US6290730B1 - Artificial foot and ankle - Google Patents

Artificial foot and ankle Download PDF

Info

Publication number
US6290730B1
US6290730B1 US09/526,367 US52636700A US6290730B1 US 6290730 B1 US6290730 B1 US 6290730B1 US 52636700 A US52636700 A US 52636700A US 6290730 B1 US6290730 B1 US 6290730B1
Authority
US
United States
Prior art keywords
component
ankle
artificial foot
keel
bumper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US09/526,367
Inventor
Mark R. Pitkin
John A. Hays
Sujatha Srinivasan
James M. Colvin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Willowwood Global LLC
Original Assignee
Ohio Willow Wood Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ohio Willow Wood Co filed Critical Ohio Willow Wood Co
Priority to US09/526,367 priority Critical patent/US6290730B1/en
Assigned to OHIO WILLOW WOOD COMPANY reassignment OHIO WILLOW WOOD COMPANY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: COLVIN, JAMES M., HAYS, JOHN A., PITKIN, MARK R., SRINIVASAN, SUJATHA
Application granted granted Critical
Publication of US6290730B1 publication Critical patent/US6290730B1/en
Assigned to NATIONAL INSTITUTES OF HEALTH (NIH), U.S. DEPT. OF HEALTH AND HUMAN SERVICES (DHHS), U.S. GOVERNMENT reassignment NATIONAL INSTITUTES OF HEALTH (NIH), U.S. DEPT. OF HEALTH AND HUMAN SERVICES (DHHS), U.S. GOVERNMENT EXECUTIVE ORDER 9424, CONFIRMATORY LICENSE Assignors: OHIO WILLOW WOOD COMPANY
Assigned to WILLOWWOOD GLOBAL LLC reassignment WILLOWWOOD GLOBAL LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: THE OHIO WILLOW WOOD COMPANY
Assigned to MADISON CAPITAL FUNDING LLC, AS AGENT reassignment MADISON CAPITAL FUNDING LLC, AS AGENT SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: WILLOWWOOD GLOBAL LLC
Anticipated expiration legal-status Critical
Assigned to WILLOWWOOD GLOBAL LLC reassignment WILLOWWOOD GLOBAL LLC RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: MADISON CAPITAL FUNDING LLC, AS AGENT
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/50Prostheses not implantable in the body
    • A61F2/60Artificial legs or feet or parts thereof
    • A61F2/66Feet; Ankle joints
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/50Prostheses not implantable in the body
    • A61F2/60Artificial legs or feet or parts thereof
    • A61F2/66Feet; Ankle joints
    • A61F2/6607Ankle joints
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30329Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • A61F2002/30433Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements using additional screws, bolts, dowels, rivets or washers e.g. connecting screws
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30329Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • A61F2002/30462Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements retained or tied with a rope, string, thread, wire or cable
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/50Prostheses not implantable in the body
    • A61F2002/5001Cosmetic coverings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/50Prostheses not implantable in the body
    • A61F2002/5003Prostheses not implantable in the body having damping means, e.g. shock absorbers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/50Prostheses not implantable in the body
    • A61F2002/5007Prostheses not implantable in the body having elastic means different from springs, e.g. including an elastomeric insert
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/50Prostheses not implantable in the body
    • A61F2002/5007Prostheses not implantable in the body having elastic means different from springs, e.g. including an elastomeric insert
    • A61F2002/5009Prostheses not implantable in the body having elastic means different from springs, e.g. including an elastomeric insert having two or more elastomeric blocks
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/50Prostheses not implantable in the body
    • A61F2002/5016Prostheses not implantable in the body adjustable
    • A61F2002/503Prostheses not implantable in the body adjustable for adjusting elasticity, flexibility, spring rate or mechanical tension
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/50Prostheses not implantable in the body
    • A61F2/5044Designing or manufacturing processes
    • A61F2002/5055Reinforcing prostheses by embedding particles or fibres during moulding or dipping, e.g. carbon fibre composites
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/50Prostheses not implantable in the body
    • A61F2002/5072Prostheses not implantable in the body having spring elements
    • A61F2002/5079Leaf springs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/50Prostheses not implantable in the body
    • A61F2002/5093Tendon- or ligament-replacing cables
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/50Prostheses not implantable in the body
    • A61F2/60Artificial legs or feet or parts thereof
    • A61F2/66Feet; Ankle joints
    • A61F2002/6614Feet
    • A61F2002/6657Feet having a plate-like or strip-like spring element, e.g. an energy-storing cantilever spring keel
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/50Prostheses not implantable in the body
    • A61F2/60Artificial legs or feet or parts thereof
    • A61F2/66Feet; Ankle joints
    • A61F2002/6614Feet
    • A61F2002/6657Feet having a plate-like or strip-like spring element, e.g. an energy-storing cantilever spring keel
    • A61F2002/6685S-shaped
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2220/00Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2220/0025Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • A61F2220/0041Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements using additional screws, bolts, dowels or rivets, e.g. connecting screws
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2220/00Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2220/0025Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • A61F2220/0075Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements sutured, ligatured or stitched, retained or tied with a rope, string, thread, wire or cable

