Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS6252535 B1
Publication typeGrant
Application numberUS 09/137,383
Publication dateJun 26, 2001
Filing dateAug 20, 1998
Priority dateAug 21, 1997
Fee statusPaid
Also published asUS6362760, US6380879, US6549151, US20010000216, US20010000660, WO1999009650A1
Publication number09137383, 137383, US 6252535 B1, US 6252535B1, US-B1-6252535, US6252535 B1, US6252535B1
InventorsWolfgang Kober, John K. Thomas
Original AssigneeData Fusion Corporation
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Method and apparatus for acquiring wide-band pseudorandom noise encoded waveforms
US 6252535 B1
Abstract
The method and apparatus of the present invention is directed to architectures for signal processing, such as for performing analog-to-digital and digital-to-analog conversions, in which the source signal is decomposed into subband signals by an analysis filter, processed, and the processed subband signals combined to form a reconstructed signal that is representative of the source signal.
Images(17)
Previous page
Next page
Claims(37)
What is claimed is:
1. A method for acquiring a signal having a bandwidth, comprising:
decomposing the signal into n signal segments, each signal segment having a signal segment bandwidth that is less than the signal bandwidth;
processing y of the n signal segments to form a plurality of processed signal segments, wherein y is less than n; and
combining the processed signal segments into a composite signal wherein the signal is one of analog or digital and the composite signal is the other one of analog or digital.
2. The method of claim 1, wherein the processing step comprises:
correlating the plurality of y signal segments with a corresponding plurality of replicated signal segments to provide a corresponding plurality of correlation functions.
3. The method of claim 2, wherein the processing step comprises:
determining an amplitude, time delay, and phase delay for at least a portion of a plurality of peaks defined by the plurality of correlation functions and
realigning and scaling at least a portion of the signal defined by the signal segments based on one or more of the amplitude, time delay, and phase delay for the at least a portion of the plurality of peaks.
4. The method of claim 1, wherein the processing step includes performing analog-to-digital conversion of each of the y signal segments.
5. The method of claim 1, wherein the processing step includes performing digital-to-analog conversion of each of the y signal segments.
6. The method of claim 1, wherein the processing step includes removing a noise component from each of the y signal segments to form a corresponding plurality of noise reduced signal segments and thereafter converting each of the noise reduced signal segments from one of analog or digital format to the other of analog or digital format.
7. The method of claim 1, wherein in the processing step each of the y signal segments is processed separately.
8. The method of claim 1, wherein the composite signal has the same bandwidth as the signal bandwidth.
9. The method of claim 1, wherein the composite signal is a time delayed replica of the signal.
10. The method of claim 1, wherein the signal has a bandwidth of at least about 1 GHz.
11. The method of claim 1, wherein the sum of the plurality of signal segment bandwidths is equivalent to the signal bandwidth.
12. The method of claim 1, wherein the signal is in one of analog or digital format and the composite signal is in the other of analog or digital format.
13. The method of claim 1, wherein the processing step comprises:
assigning boundary values to a plurality of bins;
sampling a signal segment to provide a sampled value corresponding to the sampled portion of the signal segment;
comparing the sampled value with assigned boundary values for each of the plurality of bins;
selecting an appropriate bin for the sampled portion of the signal segment;
thereafter reassigning new boundary values to at least a portion of the plurality of bins; and
repeating the assigning, sampling, comparing and selecting steps.
14. The method of claim 1, wherein the processing step includes the step of:
eliminating any of the n signal segments having a signal-to-noise ratio of less than one to form the y signal segments.
15. The method of claim 1 wherein n-y of the signal segments are not processed in the processing step.
16. An apparatus for acquiring a signal having a signal bandwidth, comprising:
means for receiving a signal in the form of a pseudorandom or random waveform having a signal bandwidth;
means for decomposing the signal into n signal segments, each signal segment having a signal segment bandwidth that is less than the signal bandwidth;
means for processing y of the signal segments to form a plurality of processed signal segments, wherein y is less than n; and
means for combining the processed signal segments into a composite signal wherein the signal is one of analog or digital and the composite signal is the other one of analog or digital.
17. The apparatus of claim 16, wherein the means for processing includes means for performing analog-to-digital conversion of each of the y signal segments.
18. The apparatus of claim 16, wherein the means for processing includes means for performing digital-to-analog conversion of each of the signal segments.
19. The apparatus of claim 16, wherein the means for decomposing is a plurality of low pass filters.
20. The apparatus of claim 16, wherein the means for decomposing includes a plurality of analysis filters and the means for combining includes a plurality of synthesis filters.
21. The apparatus of claim 16, wherein the means for combining is a perfect reconstruction filter bank.
22. The apparatus of claim 16, wherein the means for processing includes at least one of a plurality of analog-to-digital converters and a plurality of digital-to-analog converters.
23. The apparatus of claim 16, wherein the means for processing includes a noise rejecting quantizer.
24. The apparatus of claim 16, wherein the processing means includes means for rejecting any of the n signal segments having a signal-to-noise ratio of less than one to form the y signal segments.
25. The apparatus wherein n-y of the signal segments are not processed by the processing means.
26. A method for forming a composite signal having a composite bandwidth from a first plurality of signal segments, the frequency band of the composite signal including each of the signal segments, the method comprising:
eliminating from the first plurality of signal segments any signal segment in which a noise component exceeds a signal component to form a second plurality of signal segments, the second plurality of signal segments being less than the first plurality of signal segments; and
performing synthesis filtering on each of the second plurality of signal segments to form the composite signal.
27. The method of claim 26, further comprising:
emitting the first plurality of signal segments from a plurality of signal sources and
receiving each of the first plurality of signal segments using a corresponding plurality of signal receptors.
28. The method of claim 26, further comprising:
converting each of the second plurality of signal segments from an analog format to a digital format.
29. A system for forming a composite signal having a composite bandwidth from a first plurality of signal segments, the composite bandwidth including the frequency range of each of the signal segments, the system comprising:
means for rejecting any of the first plurality of signal segments in which a noise component exceeds a signal component to form a second plurality of signal segments; and
means for performing synthesis filtering on each of the second plurality of signal segments to form the composite signal.
30. The system of claim 29, further comprising:
means for emitting the first plurality of signal segments and
means for receiving each of the first plurality of signal segments.
31. The system of claim 29, further comprising:
means for converting each of the second plurality of signal segments from an analog format to a digital format.
32. The system of claim 29, further comprising:
a plurality of analysis filters to decompose a source signal into the first plurality of signal segments;
a plurality of digital-to-analog conversion devices for converting the second plurality of decomposed signal segments from digital into analog format to form a corresponding plurality of analog signal segments;
a plurality of amplifiers to form a corresponding plurality of amplified analog signal segments;
a plurality of signal emitters for emitting the plurality of amplified analog signal segments; and
a plurality of receptors for receiving, from the plurality of signal emitters, the plurality of amplified analog signal segments.
33. The system of claim 29, further comprising:
a plurality of analysis filters to decompose a source signal into the first plurality of signal segments;
a plurality of amplifiers to amplify the second plurality of signal segments to form a corresponding plurality of amplified signal segments;
a plurality of signal emitters for emitting the plurality of amplified signal segments; and
a plurality of receptors for receiving the plurality of amplified signal segments.
34. The system of claim 29, further comprising:
a plurality of receptors for receiving the first plurality of signal segments;
a plurality of analog-to-digital converters to convert the second plurality of signal segments into a plurality of digital signal segments.
35. The system of claim 29, wherein the number of the first plurality of signal segments is more than the number of the second plurality of signal segments.
36. A method for processing an analog signal having a bandwidth, comprising:
decomposing the analog signal into a first plurality of analog signal segments, each analog signal segment having a signal segment bandwidth that is less than the signal bandwidth;
rejecting any of the analog signal segments in which the signal-to-noise ratio is less than one to form a second plurality of analog signal segments; and
processing each of the second plurality of analog signal segments to form a plurality of processed analog signal segments; and
combining the processed analog signal segments into a composite signal.
37. The method of claim 36, wherein the number of the first plurality of signal segments is more than the number of the second plurality of signal segments.
Description
CROSS REFERENCE TO RELATED APPLICATIONS

