkyl-aminoalkyl-urea deriv. catalysts generating no amine smell
EP0176013A2Sep 13, 1985Apr 2, 1986Bayer AgProcess for the preparation of foamed polyurethanes that are fitted with or covered by another material
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US6534555Sep 10, 2001Mar 18, 2003Huntsman Petrochemical CorporationCatalyst systems for polyurethane polyester foams
US6818675Aug 6, 2002Nov 16, 2004General Electric CompanyProcess for preparing polyurethane foam
US6858654Oct 27, 2003Feb 22, 2005Air Products And Chemicals, Inc.Catalyst blends for producing low thermal desorption polyurethane foams
US6861454 *Aug 12, 2002Mar 1, 2005Lg Electronics Inc.Raw materials for anti-cracking polyurethane foams and method for preparing the same
US7008974 *Sep 27, 2002Mar 7, 2006Lg Electronics Inc.Composition for preparing rigid polyurethane foam having good demolding property
US7151121May 26, 2004Dec 19, 2006Danisco A/SPolyurethane containing a polyol composition comprising a highly branched polysaccharide, mix and process for preparation thereof
US7615580Jun 15, 2007Nov 10, 2009Air Products And Chemicals, Inc.Ester alcohols and substituted carbamates thereof for minimizing deterioration of polyurethane foams
US7666919Mar 14, 2006Feb 23, 2010Air Products And Chemicals, Inc.Aromatic diacid ester diols and substituted carbamates thereof for minimizing deterioration of polyurethane foams
US8552078 *Oct 17, 2006Oct 8, 2013Air Products And Chemicals, Inc.Crosslinkers for improving stability of polyurethane foams
US8618014Jul 12, 2012Dec 31, 2013Air Products And Chemicals, Inc.Fast demold/extended cream time polyurethane formulations
US9657129 *Dec 22, 2011May 23, 2017Tosoh CorporationCyclic amine compound and process for producing polyurethane resin by using it
US20030040549 *Aug 12, 2002Feb 27, 2003Lg Electronics Inc.Raw materials for anti-cracking polyurethane foams and method for preparing the same
US20040029986 *Aug 6, 2002Feb 12, 2004Crompton CorporationProcess for preparing polyurethane foam
US20040176495 *Mar 8, 2004Sep 9, 2004Lg Electronics Inc.Raw composition for preparing polyurethane foam having improved adhesive and demolding properties, polyurethane foam made therefrom, and preparation method thereof
US20040192802 *Sep 27, 2002Sep 30, 2004Hyun-Keun ChoComposition for preparing rigid polyurethane foam having good demolding property
US20050059749 *Sep 15, 2004Mar 17, 2005Huntsman Petrochemical CorporationCatalysts useful in polyurethane foam
US20050090386 *Nov 29, 2004Apr 28, 2005Wendel Stephan H.Catalyst blends for producing low thermal desorption polyurethane foams
US20050267278 *May 26, 2004Dec 1, 2005Danisco A/SPolyurethane containing a polyol composition comprising a highly branched polysaccharide, mix and process for preparation thereof
US20070235691 *Jun 15, 2007Oct 11, 2007Air Products And Chemicals, Inc.Ester Alcohols and Substituted Carbamates Thereof for Minimizing Deterioration of Polyurethane Foams
US20070287761 *Jun 12, 2006Dec 13, 2007Jared Denis BenderCatalyst compositions for improving polyurethane foam performance
US20080090922 *Oct 17, 2006Apr 17, 2008Gamini Ananda VedageCrosslinkers for improving stability of polyurethane foams
US20130289232 *Dec 22, 2011Oct 31, 2013Tosoh CorporationNovel cyclic amine compound and process for producing polyurethane resin by using it
EP1867669A1Jun 5, 2007Dec 19, 2007Air Products and Chemicals, Inc.Catalyst compositions for improving polyurethane foam performance
WO2016178793A1Apr 8, 2016Nov 10, 2016Air Products And Chemicals, Inc.Delayed action gelling catalyst compositions and methods for making polyurethane polymers
Classifications
U.S. Classification521/129, 521/155, 521/170
International ClassificationC08G18/18, C08G18/16, C08G101/00, B01J31/02, C07D207/09, C08G18/20, C08J9/00
Cooperative ClassificationC08G18/4072, C08G18/632, C08G18/1841, C08G2105/02, C08J2375/04, B01J31/0237, B01J31/0235, C08G18/4841, C07D207/09, C08G2101/0083, C08G18/2081, C08J9/0028, B01J31/0249, C08G2101/0008, C08G2101/005, C08G18/2018
European ClassificationC08J9/00K16, B01J31/02E2D, B01J31/02E2L6, C08G18/40A13, C08G18/48F5B, C08G18/63G, C08G18/20D2, C08G18/18K, C07D207/09, C08G18/20K
Legal Events
DateCodeEventDescription
Jun 20, 1997ASAssignment
Owner name: AIR PRODUCTS AND CHEMICALS, INC., PENNSYLVANIA
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MERCANDO, LISA ANN;LISTEMANN, MARK LEO;KIMOCK, MICHAEL JOHN;REEL/FRAME:008647/0115;SIGNING DATES FROM 19970619 TO 19970620
Aug 6, 2004FPAYFee payment
Year of fee payment: 4
Aug 8, 2008FPAYFee payment
Year of fee payment: 8
Aug 10, 2012FPAYFee payment
Year of fee payment: 12
May 1, 2017ASAssignment
Owner name: EVONIK DEGUSSA GMBH, GERMANY
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:AIR PRODUCTS AND CHEMICALS, INC.;REEL/FRAME:042374/0760
Effective date: 20170103