Definitions

  • the present invention relates to an artificial foot and ankle based on the principles of operation of the artificial foot and ankle in the above noted U.S. Pat. No. 5,376,139.
  • the artificial foot and ankle includes a keel component, an ankle component, and a central bumper component interposed between the keel component and the ankle component.
  • the ankle component has a lower surface with a radius of curvature greater than the radius of curvature of an upper surface of the keel component in both a sagittal plane and a frontal plane.
  • the curvature of the central bumper component corresponds to the curvature of the keel component. In this way, the ankle component is capable of a rolling motion over the central bumper component and the keel component.
  • a holding assembly holds the keel component, the ankle component, and the central bumper component together.
  • the holding assembly comprises a generally U-shaped member disposed along medial and lateral sides and a bottom surface of the keel component and along medial and lateral sides of the central bumper component.
  • a pin extends between upper ends of the U-shaped member and is disposed through an opening in the ankle component, whereby the ankle component is capable of rotation about the pin.
  • the pin may be adjustable on the U-shaped member to provide a desired amount of motion of the foot and ankle.
  • a dorsiflexion stop assembly may also be provided to control the amount of dorsiflexion.
  • the dorsiflexion stop assembly comprises a strap member extending through corresponding openings in the keel component and the central bumper component and attached to a dorsiflexion rod adjustably mounted at the anterior of the ankle component to provide a tension adjustment of the strap member.
  • a compressible strap bumper may be disposed within a loop of the strap member to provide a gradual dorsiflexion stop.
  • FIG. 1 is a side view of the artificial foot and ankle of the present invention
  • FIG. 2 is an exploded view of the artificial foot and ankle of FIG. 1;
  • FIG. 3 is an exploded view of an ankle component
  • FIG. 4 is an isometric view of a keel component
  • FIG. 5 is an isometric view of a central bumper
  • FIG. 6 is an exploded view of the central bumper of FIG. 6;
  • FIG. 7 is an isometric view of a holding assembly
  • FIG. 8 is an exploded view of the holding assembly of FIG. 7;
  • FIG. 9 is an isometric view of a dorsiflexion stop
  • FIG. 10 is an exploded view of the dorsiflexion stop of FIG. 9;
  • FIG. 11 is a side view of a further embodiment of the present invention.
  • FIG. 12 is a side view of a still further embodiment of the present invention.
  • an artificial foot and ankle assembly 10 of the present invention comprises an ankle component 12 , a keel component 14 , a central bumper component 16 , and a dorsiflexion stop assembly 18 .
  • the components are held together by a holding assembly 20 .
  • the ankle component 12 shown more fully in FIG. 3, includes a main ankle member 22 , a dome 24 , and an inverted pyramid 26 molded in for attachment to other components.
  • the ankle component is preferably made from a glass and/or carbon reinforced vinyl ester material. The lay-up of the material provides the required strength.
  • the keel component 14 is also made from a glass and/or carbon reinforced vinyl ester material.
  • the toe portion 30 of the keel component 14 constitutes a leaf spring design having any suitable number of graduated layers or plates 32 a, 32 b, 32 c (three are shown) to allow for a more responsive forefoot.
  • the particular configuration of the toe portion is determined by the user's parameters and preferences.
  • the keel component also has an arch 34 along its bottom surface to provide the keel component with a fairly uniform thickness and a reduced weight.
  • the radius of curvature on the bottom surface 36 of the ankle component 12 faces downwardly, and the radius of curvature on the top surface 38 of the keel component 14 faces upwardly, as can be seen in FIG. 2 .
  • the magnitude of the radius of the ankle component is greater than the magnitude of the radius of the keel component in both the sagittal and frontal planes.
  • the central bumper component 16 is provided between the ankle and keel components 12 , 14 .
  • the central bumper component is preferably formed from an elastic, polyurethane material, which provides shock absorption and serves to restore the foot to its neutral position after a plantarflexion, dorsiflexion, inversion, or eversion load is applied.
  • the central bumper component preferably has a hardness value between 50 A and 90 A. The actual hardness is determined by the user's parameters and preferences.
  • the radius of curvature of the central bumper component is equal to the radius of curvature of the keel component on both the bottom and top surfaces 40 , 42 of the bumper. This allows for the ankle component to roll along the top surface 42 of the bumper component. Also, during rolling motion, the surface 36 of the ankle component disengages from the top surface 42 of the bumper component in zones distant from the instant center of contact.
  • the optimal values of the radii of the surfaces 36 and 38 can be determined as known in the art. See Pitkin, M. “Synthesis of cycloidal mechanism of prosthetic ankle,” Prosthetics and Orthotics International, vol. 20, no. 3 (1996), pp. 159-171.
  • the anterior portion 44 of the central bumper component 14 may have an optional pocket 46 which allows a separate toe bumper 48 of different hardness to be inserted and interchanged. This allows for additional customization of the forefoot to a patient's parameters and preferences.
  • the toe bumper has a hardness value between 60 A and 90 A.
  • the holding assembly holds the ankle, central bumper, and keel components together.
  • the holding assembly includes a U-shaped bracket 50 , preferably formed of metal, which fits around the keel component 14 and the central bumper component 16 .
  • the keel component has grooves 52 on both the medial and lateral sides through which the bracket passes.
  • the grooves are oversized sufficiently to provide the bracket with limited motion therein.
  • An axial pin 54 preferably made of metal, runs through a hole 56 in the ankle component 12 with its axis in a medial/lateral direction.
  • the hole in the ankle component is oversized sufficiently to allow rotation of the pin 54 within the ankle component.
  • the axial pin is connected to the bracket 50 by two side bolts 58 .
  • the axial pin, side bolts, and bracket create a closed loop holding the ankle, central bumper, and keel components together.
  • the holding assembly is not fixed to the keel or the ankle components. This allows for axial rotation of the bracket about the shank, while the ankle component 12 becomes engaged in rolling motion relative to the keel 14 during plantarflexion/dorsiflexion, and inversion/eversion.
  • the side bolts 58 are shaped similarly to a shoulder bolt.
  • the non-threaded portion 60 of the bolt sits within the axial pin 54 . Therefore, the bolt is free to turn within the axial pin. This allows for a method of adjusting ankle motion.
  • the bracket By tightening the side bolts, the bracket is drawn tighter against the ankle/bumper/keel assembly, restricting ankle motion. By loosening the side bolts, the ankle motion becomes less restricted.
  • a rubber material 62 is located around the bracket within the grooves of the keel. This material is compressible to allow for axial rotation and creates a force to restore the foot to its neutral position. It also eliminates noise and wear that would occur if the bracket 50 and the keel component 14 were able to come in direct contact.
  • a circular polyurethane bumper or muffler 64 is used to eliminate noise that would otherwise occur between the bolt and the axial pin.
  • Each muffler creates forces that hold each bolt tightly within the axial pin and the bracket eliminating the rattling noise.
  • the dorsiflexion stop assembly 18 is provided to better control the amount of dorsiflexion possible in the foot and ankle assembly.
  • the stop assembly consists of a dorsiflexion rod 70 , a dorsiflexion shell 72 , a dorsiflexion strap 74 , a dorsiflexion stop bolt 76 , and an attachment bolt 80 .
  • the dorsiflexion strap 74 is preferably made of aromatic polyamide fiber (KevlarTM), Ultra High Molecular Weight Polyethylene Fiber (SpectraTM), nylon fiber (VectranTM), or a similar material.
  • the posterior area 82 in the keel component 14 contains two through holes 84 (see FIG. 4; only one through hole is visible). The area between the holes is rounded on the bottom to create a smooth surface.
  • Each end of the dorsiflexion strap passes through each hole in the keel component so that the strap's midsection passes over the smoothed area between the holes of the keel component.
  • the strap then passes through an open area 86 of the central bumper component 16 and up through a hole 88 in the posterior portion of the ankle component (see FIG. 3 ).
  • the two ends of the strap are inserted into a slot 90 in the dorsiflexion rod and fastened in place, for example, with a set screw 78 .
  • the dorsiflexion rod 70 is then inserted into the dorsiflexion shell 72 . By rotating the dorsiflexion rod 70 along its axis, the tension in the dorsiflexion strap 74 may be adjusted.
  • the dorsiflexion stop bolt 76 is placed through a hole 92 in the dorsiflexion rod 70 and tightened against the dorsiflexion shell 72 to hold the rod in its position after the tension of the strap has been adjusted.
  • the dorsiflexion shell has a slot 94 along its top to allow the bolt 76 to be loosened and rotated along the dorsiflexion rod axis. This provides for adjustment of the dorsiflexion strap tension, thereby controlling the amount of dorsiflexion possible in the foot and ankle assembly.
  • a cylindrically shaped bumper or strap bumper 96 within the central bumper component 16 and between the dorsiflexion strap 74 is a cylindrically shaped bumper or strap bumper 96 .
  • the dorsiflexion strap 74 tightens on the strap bumper 96 .
  • This bumper then provides a more gradual dorsiflexion stop as it compresses.
  • the strap bumper preferably has a hardness value between 50 A and 70 A.
  • This strap also provides a “safety” in case the holding assembly 20 fails. The strap helps hold the foot assembly together, so that the patient has time to react to the holding assembly failure.
  • a rubber wedge is placed under the heel portion of the keel. This rubber heel wedge provides greater shock absorption. It may be customized to a patient's parameters and preferences. It may also be used to adjust for heel height.
  • foam is poured around the keel portion of the foot assembly.
  • a recessed area is provided at the ankle to allow the prosthetist better access to make adjustments.
  • a foam ankle block is then “snapped” into place, for example, using plastic fasteners, to create a cosmetically appealing foot shape.
  • the motion of the foot and ankle assembly is such that at heel strike the central bumper component 16 compresses, allowing the ankle component 12 to rotate about the axial pin 54 and allowing foot flat by engaging the ankle component 12 in a rolling motion relative to the keel 14 .
  • the rubber heel wedge and central bumper component 16 also provide shock absorption.
  • the ankle component 12 rotates about the axial pin 54 , the load applied compresses more of the central bumper component 16 , and the holding assembly 20 moves away from the keel component 14 a small amount.
  • This allows free mobility of the ankle component 12 similar to the mobility of an anatomically sound ankle.
  • This mobility allows the keel component 14 to conform to uneven terrain as the ankle component 12 rolls along the top of the central bumper component 16 .
  • the dorsiflexion strap 54 gradually tightens as the strap bumper 96 compresses, creating a fixed mobility of the ankle component 12 .
  • the body weight is then transferred over the toe portion 30 and the toe plates 32 a-c of the keel component 14 to provide stability.
  • the plates 32 a-c provide energy return, and the bumpers 48 , 96 return to their neutral shape, forcing the other components of the foot and ankle assembly to return to their neutral positions.
  • the keel component may be made using a carbon-epoxy material to provide more energy return in the toe portion.
  • the keel and ankle components may be made from any plastic or any fiber-reinforced plastic.
  • an alternative holding assembly 105 may be provided.
  • a heel plate 102 is attached to the keel component and projects posteriorly, creating a gap 104 between the heel plate and the keel component.
  • Steel cables 106 are attached to the heel plate and run up through the central bumper component to attach to the ankle component.
  • the heel plate collapses against the keel component, reducing the tension in the steel cables and allowing the ankle component to rotate relative to the keel, resulting in a dorsiflexion foot motion.
  • a bolt 108 located at the attachment point may be turned clockwise, forcing the attachment to move upward.
  • the bolt may be turned counterclockwise, lowering the attachment piece.
  • the pin 54 may fit through slots 112 in the top portion of the bracket 50 .
  • a bolt 114 threaded into the top of the bracket on each side may then hold the axial pin from the top.
  • the axial pin drives the ankle component against the central bumper, limiting the ankle motion. Loosening each bolt allows for increased motion.
  • the ankle may have an attachment mechanism other than an inverted pyramid, such as a clamp.
  • the holding assembly may be, for example, a spring or elastic band on each side or encircling the components. One end of the spring may be attached to the keel and the other end to the ankle.
  • the foot may have a split toe for greater inversion/eversion capability.