The present application claims priority under 35 U.S.C. § 119(e) from U.S. Provisional Application Ser. Nos. 60/087,036 filed May 28, 1998; 60/056,455 filed Aug. 21, 1997; and 60/056,228 filed Aug. 21, 1997, all of which are incorporated herein by this reference.

The U.S. Government has paid-up license in this invention and the right in limited circumstances to require the patent owner to license others on reasonable terms as provided for by the terms of Contract N00014-98-M-0130 awarded by the Office of Naval Research and Contract No. F33615-98-C-1316 awarded by the Air Force Research Laboratory.

FIELD OF THE INVENTION

The present invention relates generally to a method and apparatus for acquiring wide-band random and pseudorandom noise encoded waveforms and specifically to a method and apparatus for acquiring wide-band signals, including deterministic signals, random signals and pseudorandom noise encoded waveforms that divides the waveform into a plurality of subbands prior to signal processing thereof.

BACKGROUND

Analog-to-digital converters are devices that convert real world analog signals into a digital representation or code which a computer can thereafter analyze and manipulate. Analog signals represent information by means of continuously variable physical quantities while digital signals represent information by means of differing discrete physical property states. Converters divide the full range of the analog signal into a finite number of levels, called quantization levels, and assigns to each level a digital code. The total number of quantization levels used by the converter is an indication of its fidelity and is measured in terms of bits. For example, an 8-bit converter uses 28 or 256 levels, while a 16-bit converter uses 216 or 65536 levels.

During the conversion process, the converter determines the quantization level that is closest to the amplitude of the analog signal at that time and outputs the digital code that represents the selected quantization level. The rate at which the output is created indicates the speed of the converter and is measured in terms of samples per second (sps) or frequency in Hertz (Hz). As will be appreciated, a larger number of bits and therefore quantization levels equates into a finer representation of the analog signal.

In designing an analog-to-digital converter, there are a number of considerations. In many applications for example it is desirable that the converter has not only a high rate of speed but also a large number of quantization levels or a high degree of fidelity. Such converters are difficult to build and therefore tend to be highly complex and very expensive. The key reason is that conversion errors and the consequential device layout constraints for reducing such errors, both of which can be ignored at slow speeds, can become significant at high speeds. As a result, in existing converters, high fidelity and high speed are commonly mutually exclusive; that is, the higher the converter speed the lower the converter fidelity and vice versa.

SUMMARY OF THE INVENTION

It is an object of the present invention to provide an analog-to-digital converter that has a high fidelity and a high speed. Related objectives are to provide such an analog-to-digital converter that is relatively simple and inexpensive.

The present invention is directed to a method and apparatus for processing signals, particularly wide-band signals, including deterministic signals, random signals, and signals defined by pseudorandom waveforms with a relatively high degree of fidelity and efficiency at a high speed and at a low cost. The invention is particularly useful for processing wideband signal, including signals defined by broadband signals (i.e., signals having a bandwidth of preferably more than about 1 kHz and more preferably more than about 1 GHz).

The signal can be in any suitable form such as electromagnetic radiation, acoustic, electrical and optical.

In one embodiment, the method includes the following steps:

(a) decomposing the analog or digital signal into a plurality of signal segments (i.e., subband signals), each signal segment having a signal segment bandwidth that is less than the signal bandwidth;

(b) processing each of the signal segments to form a plurality of processed signal segments; and

(c) combining the processed signal segments into a composite signal that is digital when the signal is analog and analog when the signal is digital. As will be appreciated, the sum of the plurality of signal bandwidths is approximately equivalent to the signal bandwidth. The means for processing the signal segments can include any number of operations, including filtering, analog-to-digital or digital-to-analog conversion, signal modulation and/or demodulation, object tracking, RAKE processing, beamforming, null steering, correlation, interference-suppression and matched subspace filtering.

In a particularly preferred application, the signal processing step (b) includes either analog-to-digital or digital-to-analog conversions. The use of signal segments rather than the entire signal for such conversions permits the use of a lower sampling rate to retain substantially all of the information present in the source signal. According to the Bandpass Sampling Theorem, the sampling frequency of the source signal should be at least twice the bandwidth of the source signal to maintain a high fidelity. The ability to use a lower sampling frequency for each of the signal segments while maintaining a high fidelity permits the use of a converter for each signal segment that is operating at a relatively slow rate. Accordingly, a plurality of relatively inexpensive and simple converters operating at relatively slow rates can be utilized to achieve the same rate of conversion as a single relatively high speed converter converting the entire signal with little, if any, compromise in fidelity.

The means for decomposing the signal into a number of signal segments and the means for combining the processed signal segments to form the composite signal can include any number of suitable signal decomposing or combining devices (e.g., filters, analog circuitry, computer software, digital circuitry and optical filters). Preferably, a plurality or bank of analog or digital analysis filters is used to perform signal decomposition and a plurality or bank of analog or digital synthesis filters is used to perform signal reconstruction. The analysis and synthesis filters can be implemented in any number of ways depending upon the type of signal to be filtered. Filtration can be by, for example, analog, digital, acoustic, and optical filtering methods. By way of example, the filters can be designed as simple delays or very sophisticated filters with complex amplitude and phase responses.

In a preferred configuration, a plurality or bank of analysis and/or synthesis filters, preferably designed for perfect reconstruction, is used to process the signal segments. As will be appreciated perfect reconstruction occurs when the composite signal, or output of the synthesis filter bank, is simply a delayed version of the source signal.

In one configuration, the analysis filters and synthesis filters are represented in a special form known as the Polyphase representation. In this form, Noble identities are can be used to losslessly move the decimators to the left of the analysis filters and the interpolators to the right of the synthesis filters.

In another configuration, noise components in each of the signal segments can be removed prior to signal analysis or conversion in the processing step. The removal of noise prior to analog-to-digital conversion can provide significant additional reductions in computational requirements.

In yet another configuration, a coded signal is acquired rapidly using the above-referenced invention. In the processing step, the signal segments are correlated with a corresponding plurality of replicated signals to provide a corresponding plurality of correlation functions defining a plurality of peaks; an amplitude, time delay, and phase delay are determined for at least a portion of the plurality of peaks; and at least a portion of the signal defined by the signal segments is realigned and scaled based on one or more of the amplitude, time delay, and phase delay for each of the plurality of peaks.

In another embodiment, a method is provided for reducing noise in a signal expressed by a random or pseudorandom waveform. The method includes the steps of decomposing the signal into a plurality of signal segments and removing a noise component from each of the signal segments to form a corresponding plurality of processed signal segments. The means for decomposing the signal can be any of the devices noted above, and the means for removing the noise component includes a noise reducing quantizer, noise filters and rank reduction. Signal reconstruction may or may not be used to process further the processed signal segments. This embodiment is particularly useful in acquiring analog signals.

In yet a further embodiment, a method is provided for combining a plurality of signal segments (which may or may not be produced by analysis filters). In the method, synthesis filtering is performed on each of the plurality of signal segments. The means for performing synthesis filtering can be any of the devices noted above.

A number of differing system configurations can incorporate the synthesis filtering means in this embodiment of the invention. For example, a system can include, in addition to the synthesis filtering means, means for emitting the plurality of signal segments from a plurality of signal sources (e.g., antennas); means for receiving each of the plurality of signal segments (e.g., antennas); and means for converting each of the signal segments from analog format to digital format (e.g., analog-to-digital converter).

In another configuration, the system includes: a plurality of analysis filters to decompose a source signal into a plurality of decomposed signal segments; a plurality of digital-to-analog conversion devices for converting the plurality of decomposed signal segments from digital into analog format to form a corresponding plurality of analog signal segments; a plurality of amplifiers to form a corresponding plurality of signal segments; a plurality of signal emitters for emitting the plurality of signal segments; and a plurality of receptors for receiving the plurality of signal segments.

In yet another configuration, the system includes: a plurality of analysis filters to decompose a source signal into a plurality of decomposed signal segments; a plurality of amplifiers to amplify the decomposed signal segments to form a corresponding plurality of signal segments; a plurality of signal emitters for emitting the plurality of signal segments; and a plurality of receptors for receiving the plurality of signal segments.

In another embodiment, a method is provided in which digital signals are decomposed, processed, and then recombined. Signal processing can include signal correlation (e.g., signal modulation or demodulation), and oblique projection filtration (e.g., as described in copending U.S. patent application Ser. No. 08/916,884 filed Aug. 22, 1997, entitled “RAKE Receiver For Spread Spectrum Signal Demodulation,” which is incorporated herein fully by reference).

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 depicts a first embodiment of the present invention;

FIG. 2 depicts an analog signal;

FIG. 3 depicts the analog signal of FIG. 2 divided up into a plurality of signal segments;

FIG. 4 depicts the first embodiment including decimation;

FIGS. 5A and 5B depict noble identities;

FIG. 6 depicts a polyphase filter representation;

FIG. 7 depicts a polyphase filter representation with noble identities;

FIG. 8 depicts another embodiment of the present invention;

FIG. 9 depicts the quantization process of the quantizers in FIG. 8;

FIG. 10 depicts a subband digital transmitter;

FIG. 11 depicts a subband analog transmitter;

FIG. 12 depicts a subband receiver;

FIG. 13 depicts rank reduction for noise filtering;

FIG. 14 depicts another embodiment of the present invention;

FIG. 15 depicts another embodiment of the present invention;

FIG. 16 depicts RAKE processing;

FIG. 17 depicts a multiplexed radar transmitter architecture;

FIG. 18 depicts a radar receiver architecture;

FIG. 19 depicts a digital communications example of a recursive, adaptive Wiener filter;

FIG. 20 depicts an alternative RAKE processing methodology; and

FIG. 21 depicts a least squares, multiple input multiple output filter design problem.

DETAILED DESCRIPTION

Referring to FIG. 1, an embodiment of the present invention is illustrated. As can be seen from FIGS. 1 and 2, a wideband, pseudorandom or random signal 40 (shown in FIG. 2) is passed to a bank or plurality of analysis filters 44 a-n. The signal 40 has a frequency band or domain, Fs, having frequency bounds, fo (lower) and fn (upper), and therefore a bandwidth of fo−fn (FIG. 2). The bandwidth commonly is at least about 1 kHz, more commonly at least about 1 GHz. Each of the analysis filters 44 a-n pass only a portion of the frequency band of the signal to form a plurality of subband signals 48 a-n, or time frequency components, characterized by discrete portions of the frequency band, Fs, of the signal 40 (FIG. 3). As will be appreciated, the summation of the individual frequency bandwidths of all of the subband signals 48 a-n is substantially the same as the bandwidth of the signal 40 (FIG. 3). The various subband signals 48 a-n are processed 52 a-n independently as described below to form a corresponding plurality of processed signal segments 56 a-n. The processed signal segments 56 a-n are passed to a bank or plurality of synthesis filters 60 a-n and combined to form a composite signal 64. Generally, the signal 40 is analog or digital and, when the signal 40 is analog, the composite signal 64 is digital, and, when the signal 40 is digital, the composite signal 64 is analog.

The analysis and synthesis filters 44 a-n and 60 a-n can be in any of a number of configurations provided that the filters pass only discrete, or at most only slightly overlapping, portions of the frequency domain of the signal 40. It is preferred that the frequency bands of the subband signals overlap as little as possible. Preferably, no more than about 5% and more preferably no more than about 1% of the frequency bands of adjacent subband signals overlap.

The filters can be analog or digital depending on the type of signal 40 or the processed signal segments 56 a-n. Examples of suitable analog analysis and synthesis filters include a suitably configured bandpass filter formed by one or more low pass filters, one or more high pass filters, a combination of band reject and low pass filters, a combination of band reject and high pass filters, or one or more band reject filters. Digital analysis and synthesis filters are typically defined by software architecture that provides the desired filter response.

In a preferred configuration shown in FIG. 4, the signal 40 is decomposed by the analysis filter bank 46 (which includes analog or digital analysis filters Hk(z) 44 a-n) into subband signals which are each sampled by a downsampler 64 a-n performing an M-fold decimation (i.e., taking every Mth sample), and the sampled subband signals are further sampled after signal processing by an up-sampler 68 a-n (and/or expander (which fills in L−1 zeros in between each sample)) and the further sampled subband signals are combined by a synthesis filter bank 62 (that includes analog or digital synthesis filters Gk(z) 60 a-n). The sampled subband signals, denoted by xo(n), x1(n), . . . xm−1(n), are the outputs of the N-band analysis filter bank and the inputs to the N-band synthesis filter bank. As a result of decimation, the subband signals are 1/N the rate of the input rate of the signal 40.