Abstract

An artificial foot and ankle is provided having a keel component, an ankle component, and a central bumper component interposed between the keel component and the ankle component. The ankle component has a lower surface with a radius of curvature greater than the radius of curvature of an upper surface of the keel component in both a sagittal plane and a frontal plane. The curvature of the central bumper component corresponds to the curvature of the keel component. A holding assembly holds the keel component, the ankle component, and the central bumper component together, with the ankle component capable of rolling motion relative to the keel component in both the sagittal plane and the frontal plane. A dorsiflexion stop assembly may also be provided to control the amount of dorsiflexion.

Description

CROSS REFERENCE TO RELATED APPLICATIONS
This application claims priority under 35 U.S.C. §119(e) of U.S. Provisional Application No. 60/126,348, filed Mar. 26, 1999, the disclosure of which is incorporated by reference herein.
STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT
The development of this invention was supported by Grant 5R44 AR43290-03 from the National Institutes of Health/National Institute of Arthritis and Musculoskeletal Diseases.
BACKGROUND OF THE INVENTION
Many biomechanical systems or prostheses are known that assist an amputee in walking, running, and performing other types of locomotion. One known type of artificial foot and ankle is disclosed in U.S. Pat. No. 5,376,139, the disclosure of which is incorporated by reference herein. This prosthetic device provides contacting cam rolling surfaces and elastic connections that more closely imitate the forces on the foot during locomotion.
SUMMARY OF THE INVENTION
The present invention relates to an artificial foot and ankle based on the principles of operation of the artificial foot and ankle in the above noted U.S. Pat. No. 5,376,139. The artificial foot and ankle includes a keel component, an ankle component, and a central bumper component interposed between the keel component and the ankle component. The ankle component has a lower surface with a radius of curvature greater than the radius of curvature of an upper surface of the keel component in both a sagittal plane and a frontal plane. The curvature of the central bumper component corresponds to the curvature of the keel component. In this way, the ankle component is capable of a rolling motion over the central bumper component and the keel component.
A holding assembly holds the keel component, the ankle component, and the central bumper component together. The holding assembly comprises a generally U-shaped member disposed along medial and lateral sides and a bottom surface of the keel component and along medial and lateral sides of the central bumper component. A pin extends between upper ends of the U-shaped member and is disposed through an opening in the ankle component, whereby the ankle component is capable of rotation about the pin. The pin may be adjustable on the U-shaped member to provide a desired amount of motion of the foot and ankle.
A dorsiflexion stop assembly may also be provided to control the amount of dorsiflexion. The dorsiflexion stop assembly comprises a strap member extending through corresponding openings in the keel component and the central bumper component and attached to a dorsiflexion rod adjustably mounted at the anterior of the ankle component to provide a tension adjustment of the strap member. A compressible strap bumper may be disposed within a loop of the strap member to provide a gradual dorsiflexion stop.
DESCRIPTION OF THE DRAWINGS
The invention will be more fully understood from the following detailed description taken in conjunction with the accompanying drawings in which:
FIG. 1 is a side view of the artificial foot and ankle of the present invention;
FIG. 2 is an exploded view of the artificial foot and ankle of FIG. 1;
FIG. 3 is an exploded view of an ankle component;
FIG. 4 is an isometric view of a keel component;
FIG. 5 is an isometric view of a central bumper;
FIG. 6 is an exploded view of the central bumper of FIG. 6;
FIG. 7 is an isometric view of a holding assembly;
FIG. 8 is an exploded view of the holding assembly of FIG. 7;
FIG. 9 is an isometric view of a dorsiflexion stop;
FIG. 10 is an exploded view of the dorsiflexion stop of FIG. 9;
FIG. 11 is a side view of a further embodiment of the present invention; and
FIG. 12 is a side view of a still further embodiment of the present invention.
DETAILED DESCRIPTION OF THE INVENTION
Referring to FIGS. 1 and 2, an artificial foot and ankle assembly 10 of the present invention comprises an ankle component 12, a keel component 14, a central bumper component 16, and a dorsiflexion stop assembly 18. The components are held together by a holding assembly 20.
The ankle component 12, shown more fully in FIG. 3, includes a main ankle member 22, a dome 24, and an inverted pyramid 26 molded in for attachment to other components. The ankle component is preferably made from a glass and/or carbon reinforced vinyl ester material. The lay-up of the material provides the required strength.
Referring to FIG. 4, the keel component 14 is also made from a glass and/or carbon reinforced vinyl ester material. The toe portion 30 of the keel component 14 constitutes a leaf spring design having any suitable number of graduated layers or plates 32 a, 32 b, 32 c (three are shown) to allow for a more responsive forefoot. The particular configuration of the toe portion is determined by the user's parameters and preferences. The keel component also has an arch 34 along its bottom surface to provide the keel component with a fairly uniform thickness and a reduced weight.
The radius of curvature on the bottom surface 36 of the ankle component 12 faces downwardly, and the radius of curvature on the top surface 38 of the keel component 14 faces upwardly, as can be seen in FIG. 2. The magnitude of the radius of the ankle component is greater than the magnitude of the radius of the keel component in both the sagittal and frontal planes.
Referring to FIGS. 5 and 6, the central bumper component 16 is provided between the ankle and keel components 12, 14. The central bumper component is preferably formed from an elastic, polyurethane material, which provides shock absorption and serves to restore the foot to its neutral position after a plantarflexion, dorsiflexion, inversion, or eversion load is applied. The central bumper component preferably has a hardness value between 50A and 90A. The actual hardness is determined by the user's parameters and preferences.
The radius of curvature of the central bumper component is equal to the radius of curvature of the keel component on both the bottom and top surfaces 40, 42 of the bumper. This allows for the ankle component to roll along the top surface 42 of the bumper component. Also, during rolling motion, the surface 36 of the ankle component disengages from the top surface 42 of the bumper component in zones distant from the instant center of contact. The optimal values of the radii of the surfaces 36 and 38 can be determined as known in the art. See Pitkin, M. “Synthesis of cycloidal mechanism of prosthetic ankle,” Prosthetics and Orthotics International, vol. 20, no. 3 (1996), pp. 159-171.
The anterior portion 44 of the central bumper component 14 may have an optional pocket 46 which allows a separate toe bumper 48 of different hardness to be inserted and interchanged. This allows for additional customization of the forefoot to a patient's parameters and preferences. The toe bumper has a hardness value between 60A and 90A.