Preferably, the analysis and synthesis filters are perfect reconstruction filters such that the composite signal 64 is a delayed version of the signal 40 (i.e., y(n)=u(n−L) where y(n) is the composite signal, u(n) is the signal, and L is time of delay). Using perfect reconstruction filters, the subband signals 48 a-n can be downsampled without any loss in fidelity of the output signal. This downsampling is permissible because the subband signals are of narrow bandwidth and the consequence of the downsampling is that any processing application 52 a-n that is embedded in the subbands can run at significantly reduced rates.

As will be appreciated, a perfect reconstruction filter system can be formed by a number of different methods, including quadrature mirror filter techniques. A preferred technique for designing a filter bank is known as a least squares multiple input multiple output filter design notation. According to this technique, which is illustrated in FIG. 21, a rational transfer matrix defining one of the filter banks is known, i.e., either H(z) or GT(z), along with a rational transfer matrix F(z) defining the ideal output of the filter banks. Assuming that H(z) and F(z) are the known rational transfer matrices, the unknown rational transfer matrix, GT(z), is determined by the following equation:

G T(z)=[F(z)U T(z −1)]+H 0 −1(z)

where

H(z)=H0(z)U(z) ; [H0(z) is the minimum phase equivalent of H(z)]

U(z)UT(z−1)=I; Paraunitary

[F(z)UT(z−1)]x: Causal part of F(z)UT(z−1)

As will be appreciated if GT(z) were known and H(z) were unkown, then the equation would be solved for H(z) rather than GT(z), and GT(z) would be decomposed into the following:

G T(z)=G o T(z)U(z)

where Go T(z) is the minimum phase equivalent of GT(z).

In a preferred embodiment, the rational transfer matrices of the analysis and/or synthesis filters are mathematically expressed in a polyphase filter representation. Exemplary equations defining the decomposition of the signal 40 by the analysis filters 44 a-n include the following: H ( z ) = l = 0 M - 1 z l E l ( z M )

where

M is the number of subbands (which is the same as the number of analysis filters in the analysis filter bank; l is the subband designation); E l ( z M ) = n = - e l ( n ) z - n

e l(n)=h(Mn+l), 0≦l≦M−1

(known as a Type 1 polyphase filter representation) and H ( z ) = l = 0 M - 1 z - ( M - 1 - l ) R l ( z u )

where

R 1(z M)=E M−1−l(z)

(known as Type 2 polyphase filter representation). As will be appreciated, other techniques exist for expressing a rational transfer matrix defining a filter system including impulse response and filter description.

Noble identities can be used to losslessly move the decimators to the left of the analysis filters and the L-fold up-sampler and/or expander to the right of the synthesis filters. In this manner, the analysis and synthesis filters operate on lower rate data, thereby realizing significant computational savings. The noble identities include:

Identity I: Decimation by M followed by filtering defined by the mathematical function H(z) is equivalent to filtering by H(zM) followed by decimation by M (FIG. 5A).

Identity II: Filtering by G(z) followed by an upsampling by L is equivalent to upsampling by L followed by filtering by G(zL) (FIG. 5B).

By way of example, assume H(z) defines an order N finite impulse response (FIR) digital analysis filter with impulse response h(n), M=2, u(n) is the source signal and X(n) is the subband signal. Using the type 1 polyphase representation above, H(z) is decomposed to yield the following:

H(z)=H o(z 2)+H 1(z 2)

Based on the foregoing, FIG. 6 is a polyphase representation based implementation of H(z) without noble identities and FIG. 7 is a polyphase representation-based implementation of the analysis filters H(z) using noble identities to move the decimators ahead of the analysis filters. In this configuration, Ho(z2) and H1(z2) are FIR filters of order no+1 and n1+1, where N=no+n1+1. Ho(z2) and H1(z2) operate at half the rate as compared to H(z) and therefore have two units of time in which to perform all the necessary computations, and the components are continually active (i.e., there are no resting times). Accordingly, there is an M-fold reduction in the number of multiplications and additions per unit of time when using both polyphase representation and the noble identities to implement an M-fold decimation filter.

Subband signal processing can take a variety of forms. In one embodiment shown in FIG. 8 which depicts a receiver and antenna architecture, the source signal 40 and subband signals 48 a-n are in analog form and a plurality of quantizers or analog-to-digital converters are used to convert the subband signals 48 a-n to digital form before further processing 82 (e.g., correlation for encoded subband signals, subband signal digital beamforming in multiple antenna systems, etc.) and/or synthesis of the digital subband signals 78 a-n is performed. As noted above, the subband signals 48 a-n are preferably sampled by each of the decimators or downsamplers 64 a-n at a rate of at least about twice the bandwidth of the corresponding subband signal 48 a-n to maintain fidelity. As shown in FIG. 9, each quantizer, or analog-to-digital converter, 74 a-n determines the digital word or representation 90 a-n that corresponds to the bin 86 a-n having boundaries capturing the amplitude of the analog subband signal at that time and outputs the digital word or representation that represents the selected quantization level assigned to the respective bin. The digital subband signals 78 a-n are converted 94 a-n from radio frequency (RF) to base band frequency and optionally subjected to further signal processing 60. The processed subband signals 98 are formed into a digital composite signal 102 by the synthesis filter bank 60.

To provide increased accuracy, noise rejecting quantizers can be utilized as the quantizers 74 a-n. As will be appreciated, a noise rejecting quantizer assigns more bits to the portions of the subband signal having less noise (and therefore more signal) and fewer bits to the noisy portion. This selective assignment is accomplished by adaptively moving the bin boundaries so as to narrow the bin width (thereby increasing quantization fidelity. An example of a design equation for a Lloyd-Max noise rejecting quantizer is as follows: t k = x k - 1 + x k 2 + δ 2 ( x k ) - δ 2 ( x k - 1 ) 2 ( x k - x k - 1 ) ; x k = e k - 1 2 δ 2 ( x k ) x k

where:

x is the signal to be quantized;

N is the number of quantization levels;

k is signal identifier;

σ is the noise covariance.

The mean squared quantization error (MSE) ζ2 is as follows: ξ 2 = E ( x - x ^ ) 2 = E x 2 + k = 0 N - 1 [ σ 2 ( x k ) + x k 2 - 2 x k e k ] P k

where: { x k } o N - 1 are the representation points; { c k } o N - 1 are the quantization bins; { t k } o N - 1 are the bin thresholds;

fy(y) is the probability density function of y;

y=x+n, where x is the signal component and n the noise component; e k = E x y C k ] = 1 / P k t k t k + 1 E [ x y = α ] f y ( α ) α ; and P k = P [ y C k ] = t k t k + 1 f y ( α ) α

The LM equations require that the bin thresholds be equidistant from the representation points and that each representation point be the conditional mean of x in the corresponding quantization bin. As will be appreciated, a Lloyd-Max (LM) quantizer substantially minimizes the mean squared error between the discrete approximation of the signal and its continuous representation.