The holding assembly, illustrated in FIGS. 7 and 8, holds the ankle, central bumper, and keel components together. In the embodiment shown, the holding assembly includes a U-shaped bracket 50, preferably formed of metal, which fits around the keel component 14 and the central bumper component 16. The keel component has grooves 52 on both the medial and lateral sides through which the bracket passes. The grooves are oversized sufficiently to provide the bracket with limited motion therein. An axial pin 54, preferably made of metal, runs through a hole 56 in the ankle component 12 with its axis in a medial/lateral direction. The hole in the ankle component is oversized sufficiently to allow rotation of the pin 54 within the ankle component. The axial pin is connected to the bracket 50 by two side bolts 58. The axial pin, side bolts, and bracket create a closed loop holding the ankle, central bumper, and keel components together. The holding assembly, however, is not fixed to the keel or the ankle components. This allows for axial rotation of the bracket about the shank, while the ankle component 12 becomes engaged in rolling motion relative to the keel 14 during plantarflexion/dorsiflexion, and inversion/eversion.
The side bolts 58 are shaped similarly to a shoulder bolt. The non-threaded portion 60 of the bolt sits within the axial pin 54. Therefore, the bolt is free to turn within the axial pin. This allows for a method of adjusting ankle motion. By tightening the side bolts, the bracket is drawn tighter against the ankle/bumper/keel assembly, restricting ankle motion. By loosening the side bolts, the ankle motion becomes less restricted.
Referring to FIG. 1, a rubber material 62 is located around the bracket within the grooves of the keel. This material is compressible to allow for axial rotation and creates a force to restore the foot to its neutral position. It also eliminates noise and wear that would occur if the bracket 50 and the keel component 14 were able to come in direct contact.
Around each side bolt 58, between the axial pin 54 and the bracket 50, a circular polyurethane bumper or muffler 64 is used to eliminate noise that would otherwise occur between the bolt and the axial pin. Each muffler creates forces that hold each bolt tightly within the axial pin and the bracket eliminating the rattling noise.
Referring to FIGS. 9 and 10, the dorsiflexion stop assembly 18 is provided to better control the amount of dorsiflexion possible in the foot and ankle assembly. The stop assembly consists of a dorsiflexion rod 70, a dorsiflexion shell 72, a dorsiflexion strap 74, a dorsiflexion stop bolt 76, and an attachment bolt 80. The dorsiflexion strap 74 is preferably made of aromatic polyamide fiber (Kevlar™), Ultra High Molecular Weight Polyethylene Fiber (Spectra™), nylon fiber (Vectran™), or a similar material.
The posterior area 82 in the keel component 14 contains two through holes 84 (see FIG. 4; only one through hole is visible). The area between the holes is rounded on the bottom to create a smooth surface. Each end of the dorsiflexion strap passes through each hole in the keel component so that the strap's midsection passes over the smoothed area between the holes of the keel component. The strap then passes through an open area 86 of the central bumper component 16 and up through a hole 88 in the posterior portion of the ankle component (see FIG. 3). The two ends of the strap are inserted into a slot 90 in the dorsiflexion rod and fastened in place, for example, with a set screw 78. The dorsiflexion rod 70 is then inserted into the dorsiflexion shell 72. By rotating the dorsiflexion rod 70 along its axis, the tension in the dorsiflexion strap 74 may be adjusted.
The dorsiflexion stop bolt 76 is placed through a hole 92 in the dorsiflexion rod 70 and tightened against the dorsiflexion shell 72 to hold the rod in its position after the tension of the strap has been adjusted. The dorsiflexion shell has a slot 94 along its top to allow the bolt 76 to be loosened and rotated along the dorsiflexion rod axis. This provides for adjustment of the dorsiflexion strap tension, thereby controlling the amount of dorsiflexion possible in the foot and ankle assembly.
Referring to FIG. 6, within the central bumper component 16 and between the dorsiflexion strap 74 is a cylindrically shaped bumper or strap bumper 96. As the foot and ankle assembly is dorsiflexed, the dorsiflexion strap 74 tightens on the strap bumper 96. This bumper then provides a more gradual dorsiflexion stop as it compresses. The strap bumper preferably has a hardness value between 50A and 70A. This strap also provides a “safety” in case the holding assembly 20 fails. The strap helps hold the foot assembly together, so that the patient has time to react to the holding assembly failure.
Before the cosmetic finishing is started, a rubber wedge is placed under the heel portion of the keel. This rubber heel wedge provides greater shock absorption. It may be customized to a patient's parameters and preferences. It may also be used to adjust for heel height.
For cosmetics, foam is poured around the keel portion of the foot assembly. A recessed area is provided at the ankle to allow the prosthetist better access to make adjustments. A foam ankle block is then “snapped” into place, for example, using plastic fasteners, to create a cosmetically appealing foot shape.
The motion of the foot and ankle assembly is such that at heel strike the central bumper component 16 compresses, allowing the ankle component 12 to rotate about the axial pin 54 and allowing foot flat by engaging the ankle component 12 in a rolling motion relative to the keel 14. The rubber heel wedge and central bumper component 16 also provide shock absorption. As the gait cycle continues, the ankle component 12 rotates about the axial pin 54, the load applied compresses more of the central bumper component 16, and the holding assembly 20 moves away from the keel component 14 a small amount. This allows free mobility of the ankle component 12 similar to the mobility of an anatomically sound ankle. This mobility allows the keel component 14 to conform to uneven terrain as the ankle component 12 rolls along the top of the central bumper component 16. As the foot goes past mid stance, the dorsiflexion strap 54 gradually tightens as the strap bumper 96 compresses, creating a fixed mobility of the ankle component 12. The body weight is then transferred over the toe portion 30 and the toe plates 32 a-c of the keel component 14 to provide stability. At toe off, the plates 32 a-c provide energy return, and the bumpers 48, 96 return to their neutral shape, forcing the other components of the foot and ankle assembly to return to their neutral positions.
In an alternative embodiment, the keel component, or just the toe portion of the keel component, may be made using a carbon-epoxy material to provide more energy return in the toe portion. The keel and ankle components may be made from any plastic or any fiber-reinforced plastic.
Additionally, referring to FIG. 11, an alternative holding assembly 105 may be provided. In this embodiment, a heel plate 102 is attached to the keel component and projects posteriorly, creating a gap 104 between the heel plate and the keel component. Steel cables 106 are attached to the heel plate and run up through the central bumper component to attach to the ankle component. At heel strike, the heel plate collapses against the keel component, reducing the tension in the steel cables and allowing the ankle component to rotate relative to the keel, resulting in a dorsiflexion foot motion. To increase the tension in the cable, a bolt 108 located at the attachment point may be turned clockwise, forcing the attachment to move upward. To decrease tension, the bolt may be turned counterclockwise, lowering the attachment piece.
In a further embodiment, illustrated in FIG. 12, instead of the axial pin being bolted to the bracket, the pin 54 may fit through slots 112 in the top portion of the bracket 50. A bolt 114 threaded into the top of the bracket on each side may then hold the axial pin from the top. By tightening each bolt, the axial pin drives the ankle component against the central bumper, limiting the ankle motion. Loosening each bolt allows for increased motion.
Other alternative embodiments are contemplated by the present invention. For example, the ankle may have an attachment mechanism other than an inverted pyramid, such as a clamp. The holding assembly may be, for example, a spring or elastic band on each side or encircling the components. One end of the spring may be attached to the keel and the other end to the ankle. The foot may have a split toe for greater inversion/eversion capability.
The invention is not to be limited by what has been particularly shown and described, except as indicated by the appended claims.