The noise covariance, δ, can be estimated by linear mean squared error estimation techniques. Linear mean squared error estimates are characterized by the following equation: X ^ = T y = R xy R yy - 1 y

where T is the Wiener filter, Rxy is the cross covariance between x and y and Ryy is the covariance of y.

Rxy and Ryy are unknown and require estimation. A number of techniques can be used to estimate Rxy and Ryy, including an adaptive Wiener filter (e.g., using the linear mean squared algorithm), direct estimation, sample matrix inversion and a recursive, adaptive Wiener filter, with a recursive, adaptive Wiener filter being more preferred.

The recursive, adaptive Wiener filter is explained in Thomas, J. K., Canonical Correlations and Adaptive Subspace Filtering, Ph.D Dissertation, University of Colorado Boulder, Department of Electrical and Compute Engineering, pp. 1-110, June 1996. which is incorporated herein by reference in its entirety. In a recursive, adaptive Wiener filter assume {circumflex over (T)}M denotes the filter when M measurements of X and Y are used. Then {circumflex over (T)}M is the adaptive Wiener filter T ^ M = X M Y M * ( Y M Y M * ) - 1 = R ^ xy R ^ yy - 1 ,

 XM=[x1x2 . . . xM]; XM+1=[xMx]

YM=[y1y2 . . . yM]; YM+1=[yMy]

If another measurement of x and y is taken, and one more column is added to XM and YM to build {circumflex over (T)}M+1:

{circumflex over (T)} M+1 =X M Y M *{circumflex over (R)} M+1 −1 +xy*{circumflex over (R)} M+1 −1

The estimate of M+1 is {circumflex over (X)}M+1

{circumflex over (X)} M+1 ={circumflex over (T)} M+1 Y M+1

Using the estimate of XM+1, one can read off {circumflex over (x)}M+1, which is the estimate of x: x ^ M + 1 = 1 1 + r 2 x ~ M + r 2 1 + r 2

where r2=y*{circumflex over (R)}M −1y and {tilde over (x)}M+1={circumflex over (T)}My.

Based on the above, when one observes y, the best estimate of the unknown x is {tilde over (x)}, with corresponding estimation error {tilde over (E)}M+1 and covariance {tilde over (Q)}M+1. If the unknown x becomes available after a delay, then {tilde over (x)}M+1 can be updated to {circumflex over (x)}M+1 with error covariance ĘM+1 and covariance {tilde over (Q)}M+1. The two covariances are related by the following formula: Q ~ M + 1 = Q ^ M + 1 + r 2 1 + r 2 xx *

By way of example and as illustrated in FIG. 19, consider a digital communication application in which the modulation scheme involves transmitting x0 and x1 when bits 0 and 1 are to be sent. During the setup of the communication link, the transmitter sends a known bit sequence across the unknown channel. Let XM be the matrix of signals that correspond to the known bit sequence. The receiver observes YM, which is the channel filtered and noise corrupted version of XM. Since the receiver knows the bit pattern, and therefore XM, it is able to build {circumflex over (T)}M. Therefore we refer to XM and YM as the training set.

Once the communication link is established, the transmitter sends a signal x, which corresponds to a data bit. The receiver observes the corresponding y and uses it to estimate x using {circumflex over (T)}M:

{tilde over (x)}={circumflex over (T)} M y

The receiver determines r2, cos2θ and sin2θ.

When cos2θ is approximately equal to 1, {tilde over (x)} is deemed to be a good estimate of x and is used to decide if a 1 or 0 was sent. If, however, cos2θ<<1, then the estimate {tilde over (x)} is scaled by cos2θ, as required by equation 14, before it is used to decide if a 1 or 0 was sent. Once the decision of 1 or 0 is made, the true x is known and can be used to build {circumflex over (x)} as required by equation 14 above and as illustrated in FIG. 19. The x and y are also added to the training set to update {circumflex over (T)}M.

In another embodiment, the source signal 40 is digital and the analysis filters are therefore digital, signal processing is performed by a digital-to-analog converter, and the synthesis filters are analog. FIG. 10 depicts a subband digital transmitter according to this embodiment. The signal 100 is in digital format and is transmitted to a bank of analysis filters 104 a-n to form a plurality of digital subband signals 108 a-n; the digital subband signals 108 a-n are processed by digital-to-analog converters 112 a-n to form analog subband signals 116 a-n; the analog subband signals 116 a-n are amplified by amplifiers 120 a-n to form amplified subband signals 124 a-n; and the amplified subband signals 124 a-n transmitted via antennas 128 a-n.

In another embodiment shown in FIG. 11, a subband analog transmitter is depicted where the signal 140 is analog and not digital. The signal 140 is decomposed into a plurality of analog subband signals 144 a-n by analog analysis filters 148 a-n and the analog subband signals 144 a-n amplified by amplifiers 152 a-n, and the amplified subband signals transmitted by antennas 156 a-n.

In yet another embodiment shown in FIG. 12, a subband receiver is depicted that is compatible with the subband analog transmitter of FIG. 11. Referring to FIG. 12, a plurality of subband signals 160 a-n are received by a plurality of antennas 164 a-n, the received subband signals 168 a-n down converted from radio frequency to baseband frequency by down converters 172 a-n; the down converted subband signals 176 a-n which are in analog form are converted by quantizers 180 a-n from analog to digital format; and the digital subband signals 184 a-n combined by synthesis filters 188 a-n to form the digital composite signal 192.

In any of the above-described transmitter or receiver embodiments, when the subband signals are encoded waveforms such as Code Division Multiple Access (CDMA) or precision P(Y) GPS code signals, the subband signals can be encoded or decoded to realize computational savings. In a receiver, for example, the subband signals are correlated with a replica of the transmitted signal prior to detection. The correlation process can be performed before or after synthesis filtering or before conversion to digital (and therefore in analog) or after conversion to digital (and therefore in digital). The approach is particularly useful for the rapid, direct acquisition of wideband pseudorandom noise encoded waveforms, like CDMA type signals and the P(Y) GPS code, in a manner that is robust with respect to multipath effects and wide-band noise. Because the M-subband signals have narrow bandwidths and therefore can be searched at slower rates, correlation of the subband signals rather than the signal or the composite signal can be performed with over an M-fold reduction in computation and therefore reduce the individual component cost.