Claims (29)

What is claimed is:
1. An artificial foot and ankle comprising:
a keel component having an upper surface, the upper surface having a selected radius of curvature in both a sagittal plane and a frontal plane;
an ankle component having a lower surface, the lower surface having a selected radius of curvature in both the sagittal plane and the frontal plane;
a central bumper component interposed between the keel component and the ankle component; and
a holding assembly holding together the keel component, the ankle component, and the central bumper component;
wherein the ankle component is configured to disengage from the central bumper component in at least one zone distant from a region of contact pressure during rolling motion.
2. The artificial foot and ankle of claim 1, wherein the holding assembly comprises a closed loop holding the keel component, the ankle component, and the central bumper component with the ankle component capable of rolling motion relative to the keel component in the sagittal plane and the frontal plane and a horizontal plane.
3. The artificial foot and ankle of claim 1, wherein the selected radius of curvature in the sagittal plane of the lower surface of the ankle component is greater than the selected radius of curvature in the sagittal plane of the upper surface of the keel component.
4. The artificial foot and ankle of claim 1, wherein the central bumper component has an upper surface and a lower surface, the upper surface and the lower surface having a radius of curvature corresponding to the radius of curvature of the upper surface of the keel component in both the sagittal plane and the frontal plane.
5. The artificial foot and ankle of claim 1, wherein the holding assembly includes a heel plate attached to the keel component, and cables attached to the heel plate and the ankle component.
6. The artificial foot and ankle of claim 5, wherein the holding assembly includes a tension adjustment mechanism operative to adjust the tension in the cables.
7. The artificial foot and ankle of claim 1, wherein the keel component is formed of a plastic material of a fiber-reinforced plastic material.
8. The artificial foot and ankle of claim 1, wherein the keel component is formed of a glass-reinforced or carbon-reinforced or glass-and-carbon-reinforced vinyl ester material or a carbon-epoxy material.
9. The artificial foot and ankle of claim 1, wherein the keel component includes a toe portion and the toe portion is formed of a carbon-epoxy material.
10. The artificial foot and ankle of claim 1, wherein the keel component includes a toe portion, the toe portion comprising a leaf spring assembly.
11. The artificial foot and ankle of claim 10, wherein the toe portion comprises a plurality of graduated layers.
12. The artificial foot and ankle of claim 1, wherein the keel component further includes an arched bottom surface.
13. The artificial foot and ankle of claim 1, wherein the keel component includes a mid portion having a uniform thickness.
14. The artificial foot and ankle of claim 1, wherein the central bumper component is formed of an elastic material selected to provide shock absorption and a restoring force to return the artificial foot and ankle to a neutral position after application of a load.
15. The artificial foot and ankle of claim 1, wherein the central bumper component includes an anterior portion having a toe bumper pocket formed therein, and a toe bumper is disposed in the toe bumper pocket, the toe bumper having a hardness value different from a hardness value of the central bumper component.
16. The artificial foot and ankle of claim 1, wherein the ankle component is formed of a plastic material or a fiber-reinforced plastic material.
17. The artificial foot and ankle of claim 1, wherein the ankle component is formed of a glass-reinforced or carbon-reinforced or glass-and-carbon-reinforced vinyl ester material.
18. The artificial foot and ankle of claim 1, wherein the ankle component further includes an attachment element extending from an upper surface.
19. The artificial foot and ankle of claim 1, further comprising a dorsiflexion stop assembly disposed to control dorsiflexion of the artificial foot and ankle.
20. The artificial foot and ankle of claim 19, wherein the dorsiflexion stop assembly comprises a strap member extending through corresponding openings in the keel component and the central bumper component and attached to a dorsiflexion rod adjustably mounted at the posterior of the ankle component to provide a tension adjustment of the strap member.
21. The artificial foot and ankle of claim 20, further comprising a compressible strap bumper disposed within a loop of the strap member to provide a gradual dorsiflexion stop.
22. An artificial foot and ankle comprising:
a keel component having an upper surface, the upper surface having a selected radius of curvature in both a sagittal plane and a frontal plane;
an ankle component having a lower surface, the lower surface having a selected radius of curvature in both the sagittal plane and the frontal plane, the ankle component further including a hole therethrough in a direction lying in the frontal plane;
a central bumper component interposed between the keel component and the ankle component; and
a holding assembly holding together the keel component, the ankle component, and the central bumper component, the holding assembly further including a pin disposed in the hole through the ankle component to provide rotation of the ankle component about the pin.
23. An artificial foot and ankle comprising:
a keel component having an upper surface, the upper surface having a selected radius of curvature in both a sagittal plane and a frontal plane;
an ankle component having a lower surface, the lower surface having a selected radius of curvature in both the sagittal plane and the frontal plane;
a central bumper component interposed between the keel component and the ankle component; and
a holding assembly holding together the keel component, the ankle component, and the central bumper component, the holding assembly comprising:
a generally U-shaped member disposed along medial and lateral sides and a bottom surface of the keel component and along medial and lateral sides of the central bumper component, and
a pin extending between upper ends of the U-shaped member and disposed through an opening in the ankle component, the ankle component capable of axial rotation about the pin.
24. The artificial foot and ankle of claim 23, wherein the U-shaped member rests within grooved regions along the medial and lateral sides of the keel component, and the grooved regions are sized to allow selected motion of the U-shaped member.
25. The artificial foot and ankle of claim 23, wherein the pin is adjustably connected to ends of the U-shaped member.
26. The artificial foot and ankle of claim 23, wherein the pin is connected to ends of the U-shaped member with adjustable bolts.
27. The artificial foot and ankle of claim 23, wherein the holding assembly further includes a muffler between each of the ends of the U-shaped member and the pin.
28. The artificial foot and ankle of claim 23, wherein the pin is adjustably disposed through slots at upper ends of the U-shaped member.
29. The artificial foot and ankle of claim 23, further comprising a compressible element disposed in the medial and lateral grooved regions in the keel component between the keel component and the U-shaped member.
US09/526,367 1999-03-26 2000-03-16 Artificial foot and ankle Expired - Lifetime US6290730B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US09/526,367 US6290730B1 (en) 1999-03-26 2000-03-16 Artificial foot and ankle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12634899P 1999-03-26 1999-03-26
US09/526,367 US6290730B1 (en) 1999-03-26 2000-03-16 Artificial foot and ankle

Publications (1)

Publication Number Publication Date
US6290730B1 true US6290730B1 (en) 2001-09-18

Family

ID=26824555

Family Applications (1)

Application Number Title Priority Date Filing Date
US09/526,367 Expired - Lifetime US6290730B1 (en) 1999-03-26 2000-03-16 Artificial foot and ankle

Country Status (1)

Country Link
US (1) US6290730B1 (en)

Cited By (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020128727A1 (en) * 1999-07-02 2002-09-12 Merlette John B. Lower leg prosthesis
US20030028256A1 (en) * 2001-03-30 2003-02-06 Townsend Barry W. Prosthetic foot with tunable performance
US6663673B2 (en) 2000-06-30 2003-12-16 Roland J. Christensen Prosthetic foot with energy transfer medium including variable viscosity fluid
US6699295B2 (en) * 2001-06-29 2004-03-02 Ohio Willow Wood Company Multi-axis prosthetic ankle joint
US20040068327A1 (en) * 2002-10-08 2004-04-08 Christensen Roland J. Prosthetic foot with a resilient ankle
US20040117036A1 (en) * 2001-03-30 2004-06-17 Townsend Barry W Prosthetic foot with tunable performance
US20040186590A1 (en) * 2001-03-30 2004-09-23 Townsend Barry W. Prosthetic foot with tunable performance
US20040186592A1 (en) * 2001-03-30 2004-09-23 Townsend Barry W. Prosthetic foot with tunable performance
US6805717B2 (en) 2002-10-08 2004-10-19 Roland J. Christensen, As Operating Manager Of Rjc Development, Lc, General Manager Of The Roland J. Christensen Family Limited Partnership Energy-storing prosthetic foot with elongated forefoot
US20040215346A1 (en) * 2001-02-09 2004-10-28 Rubie Eric W. Lower leg prosthesis
US6811571B1 (en) * 2000-05-02 2004-11-02 Van L. Phillips Universal prosthesis with cushioned ankle
US20050033451A1 (en) * 2003-08-07 2005-02-10 Michael Aigner Prosthetic foot
US20050033450A1 (en) * 2002-10-08 2005-02-10 Christensen Roland J. Prosthetic foot with a resilient ankle
US20050038525A1 (en) * 1999-05-24 2005-02-17 The Ohio Willow Wood Company Shock absorbing prosthetic foot for use with prosthetic ankle
US20050060045A1 (en) * 2003-09-16 2005-03-17 Smith Nolan L. Multi-axial prosthetic foot
US6875241B2 (en) 2000-06-30 2005-04-05 Roland J. Christensen, As Operating Manager Of Rjc Development Lc, General Partner Of The Roland J. Christensen Family Limited Partnership Variable resistance cell
US20050085926A1 (en) * 2003-10-21 2005-04-21 General Partner Of The Roland J. Christensen Family Limited Partnership Prosthetic foot with an adjustable ankle and method
US6911052B2 (en) 2002-10-08 2005-06-28 Roland J. Christensen, As Operating Manager Of Rjc Development, Lc, General Partner Of The Roland J. Christensen Family Limited Partnership Prosthetic foot with oblique attachment
US20050177250A1 (en) * 2001-03-30 2005-08-11 Townsend Barry W. Prosthetic foot with tunable performance
US20050187640A1 (en) * 2004-02-20 2005-08-25 Roland J. Christensen Prosthetic foot with cam
US20050216097A1 (en) * 2004-03-16 2005-09-29 Jerome Rifkin Tensegrity joints for prosthetic, orthotic, and robotic devices
US20050240284A1 (en) * 2004-04-27 2005-10-27 Allert Daniel A Prosthetic foot devices
US20050267603A1 (en) * 2004-05-28 2005-12-01 Lecomte Christophe G Foot prosthesis with resilient multi-axial ankle
US20060178754A1 (en) * 2001-03-30 2006-08-10 Townsend Barry W Prosthetic foot with tunable performance and improved vertical load/shock absorption
US20070100466A1 (en) * 2005-09-24 2007-05-03 Allert Daniel A Prosthetic foot devices
US20070213840A1 (en) * 2003-09-30 2007-09-13 Townsend Barry W Prosthetic Foot with Tunable Performance
US20070213841A1 (en) * 2001-03-30 2007-09-13 Townsend Barry W Prosthetic foot with tunable performance
US20070219643A1 (en) * 2004-04-01 2007-09-20 Townsend Barry W Prosthetic Foot With Tunable Performance
US7374578B2 (en) 2001-03-30 2008-05-20 Bioquest Prosthetics, Llc Prosthetic foot with tunable performance
US20080312752A1 (en) * 2005-12-22 2008-12-18 Miller Joseph A Modular Prosthetic Foot
US20090234463A1 (en) * 2008-03-14 2009-09-17 Wilson Michael T Prosthetic foot with flexible ankle portion
US20090287314A1 (en) * 2008-05-13 2009-11-19 Rifkin Jerome R Joints for prosthetic, orthotic and/or robotic devices
US20100004757A1 (en) * 2008-07-01 2010-01-07 Ossur Hf Smooth rollover insole for prosthetic foot
US20100023135A1 (en) * 2008-07-25 2010-01-28 Rubie Eric W High-Performance Multi-Component Prosthetic Foot
US20100042228A1 (en) * 2008-08-18 2010-02-18 The Ohio Willow Wood Company Prosthetic foot
US7686848B2 (en) 2000-06-30 2010-03-30 Freedom Innovations, Llc Prosthetic foot with energy transfer
US20100116018A1 (en) * 2008-05-13 2010-05-13 Felix Koller Method for checking a knocking device
US7727285B2 (en) 2007-01-30 2010-06-01 Freedom Innovations, Llc Prosthetic foot with variable medial/lateral stiffness
US7794506B2 (en) 2007-09-18 2010-09-14 Freedom Innovations, Llc Multi-axial prosthetic ankle
US7819926B1 (en) 2007-08-29 2010-10-26 Keith Longino Prosthetic foot and ankle
US7824446B2 (en) 2006-12-06 2010-11-02 Freedom Innovations, Llc Prosthetic foot with longer upper forefoot and shorter lower forefoot
US20110015762A1 (en) * 2009-07-14 2011-01-20 Tensegrity Prosthetics Inc. Joints for prosthetic, orthotic and/or robotic devices
US20110071650A1 (en) * 2003-09-30 2011-03-24 Townsend Barry W Resilient prosthetic and orthotic components which incorporate a plurality of sagittally oriented struts
US20110208322A1 (en) * 2009-07-14 2011-08-25 Tensegrity Prosthetics Inc. Joints for Prosthetic, Orthotic and/or Robotic Devices
US8034121B2 (en) 2008-04-18 2011-10-11 Freedom Innovations, Llc Prosthetic foot with two leaf-springs joined at heel and toe
US8236062B2 (en) 2001-03-30 2012-08-07 Bioquest Prosthetics Llc Prosthetic foot with tunable performance
US8486156B2 (en) 2010-02-26 2013-07-16 össur hf Prosthetic foot with a curved split
US8500825B2 (en) 2010-06-29 2013-08-06 Freedom Innovations, Llc Prosthetic foot with floating forefoot keel
US8961618B2 (en) 2011-12-29 2015-02-24 össur hf Prosthetic foot with resilient heel
US20160038311A1 (en) * 2014-08-08 2016-02-11 Board Of Regents, The University Of Texas System Layering technique for an adjustable, repairable variable stiffness prosthetic foot
KR20160127875A (en) * 2015-04-27 2016-11-07 한국생산기술연구원 Artificial foot and manufacturing method thereof
USD795433S1 (en) 2015-06-30 2017-08-22 Össur Iceland Ehf Prosthetic foot cover
USD797292S1 (en) 2014-06-30 2017-09-12 össur hf Prosthetic foot plate
KR101944671B1 (en) * 2018-06-27 2019-01-31 근로복지공단 Artificial foot joint with plantarflexion and dorsiflexion means
US10251762B2 (en) 2011-05-03 2019-04-09 Victhom Laboratory Inc. Impedance simulating motion controller for orthotic and prosthetic applications
USD915596S1 (en) 2018-04-10 2021-04-06 Össur Iceland Ehf Prosthetic foot with tapered fasteners
US11298237B2 (en) 2018-05-04 2022-04-12 Ossur Iceland Ehf Spacer unit for use in a movable joint of a prosthetic or orthopedic system
US11559411B2 (en) * 2017-07-04 2023-01-24 Ottobock Se & Co. Kgaa Prosthesis and prosthetic foot adapter
WO2023052544A1 (en) * 2021-09-30 2023-04-06 Ottobock Se & Co. Kgaa Orthopedic system and prosthetic foot having such an orthopedic system

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE308671C (en) *
US26753A (en) 1860-01-10 Abtificial leg
US197943A (en) 1877-12-11 Improvement in artificial limbs
US456206A (en) 1891-07-21 Artificial foot
US854510A (en) 1906-06-29 1907-05-21 James W Mahaffey Artificial foot.
US1090327A (en) 1913-08-18 1914-03-17 George R E Milligan Artificial limb.
US1219374A (en) * 1916-10-25 1917-03-13 Walter Carrico Artificial foot.
DE834884C (en) * 1950-05-06 1952-03-24 Anton Schievekamp Prosthetic foot
GB1134045A (en) 1966-03-15 1968-11-20 J E Hanger And Company Ltd Improvements in artificial limbs
GB2110936A (en) * 1982-11-24 1983-06-29 Blatchford & Sons Ltd Ankle joint
WO1989005617A1 (en) 1987-12-21 1989-06-29 College Park Prosthetics Inc. Prosthetic foot
US5019109A (en) * 1990-03-09 1991-05-28 Voisin Jerome P Multi-axial rotation system for artificial ankle
US5062859A (en) 1989-06-09 1991-11-05 Otto Bock Orthopaedische Industrie Besitz- und Verwaltungs-Kommanditgesel lschaft Prosthetic foot having z shaped insert
US5139525A (en) 1989-07-31 1992-08-18 Kristinsson Oessur Prosthetic foot
US5156632A (en) 1990-11-29 1992-10-20 Otto Bock Orthopaedische Industrie Besitz- und Verwaltungs-Kommanditgesel lschaft Jointless prosthetic foot
US5376139A (en) 1992-09-21 1994-12-27 Pitkin; Mark R. Artificial foot and ankle
US5800569A (en) 1994-08-15 1998-09-01 Phillips; Van L. Prosthesis with resilient ankle block

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE308671C (en) *
US26753A (en) 1860-01-10 Abtificial leg
US197943A (en) 1877-12-11 Improvement in artificial limbs
US456206A (en) 1891-07-21 Artificial foot
US854510A (en) 1906-06-29 1907-05-21 James W Mahaffey Artificial foot.
US1090327A (en) 1913-08-18 1914-03-17 George R E Milligan Artificial limb.
US1219374A (en) * 1916-10-25 1917-03-13 Walter Carrico Artificial foot.
DE834884C (en) * 1950-05-06 1952-03-24 Anton Schievekamp Prosthetic foot
GB1134045A (en) 1966-03-15 1968-11-20 J E Hanger And Company Ltd Improvements in artificial limbs
GB2110936A (en) * 1982-11-24 1983-06-29 Blatchford & Sons Ltd Ankle joint
WO1989005617A1 (en) 1987-12-21 1989-06-29 College Park Prosthetics Inc. Prosthetic foot
US5062859A (en) 1989-06-09 1991-11-05 Otto Bock Orthopaedische Industrie Besitz- und Verwaltungs-Kommanditgesel lschaft Prosthetic foot having z shaped insert
US5139525A (en) 1989-07-31 1992-08-18 Kristinsson Oessur Prosthetic foot
US5019109A (en) * 1990-03-09 1991-05-28 Voisin Jerome P Multi-axial rotation system for artificial ankle
US5156632A (en) 1990-11-29 1992-10-20 Otto Bock Orthopaedische Industrie Besitz- und Verwaltungs-Kommanditgesel lschaft Jointless prosthetic foot
US5376139A (en) 1992-09-21 1994-12-27 Pitkin; Mark R. Artificial foot and ankle
US5800569A (en) 1994-08-15 1998-09-01 Phillips; Van L. Prosthesis with resilient ankle block
US5993488A (en) 1994-08-15 1999-11-30 Phillips; Van L. Prosthesis with resilient ankle block

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Synthesis of a cycloidal mechanism of the prosthetic ankle", M.R. Pitkin, Prosthetic and Orthotics International, 1996, 20, 159-171.