To provide further reductions in computational requirements, the number of subbands requiring correlation at any trial time and Doppler frequency can be reduced. The pseudorandom nature of the coded signals implies that a coded signal will only lie in certain known subbands at any given time. According to the rank-reduction principle and as illustrated by FIG. 13, subbands 200 a-j outside of the subbands 204 a-j containing the coded signal can be eliminated to reduce the effects of wide-band noise in the acquisition and/or tracking of pseudorandom signals. This is accomplished by eliminating any subband in which the noise component exceeds the signal component (i.e., the SNR is less than 1). Such an elimination increases the bias squared, which is the power of the signal components that are eliminated, while drastically decreasing the variance, which is the power of the noise that was eliminated. In this manner, the mean squared error between the computed correlation function and the noise-free version of the correlation function is significantly reduced.

As shown in FIG. 14 to perform the correlation in the subband signals in GPS, CDMA, and other pseudorandom or random waveform applications, the replicated code 208 from the code generator 212 must be passed through an analysis filter bank 216 that is identical to the analysis filter bank 220 used to decompose the signal 224. Because the correlation must be performed for different segments of the replicated code 208, each indexed by some start time, this decomposition is necessary for all trial segments of the replicated code 208. A plurality of subband correlators 228 a-n receive both the subband signals 232 a-n and the replicated subband signals 236 a-n and generate a plurality of subband correlation signals 240 a-n. The subband correlation signals 240 a-n are provided by the following equation: q m , n ( i ) ( j ) = k = 1 N x m ( k + j ) p n ( i ) ( k )

where:

q(k) is the subband correlation signal;

pn (i)(k) is the component of the ith trial segment of the P(Y) code in the nth subband;

xm(k) is the component of the measurement that lies in the mth subband;

N is the number of samples over which the correlation is performed.

The subband correlation signals 240 a-n are upsampled and interpolated by the synthesis filters 244 a-n and then squared and combined. The resulting composite signal 248 is the correlation function that can be further processed and detected.

After the subband correlation signals 240 a-n are generated, the signals, for example, can be processed by a RAKE processor, which is commonly a maximal SNR combiner, to align in both time and phase multipath signals before detection and thereby provide improved signal-to-noise ratios and detection performance. As will be appreciated, a signal can be fragmented and arrive at a receiver via multiple paths (i.e., multipath signals) due to reflections from other objects, particularly in urban areas. The formation of a number of multipath signals from a source signal can degrade the correlation peaks, which contributes to the degradation of the detections. The RAKE processor determines the time and phase delays of these multipath signals by searching for correlation peaks in the correlation function and identifying the time and phase delays for each of the peaks. The RAKE processor then uses the time and phase delay estimates to realign the multipath signals so that they can add constructively and enhance the correlation peaks. The peak enhancement improves detection because of the increase in signal-to-noise ratio.

FIG. 15 depicts an embodiment of a signal processing architecture incorporating these features. Referring to FIG. 11, the signals 300 are received by one or more antennas 304, down converted by a down converter 308 to intermediate frequency, filtered by one or more filters 312, and passed through an analog-to-digital converter 316 to form a digital signal 320. The digital signal 320 is passed through an analysis filter bank 324 to generate a plurality of subband signals 328 a-n, and the subband signals 328 a-n to a plurality of subband correlators 332 a-n as noted above to form a plurality of subband correlation signals 336 a-n. The subband correlation signals 336 a-n are passed to a synthesis filter bank 340 to form a correlation function 344 corresponding to the signal 300. The correlation function 344 is passed to a pre-detector 348 to determine an estimated transmit time and frequency and an amplitude and delay for each of the correlation peaks. The estimated transmit time and frequency 352 are provided to a code generator 356 and the amplitude and time delay 360 associated with each correlation peak are provided to the RAKE processor 364. The code generator 356 determines a replicated code 368 corresponding to the signal 300 based on the estimated trial time and frequency. Using the correlation peak amplitudes and time and/or phase delays, the RAKE processor 364, as shown in FIG. 16, shifts the input sequence y(k) by the amounts of the multipath time and/or phase delays and then weights each shifted version by the amplitude of the peak of the correlation function corresponding to that peak to form a RAKED signal 372 (denoted by yR(k)). The RAKED sequence is commonly defined by the following mathematical equation: y R ( k ) = 1 i = 1 p A i i = 1 p A i - i y ( k + t i )

where:

p is the number of multipath signals (and therefore the number of peaks);

Ai is the amplitude of the ith peak;

ti is the time delay of the ith peak;

φ is the phase delay of the ith peak;

y(k) is the input sequence into the code correlator.

The RAKED signal 372 and the replicated code 368 are correlated in a correlator 376 to provide the actual transmit time and frequency 380 which are then used by a detector 384 to detect the signal.

There are a number of variations of the above-described system. The variations are useful in specific applications, such as GPS, CDMA, and radar.

In one variation of the system of FIG. 15 that is depicted in FIGS. 17-18, multiplexed radar transmitter and receiver architectures are depicted. The radar signals 400 a-n are a number of coded waveforms that operate in separate, contiguous subbands (referred to as “radar subband signals”). As shown in FIG. 17, the radar signals 400 a-n are simultaneously transmitted by a plurality of transmitters 404 a-n that each include a plurality of analysis filters (not shown) to form the various radar subband signals 400 a-n. Referring to FIG. 18, the various radar subband signals 400 a-n are received by a signal receptor 410 and passed through a plurality of bandpass filters 414 a-n. A bandpass filter 414 a-n having unique bandpass characteristics corresponds to each of the radar subband signals. The various filtered subband signals 416 a-n are sampled by a plurality of decimators 422 a-n and quantized by a plurality of quantizers 426 a-n to form digital subband signals 430 a-n. The digital subband signals 430 a-n are analyzed by a plurality of detectors 434 a-n to form a corresponding plurality of detected signals 438 a-n. The detectors 434 a-n use a differently coded waveform for each of the transmitted radar subband signals 400 a-n so that the subband radar signals can be individually separated upon reception. As noted above in FIGS. 14-15, the coded radar waveform is decomposed by a plurality of analysis filters (not shown) that are identical to the analysis filters in the receiver to provide replicated subband signals to the detectors 434 a-n. Each detector 434 a-n correlates a radar subband signal 430 a-n with its corresponding replicated subband signal to form a plurality of corresponding detected signals 438 a-n. The detected signals 438 a-n are analyzed by a synthesis filter bank 412 a-n to form a composite radar signal 446.

In a variation of the system of FIG. 15, a bank of analysis filters and synthesis filters can be implemented both directly before and after the correlation step (not shown) to provide the above-noted reductions in computational requirements.

In another variation of the system of FIG. 15, the analysis filters can be relocated before the analog-to-digital converter 316 to form the subband signals before as opposed to after conversion.

In another variation shown of the system of FIG. 15 that is depicted in FIG. 20, the RAKE processor 364 can account for the relative delays in antenna outputs of the signal 300 (which is a function of the arrangement of the antennas as well as the angular location of the signal source) by summing the antenna outputs without compensating for the relative output delays. The correlation process may result in N×p peaks, where N is the number of antenna outputs and p is the number of multipath induced peaks. The Np peaks are then used to realign and scale the input data before summation. The RAKE 364 in effect has performed the phase-delay compensation usually done in beam-steering. The advantages of this approach compared to conventional beam steering techniques include that it is independent of antenna array geometries and steering vectors, it does not require iterative searches for directions as in LMS and its variants, and it is computationally very efficient. This approach is discussed in detail in copending application having Ser. No. 08/916,884, and filed on Aug. 21, 1997.

While various embodiments of the present invention have been described in detail, it is apparent that modifications and adaptations of those embodiments will occur to those skilled in the art. However, it is to be expressly understood that such modifications and adaptations are within the scope of the present invention, as set forth in the following claims.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US4359738Aug 9, 1977Nov 16, 1982The United States Of America As Represented By The Secretary Of The NavyClutter and multipath suppressing sidelobe canceller antenna system
US4665401Oct 10, 1980May 12, 1987Sperry CorporationMillimeter wave length guidance system
US4694467Jul 3, 1986Sep 15, 1987Signatron, Inc.Modem for use in multipath communication systems
US4737713Nov 26, 1986Apr 12, 1988Fonar CorporationApparatus and method for processing an electrical signal and increasing a signal-to-noise ratio thereof
US4780885Jul 15, 1985Oct 25, 1988Paul Haim DFrequency management system
US4856025Dec 29, 1986Aug 8, 1989Matsushita Electric Industrial Co., Ltd.Method of digital signal transmission
US4893316Jul 24, 1986Jan 9, 1990Motorola, Inc.Digital radio frequency receiver
US4922506Jan 11, 1988May 1, 1990Sicom CorporationCompensating for distortion in a communication channel
US4933639Feb 13, 1989Jun 12, 1990The Board Of Regents, The University Of Texas SystemAxis translator for magnetic resonance imaging
US4965732Nov 2, 1987Oct 23, 1990The Board Of Trustees Of The Leland Stanford Junior UniversityMethods and arrangements for signal reception and parameter estimation
US5099493Aug 27, 1990Mar 24, 1992Zeger-Abrams IncorporatedMultiple signal receiver for direct sequence, code division multiple access, spread spectrum signals
US5109390Nov 7, 1989Apr 28, 1992Qualcomm IncorporatedDiversity receiver in a cdma cellular telephone system
US5119401Nov 19, 1990Jun 2, 1992Nec CorporationDecision feedback equalizer including forward part whose signal reference point is shiftable depending on channel response
US5151919Dec 17, 1990Sep 29, 1992Ericsson-Ge Mobile Communications Holding Inc.Cdma subtractive demodulation
US5218619Aug 2, 1991Jun 8, 1993Ericsson Ge Mobile Communications Holding, Inc.CDMA subtractive demodulation
US5220687May 28, 1991Jun 15, 1993Pioneer Electronic CorporationRadio receiver having switch for switching between a wide filter and a narrow filter
US5224122Jun 29, 1992Jun 29, 1993Motorola, Inc.Method and apparatus for canceling spread-spectrum noise
US5237586Mar 25, 1992Aug 17, 1993Ericsson-Ge Mobile Communications Holding, Inc.Rake receiver with selective ray combining
US5263191Dec 11, 1991Nov 16, 1993Westinghouse Electric Corp.Method and circuit for processing and filtering signals
US5280472Mar 9, 1992Jan 18, 1994Qualcomm IncorporatedCDMA microcellular telephone system and distributed antenna system therefor
US5305349Apr 29, 1993Apr 19, 1994Ericsson Ge Mobile Communications Inc.Quantized coherent rake receiver
US5325394Mar 3, 1993Jun 28, 1994Motorola, Inc.Method and apparatus for canceling spread-spectrum noise
US5347535Mar 3, 1993Sep 13, 1994Kokusai Denshin Denwa Co., Ltd.CDMA communication system
US5353302Feb 3, 1993Oct 4, 1994At&T Bell LaboratoriesSignal despreader for CDMA systems
US5355533Dec 11, 1991Oct 11, 1994Xetron CorporationMethod and circuit for radio frequency signal detection and interference suppression
US5386202Nov 3, 1993Jan 31, 1995Sicom, Inc.Data communication modulation with managed intersymbol interference
US5390207Mar 24, 1994Feb 14, 1995Novatel Communications Ltd.Pseudorandom noise ranging receiver which compensates for multipath distortion by dynamically adjusting the time delay spacing between early and late correlators
US5394110Feb 2, 1994Feb 28, 1995Nec CorporationDemodulation system having adaptive matched filter and decision feedback equalizer
US5394434Oct 26, 1993Feb 28, 1995Oki Electric Industry Co., Ltd.Code-division multiple-access demodulator with improved interference cancelation
US5394435Feb 22, 1994Feb 28, 1995At&T Corp.Diversity for direct-sequence spread spectrum systems
US5412391Oct 6, 1977May 2, 1995The United States Of America As Represented By The Secretary Of The NavyAdaptive decorrelating sidelobe canceller
US5437055Jun 3, 1993Jul 25, 1995Qualcomm IncorporatedAntenna system for multipath diversity in an indoor microcellular communication system
US5440265Sep 14, 1994Aug 8, 1995Sicom, Inc.Differential/coherent digital demodulator operating at multiple symbol points
US5442627Jun 24, 1993Aug 15, 1995Qualcomm IncorporatedNoncoherent receiver employing a dual-maxima metric generation process
US5481570Oct 20, 1993Jan 2, 1996At&T Corp.Block radio and adaptive arrays for wireless systems
US5491561Jul 21, 1993Feb 13, 1996Matsushita Electric Industrial Co., Ltd.Image processor for processing high definition image signal and standard image signal and disk apparatus therefor
US5513176Aug 27, 1993Apr 30, 1996Qualcomm IncorporatedDual distributed antenna system
US5553098Apr 12, 1994Sep 3, 1996Sicom, Inc.Demodulator with selectable coherent and differential data
US5568142Oct 20, 1994Oct 22, 1996Massachusetts Institute Of TechnologySystem for converting a signal between continuous-time and discrete-time
US5602833Dec 19, 1994Feb 11, 1997Qualcomm IncorporatedMethod and apparatus for using Walsh shift keying in a spread spectrum communication system