Cited By (99)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050038525A1 (en) * 1999-05-24 2005-02-17 The Ohio Willow Wood Company Shock absorbing prosthetic foot for use with prosthetic ankle
US20020128727A1 (en) * 1999-07-02 2002-09-12 Merlette John B. Lower leg prosthesis
US6811571B1 (en) * 2000-05-02 2004-11-02 Van L. Phillips Universal prosthesis with cushioned ankle
US20050071018A1 (en) * 2000-05-02 2005-03-31 Phillips Van L. Universal prosthesis with cushioned ankle
US6663673B2 (en) 2000-06-30 2003-12-16 Roland J. Christensen Prosthetic foot with energy transfer medium including variable viscosity fluid
US20040133284A1 (en) * 2000-06-30 2004-07-08 Christensen Roland J. Prosthetic foot with energy transfer medium including variable viscosity fluid
US7686848B2 (en) 2000-06-30 2010-03-30 Freedom Innovations, Llc Prosthetic foot with energy transfer
US6875242B2 (en) 2000-06-30 2005-04-05 Roland J. Christensen, As Operating Manager Of Rjc Development, Lc, General Partner Of The Roland J. Christensen Family Limited Partnership Prosthetic foot with energy transfer medium including variable viscosity fluid
US6875241B2 (en) 2000-06-30 2005-04-05 Roland J. Christensen, As Operating Manager Of Rjc Development Lc, General Partner Of The Roland J. Christensen Family Limited Partnership Variable resistance cell
US20040215346A1 (en) * 2001-02-09 2004-10-28 Rubie Eric W. Lower leg prosthesis
US7374578B2 (en) 2001-03-30 2008-05-20 Bioquest Prosthetics, Llc Prosthetic foot with tunable performance
US7410503B2 (en) 2001-03-30 2008-08-12 Bioquest Prosthetics Llc Prosthetic foot with tunable performance
US20030191540A1 (en) * 2001-03-30 2003-10-09 Townsend Barry W. Prosthetic foot with tunable performance
US7708784B2 (en) 2001-03-30 2010-05-04 Bioquest Prosthetics, Llc Prosthetic foot with tunable performance
US7611543B2 (en) 2001-03-30 2009-11-03 Bioquest Prosthetics, Llc Prosthetic foot with tunable performance
US7578852B2 (en) 2001-03-30 2009-08-25 Bioquest Prosthetics, Llc Prosthetic foot with tunable performance and improved vertical load/shock absorption
US7507259B2 (en) 2001-03-30 2009-03-24 Bioquest Prosthetics, Llc Prosthetic foot with tunable performance
US20040186592A1 (en) * 2001-03-30 2004-09-23 Townsend Barry W. Prosthetic foot with tunable performance
US20040186590A1 (en) * 2001-03-30 2004-09-23 Townsend Barry W. Prosthetic foot with tunable performance
US20040117036A1 (en) * 2001-03-30 2004-06-17 Townsend Barry W Prosthetic foot with tunable performance
US7429272B2 (en) 2001-03-30 2008-09-30 Bioquest Prosthetics Llc Prosthetic foot with tunable performance
US20030028256A1 (en) * 2001-03-30 2003-02-06 Townsend Barry W. Prosthetic foot with tunable performance
US20050177250A1 (en) * 2001-03-30 2005-08-11 Townsend Barry W. Prosthetic foot with tunable performance
US20080183302A1 (en) * 2001-03-30 2008-07-31 Townsend Barry W Prosthetic foot with tunable performance
US7364593B2 (en) 2001-03-30 2008-04-29 Bioquest Prosthetics Llc Prosthetic foot with tunable performance
US20070213841A1 (en) * 2001-03-30 2007-09-13 Townsend Barry W Prosthetic foot with tunable performance
US7226485B2 (en) 2001-03-30 2007-06-05 Bioquest Prosthetics, Llc Prosthetic foot with tunable performance
US8236062B2 (en) 2001-03-30 2012-08-07 Bioquest Prosthetics Llc Prosthetic foot with tunable performance
US20060178754A1 (en) * 2001-03-30 2006-08-10 Townsend Barry W Prosthetic foot with tunable performance and improved vertical load/shock absorption
US7211115B2 (en) 2001-03-30 2007-05-01 Townsend Barry W Prosthetic foot with tunable performance
US6699295B2 (en) * 2001-06-29 2004-03-02 Ohio Willow Wood Company Multi-axis prosthetic ankle joint
US6911052B2 (en) 2002-10-08 2005-06-28 Roland J. Christensen, As Operating Manager Of Rjc Development, Lc, General Partner Of The Roland J. Christensen Family Limited Partnership Prosthetic foot with oblique attachment
US6805717B2 (en) 2002-10-08 2004-10-19 Roland J. Christensen, As Operating Manager Of Rjc Development, Lc, General Manager Of The Roland J. Christensen Family Limited Partnership Energy-storing prosthetic foot with elongated forefoot
US20050033450A1 (en) * 2002-10-08 2005-02-10 Christensen Roland J. Prosthetic foot with a resilient ankle
US20040068327A1 (en) * 2002-10-08 2004-04-08 Christensen Roland J. Prosthetic foot with a resilient ankle
US6929665B2 (en) 2002-10-08 2005-08-16 Roland J. Christensen Prosthetic foot with a resilient ankle
US20050033451A1 (en) * 2003-08-07 2005-02-10 Michael Aigner Prosthetic foot
US20050060045A1 (en) * 2003-09-16 2005-03-17 Smith Nolan L. Multi-axial prosthetic foot
US8574314B2 (en) 2003-09-30 2013-11-05 Bioquest Prosthetics Llc Resilient prosthetic and orthotic components which incorporate a plurality of sagittally oriented struts
US8070829B2 (en) 2003-09-30 2011-12-06 Bioquest Prosthetics Llc Prosthetic foot with tunable performance
US20070213840A1 (en) * 2003-09-30 2007-09-13 Townsend Barry W Prosthetic Foot with Tunable Performance
US20110071650A1 (en) * 2003-09-30 2011-03-24 Townsend Barry W Resilient prosthetic and orthotic components which incorporate a plurality of sagittally oriented struts
US8808395B2 (en) 2003-09-30 2014-08-19 Bioquest Prosthetics, LLC. Resilient prosthetic and orthotic components which incorporate a plurality of sagittally oriented struts
US20050085926A1 (en) * 2003-10-21 2005-04-21 General Partner Of The Roland J. Christensen Family Limited Partnership Prosthetic foot with an adjustable ankle and method
US20050187640A1 (en) * 2004-02-20 2005-08-25 Roland J. Christensen Prosthetic foot with cam
US20050216097A1 (en) * 2004-03-16 2005-09-29 Jerome Rifkin Tensegrity joints for prosthetic, orthotic, and robotic devices
US20110093091A1 (en) * 2004-03-16 2011-04-21 Tensegrity Prosthetics, Inc. Tensegrity Joints for Prosthetic, Orthotic, and Robotic Devices
US20070219643A1 (en) * 2004-04-01 2007-09-20 Townsend Barry W Prosthetic Foot With Tunable Performance
US7955399B2 (en) 2004-04-01 2011-06-07 Bioquest Prosthetics, Llc Prosthetic foot with tunable performance
US20050240284A1 (en) * 2004-04-27 2005-10-27 Allert Daniel A Prosthetic foot devices
US20050267603A1 (en) * 2004-05-28 2005-12-01 Lecomte Christophe G Foot prosthesis with resilient multi-axial ankle
US9668887B2 (en) 2004-05-28 2017-06-06 össur hf Foot prosthesis with resilient multi-axial ankle
US20090306792A1 (en) * 2004-05-28 2009-12-10 Õssur hf. Foot prosthesis with resilient multi-axial ankle
US8025699B2 (en) 2004-05-28 2011-09-27 össur hf Foot prosthesis with resilient multi-axial ankle
US7998221B2 (en) 2004-05-28 2011-08-16 össur hf Foot prosthesis with resilient multi-axial ankle
US9132022B2 (en) 2004-05-28 2015-09-15 össur hf Foot prosthesis with resilient multi-axial ankle
US20090287315A1 (en) * 2004-05-28 2009-11-19 össur hf. Foot prosthesis with resilient multi-axial ankle
US7846213B2 (en) * 2004-05-28 2010-12-07 össur hf. Foot prosthesis with resilient multi-axial ankle
US20070100466A1 (en) * 2005-09-24 2007-05-03 Allert Daniel A Prosthetic foot devices
US8172909B2 (en) * 2005-12-22 2012-05-08 The United States Of America, As Represented By The Secretary Of The Army Modular prosthetic foot
US20120191222A1 (en) * 2005-12-22 2012-07-26 Miller Joseph A Modular Prosthetic Foot
US20080312752A1 (en) * 2005-12-22 2008-12-18 Miller Joseph A Modular Prosthetic Foot
US8685108B2 (en) * 2005-12-22 2014-04-01 The United States Of America As Represented By The Secretary Of The Army Modular prosthetic foot
US7824446B2 (en) 2006-12-06 2010-11-02 Freedom Innovations, Llc Prosthetic foot with longer upper forefoot and shorter lower forefoot
US7727285B2 (en) 2007-01-30 2010-06-01 Freedom Innovations, Llc Prosthetic foot with variable medial/lateral stiffness
US7819926B1 (en) 2007-08-29 2010-10-26 Keith Longino Prosthetic foot and ankle
US7794506B2 (en) 2007-09-18 2010-09-14 Freedom Innovations, Llc Multi-axial prosthetic ankle
US8118879B2 (en) * 2008-03-14 2012-02-21 Wilson Michael T Prosthetic foot with flexible ankle portion
US20090234463A1 (en) * 2008-03-14 2009-09-17 Wilson Michael T Prosthetic foot with flexible ankle portion
US8034121B2 (en) 2008-04-18 2011-10-11 Freedom Innovations, Llc Prosthetic foot with two leaf-springs joined at heel and toe
US20090287314A1 (en) * 2008-05-13 2009-11-19 Rifkin Jerome R Joints for prosthetic, orthotic and/or robotic devices
US8821589B2 (en) 2008-05-13 2014-09-02 Jerome R. Rifkin Joints for prosthetic, orthotic and/or robotic devices
US20100116018A1 (en) * 2008-05-13 2010-05-13 Felix Koller Method for checking a knocking device
US20100004757A1 (en) * 2008-07-01 2010-01-07 Ossur Hf Smooth rollover insole for prosthetic foot
US9168158B2 (en) 2008-07-01 2015-10-27 össur hf Smooth rollover insole for prosthetic foot
US8685109B2 (en) 2008-07-01 2014-04-01 össur hf Smooth rollover insole for prosthetic foot
US9011554B2 (en) 2008-07-25 2015-04-21 Fillauer Composites Llc High-performance multi-component prosthetic foot
US20100023135A1 (en) * 2008-07-25 2010-01-28 Rubie Eric W High-Performance Multi-Component Prosthetic Foot
US8317877B2 (en) 2008-08-18 2012-11-27 The Ohio Willow Wood Company Prosthetic foot
US20100042228A1 (en) * 2008-08-18 2010-02-18 The Ohio Willow Wood Company Prosthetic foot
US9351853B2 (en) 2008-08-18 2016-05-31 The Ohio Willow Wood Company Prosthetic foot
US20110208322A1 (en) * 2009-07-14 2011-08-25 Tensegrity Prosthetics Inc. Joints for Prosthetic, Orthotic and/or Robotic Devices
US20110015762A1 (en) * 2009-07-14 2011-01-20 Tensegrity Prosthetics Inc. Joints for prosthetic, orthotic and/or robotic devices
US8486156B2 (en) 2010-02-26 2013-07-16 össur hf Prosthetic foot with a curved split
US8500825B2 (en) 2010-06-29 2013-08-06 Freedom Innovations, Llc Prosthetic foot with floating forefoot keel
US11185429B2 (en) 2011-05-03 2021-11-30 Victhom Laboratory Inc. Impedance simulating motion controller for orthotic and prosthetic applications
US10251762B2 (en) 2011-05-03 2019-04-09 Victhom Laboratory Inc. Impedance simulating motion controller for orthotic and prosthetic applications
US8961618B2 (en) 2011-12-29 2015-02-24 össur hf Prosthetic foot with resilient heel
USD797292S1 (en) 2014-06-30 2017-09-12 össur hf Prosthetic foot plate
US9999524B2 (en) 2014-06-30 2018-06-19 össur hf Prosthetic feet and foot covers
US11147692B2 (en) 2014-06-30 2021-10-19 Össur Iceland Ehf Prosthetic feet and foot covers
US20160038311A1 (en) * 2014-08-08 2016-02-11 Board Of Regents, The University Of Texas System Layering technique for an adjustable, repairable variable stiffness prosthetic foot
KR20160127875A (en) * 2015-04-27 2016-11-07 한국생산기술연구원 Artificial foot and manufacturing method thereof
USD795433S1 (en) 2015-06-30 2017-08-22 Össur Iceland Ehf Prosthetic foot cover
US11559411B2 (en) * 2017-07-04 2023-01-24 Ottobock Se & Co. Kgaa Prosthesis and prosthetic foot adapter
USD915596S1 (en) 2018-04-10 2021-04-06 Össur Iceland Ehf Prosthetic foot with tapered fasteners
US11298237B2 (en) 2018-05-04 2022-04-12 Ossur Iceland Ehf Spacer unit for use in a movable joint of a prosthetic or orthopedic system
KR101944671B1 (en) * 2018-06-27 2019-01-31 근로복지공단 Artificial foot joint with plantarflexion and dorsiflexion means
WO2023052544A1 (en) * 2021-09-30 2023-04-06 Ottobock Se & Co. Kgaa Orthopedic system and prosthetic foot having such an orthopedic system