DE558910A1 Title not available
DE610989A2 Title not available
DE4201439A1Jan 21, 1992Jul 22, 1993Daimler Benz AgHigh-rate data transmission procedure via digital radio channel - providing multipath propagation compensation by decision feedback equaliser of correctly phased and weighted antenna signal combination
DE4326843A1Aug 10, 1993Feb 16, 1995Hirschmann Richard Gmbh CoReceiving method and receiving antenna system to eliminate multipath interference and a control device to carry out this method
DE4343959A1Dec 22, 1993Jun 29, 1995Hirschmann Richard Gmbh CoReceiving aerial system for removing multipath interference
GB2280575A Title not available
JPH0774687A Title not available
WO1993012590A1Nov 24, 1992Jun 24, 1993Arraycomm IncSpatial division multiple access wireless communication systems
Non-Patent Citations
Reference
1Christian Halper, et al.; Digital-to-Analog Conversion by Pulse-Cont Modulation Methods; 08/96.
2J.G. Ortega, et al.; Analog to Digital and Digital to Analog Conversion Based on Stochastic Logic; 09/95; 995-999.
3John K. Thomas; Thesis for the Doctor of Philosophy Degree; 1996; 110 pages.
4Kun Lin, et al.; Digital Filters for High Performance Audio Delta-Sigma Analog-to-Digital and Digital-to-Analog Conversions; 01/96; 59-63.
5M.Y. Frankel, et al.; High-Performance Photonic Analogue-Digital Converter; 12/97; 2096-2097.
6Scharf and Friedlander; "Matched Subspace Detectors"; IEEE Transactions on Signal Processing; vol. 42, No. 8, Aug. 1994; pp. 2146-2157.
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US6392588 *May 3, 2000May 21, 2002Ramot University Authority For Applied Research & Industrial Development Ltd.Multifrequency signal structure for radar systems
US6507819 *Feb 18, 2000Jan 14, 2003Matsushita Electric Industrial Co., Ltd.Sound signal processor for extracting sound signals from a composite digital sound signal
US6771214Sep 12, 2002Aug 3, 2004Data Fusion CorporationGPS near-far resistant receiver
US7253761 *Nov 8, 2005Aug 7, 2007United States Of America As Represented By The Secretary Of The ArmyAnalog to digital conversion with signal expansion
US7260506Oct 6, 2004Aug 21, 2007Tensorcomm, Inc.Orthogonalization and directional filtering
US7299161 *Nov 26, 2003Nov 20, 2007Qinetiq LimitedDecorrelation of signals
US7304597 *May 26, 2006Dec 4, 2007Lecroy CorporationAdaptive interpolation for use in reducing signal spurs
US7345629Feb 21, 2006Mar 18, 2008Northrop Grumman CorporationWideband active phased array antenna system
US7359465Apr 11, 2005Apr 15, 2008Tensorcomm, IncSerial cancellation receiver design for a coded signal processing engine
US7394879Feb 6, 2004Jul 1, 2008Tensorcomm, Inc.Systems and methods for parallel signal cancellation
US7430253Oct 15, 2003Sep 30, 2008Tensorcomm, IncMethod and apparatus for interference suppression with efficient matrix inversion in a DS-CDMA system
US7474690Sep 7, 2004Jan 6, 2009Tensorcomm, IncSystems and methods for parallel signal cancellation
US7477710Dec 7, 2004Jan 13, 2009Tensorcomm, IncSystems and methods for analog to digital conversion with a signal cancellation system of a receiver
US7577186Sep 7, 2004Aug 18, 2009Tensorcomm, IncInterference matrix construction
US7580448Oct 15, 2003Aug 25, 2009Tensorcomm, IncMethod and apparatus for channel amplitude estimation and interference vector construction
US7609611 *Sep 29, 2000Oct 27, 2009France TelecomMethod for transmitting an offset modulated biorthogonal multicarrier signal (BFDM/OM)
US7626542Feb 23, 2006Dec 1, 2009Data Fusion CorporationMitigating interference in a signal
US7787518Sep 23, 2003Aug 31, 2010Rambus Inc.Method and apparatus for selectively applying interference cancellation in spread spectrum systems
US7787572Aug 15, 2005Aug 31, 2010Rambus Inc.Advanced signal processors for interference cancellation in baseband receivers
US7830278 *Aug 1, 2007Nov 9, 2010Continental Teves Ag & Co. OhgSensor arrangement for the precise detection of relative movements between an encoder and a sensor
US8085889Sep 19, 2007Dec 27, 2011Rambus Inc.Methods for managing alignment and latency in interference cancellation
US8179946Nov 20, 2008May 15, 2012Rambus Inc.Systems and methods for control of advanced receivers
US8218602Aug 30, 2010Jul 10, 2012Rambus Inc.Method and apparatus for selectively applying interference cancellation in spread spectrum systems
US8374299Mar 30, 2011Feb 12, 2013Rambus Inc.Serial cancellation receiver design for a coded signal processing engine
US8514910May 2, 2012Aug 20, 2013Rambus Inc.Systems and methods for control of receivers
US8576103 *Jan 12, 2012Nov 5, 2013Broadcom CorporationRollover operative digital to analog converter (DAC)
US8618968 *Jan 12, 2012Dec 31, 2013Broadcom CorporationDual digital to analog converters (DACs) with codeword parsing
US8669894 *Feb 14, 2011Mar 11, 2014Anpec Electronics CorporationAnalog-to-digital converting method and functional device using the same
US8761321Sep 23, 2005Jun 24, 2014Iii Holdings 1, LlcOptimal feedback weighting for soft-decision cancellers
US8842786Dec 8, 2011Sep 23, 2014Iii Holdings 1, LlcMethods for managing alignment and latency in interference suppression
US20120121109 *Feb 14, 2011May 17, 2012Ming-Hung ChangAnalog-to-digital Converting Method and Functional Device Using the Same
WO2003028219A1 *Sep 10, 2002Apr 3, 2003Teradyne IncMultiple a-to-d converter scheme employing digital crossover filter
Classifications
U.S. Classification341/155, 341/144
International ClassificationG01S7/285, H03M1/12, G01S7/02, G01S1/04
Cooperative ClassificationH03M1/121, G01S1/045, G01S7/285, G01S7/021
European ClassificationH03M1/12M2
Legal Events
DateCodeEventDescription
Oct 1, 2012FPAYFee payment
Year of fee payment: 12
Dec 26, 2008FPAYFee payment
Year of fee payment: 8
Nov 17, 2004FPAYFee payment
Year of fee payment: 4
Aug 3, 2001ASAssignment
Owner name: AIR FORCE, UNITED STATES, OHIO
Free format text: CONFIRMATORY LICENSE;ASSIGNOR:DATA FUSION CORPORATION;REEL/FRAME:012077/0848
Effective date: 20010619
Owner name: AIR FORCE, UNITED STATES AFMC LO/JAZ 2240 B STREET
Free format text: CONFIRMATORY LICENSE;ASSIGNOR:DATA FUSION CORPORATION /AR;REEL/FRAME:012077/0848
Aug 20, 1998ASAssignment
Owner name: DATA FUSION CORPORATION, COLORADO
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KOBER, WOLFGANG;THOMAS, JOHN K.;REEL/FRAME:009407/0913
Effective date: 19980820