Similar Documents

Publication Publication Date Title
US6290730B1 (en) Artificial foot and ankle
EP1187583B1 (en) Prosthetic foot having shock absorption
US5112356A (en) Lower limb prosthesis with means for restricting dorsi-flexion
US5116383A (en) Lowelimb prothesis
US5571213A (en) Prosthetic foot
US20050038525A1 (en) Shock absorbing prosthetic foot for use with prosthetic ankle
US7618463B2 (en) Energy returning prosthetic joint
US5593457A (en) Foot prosthesis having auxiliary ankle construction
US5695527A (en) Coil prosthetic foot
JP3245828B2 (en) Prosthesis with extension assist mechanism
US11478364B2 (en) Frictionless vertical suspension mechanism for prosthetic feet
CN1937973A (en) Prosthetic foot with tunable performance
JP2004530468A (en) Prostheses with adjustable performance
KR102283418B1 (en) Gait assistive device and walking robot having the same
CN103635161A (en) Polycentric knee joint prosthesis for extreme affordability
CN113329721A (en) Prosthetic foot insert
CN113329722A (en) Prosthetic foot insert
KR101995301B1 (en) Prosthetic foot that toe part can rotatate
RU2805199C2 (en) Insertion unit of the foot prosthesis
RU2814526C2 (en) Prosthetic foot insert
RU2209612C1 (en) Artificial foot
WO2018203295A1 (en) Shoe with an energized quarter portion

Legal Events

Date Code Title Description
AS Assignment

Owner name: OHIO WILLOW WOOD COMPANY, OHIO

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:PITKIN, MARK R.;HAYS, JOHN A.;SRINIVASAN, SUJATHA;AND OTHERS;REEL/FRAME:010697/0706

Effective date: 20000314

STCF Information on status: patent grant

Free format text: PATENTED CASE

CC Certificate of correction
FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

FPAY Fee payment

Year of fee payment: 4

AS Assignment

Owner name: NATIONAL INSTITUTES OF HEALTH (NIH), U.S. DEPT. OF

Free format text: EXECUTIVE ORDER 9424, CONFIRMATORY LICENSE;ASSIGNOR:OHIO WILLOW WOOD COMPANY;REEL/FRAME:020897/0681

Effective date: 20011005

FPAY Fee payment

Year of fee payment: 8

FPAY Fee payment

Year of fee payment: 12

SULP Surcharge for late payment

Year of fee payment: 11

AS Assignment

Owner name: WILLOWWOOD GLOBAL LLC, OHIO

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:THE OHIO WILLOW WOOD COMPANY;REEL/FRAME:049352/0264

Effective date: 20190601

AS Assignment

Owner name: MADISON CAPITAL FUNDING LLC, AS AGENT, ILLINOIS

Free format text: SECURITY INTEREST;ASSIGNOR:WILLOWWOOD GLOBAL LLC;REEL/FRAME:049376/0071

Effective date: 20190605

AS Assignment

Owner name: WILLOWWOOD GLOBAL LLC, OHIO

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:MADISON CAPITAL FUNDING LLC, AS AGENT;REEL/FRAME:058786/0492

Effective date: 20211202