Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS6584408 B2
Publication typeGrant
Application numberUS 09/893,175
Publication dateJun 24, 2003
Filing dateJun 26, 2001
Priority dateJun 26, 2001
Fee statusPaid
Also published asUS20030055565
Publication number09893175, 893175, US 6584408 B2, US 6584408B2, US-B2-6584408, US6584408 B2, US6584408B2
InventorsDzevat Omeragic
Original AssigneeSchlumberger Technology Corporation
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Subsurface formation parameters from tri-axial measurements
US 6584408 B2
Abstract
Systems and methods are provided for determining various subsurface formation parameters from electromagnetic measurements. Formulas are disclosed for field components in a coordinate system tied to the logging tool. Closed form expressions for a magnetic field distribution in a homogeneous anisotropic medium are derived from Moran-Gianzero formulas. A complete coupling of a tri-axial system of transmitters and receivers is derived in the tool coordinate system, allowing direct inversion of the measurements for horizontal and vertical conductivity and dip and strike (dip-azimuth) angles. Closed form expressions for these four quantities in the low frequency limit are also derived.
Images(6)
Previous page
Next page
Claims(21)
What is claimed is:
1. A method for determining a parameter of a subsurface formation from electromagnetic measurements acquired with a logging tool disposed within said formation, said tool adapted with a tri-axial system of transmitter and receiver antennas, comprising:
a) determining couplings associated with said measurements; and
b) calculating the following expression derived from said couplings to determine the horizontal conductivity (σh) of said formation:
(T′ zz −L h)(T′ xx −T h)=(T′ xz)2,
 where
T′zz is the coupling between a z-axis receiver antenna and a z-axis transmitter antenna;
T′xx is the coupling between an x-axis receiver antenna and an x-axis transmitter antenna;
T′xz is the coupling between an x-axis receiver antenna arid a z-axis transmitter antenna;
Lh, Th are elementary functions corresponding to said couplings of said antennas: T h = ik h r 4 π r 3 ( - 1 + ik h r + k h 2 r 2 ) , L h = ik h r 2 π r 3 ( 1 - ik h r ) ;
r is the separation distance between the antennas; and kh 2=iωμσh.
2. The method of claim 1 wherein step (a) includes rotating said couplings to a coordinate system associated with said tool.
3. The method of claim 1 wherein step (a) includes calculating either of the following expressions to derive a dip-azimuth angle β: β = tan - 1 T yz T xz , or β = tan - 1 2 T xy T xx - T yy ,
where
Tyz is the coupling between a y-axis receiver antenna and a z-axis transmitter antenna;
Txz is the coupling between an x-axis receiver antenna and a z-axis transmitter antenna;
Txy is the coupling between an x-axis receiver antenna and a y-axis transmitter antenna;
Txx is the coupling between an x-axis receiver antenna and an x-axis transmitter antenna; and
Tyy is the coupling between a y-axis receiver antenna and a y-axis transmitter antenna.
4. The method of claim 1 wherein step (a) includes rotating said couplings using a matrix including a term corresponding to dip-azimuth.
5. The method of claim 3 further comprising:
(c) calculating a dip angle using said couplings.
6. The method of claim 5 further comprising:
(d) calculating the vertical conductivity of said formation using said couplings.
7. The method of claim 6 wherein a least-squares technique is applied to at least one of steps (b), (c), or (d).
8. A method for determining a parameter of a subsurface formation from electromagnetic measurements acquired with a logging tool disposed within said formation, said tool adapted with a tri-axial system of transmitter and receiver antennas, comprising:
a) determining couplings associated with said measurements; and
b) calculating the following expression derived from said couplings to determine the horizontal conductivity σh of said formation: σ h = 8 π r Im { T xx } Im { T zz } - Im { T xz } 2 ωμ 2 Im { T xx } - Im { T zz } ,
where
T′xx is the coupling between an x-axis receiver antenna and an x-axis transmitter antenna;
T′zz the coupling between a z-axis receiver antenna and a z-axis transmitter antenna;
T′xz is the coupling between an x-axis receiver antenna and a z-axis transmitter antenna;
ω represents an angular frequency;
r is a separation distance between said antennas; and
μ is a magnetic permeability constant.
9. The method of claim 8 wherein step (a) includes rotating said couplings to a coordinate system associated with said tool.
10. The method of claim 8 wherein step (a) includes calculating either of the following expressions to derive a strike angle β: β = tan - 1 Im { T yz } Im { T xz } , or β = tan - 1 2 Im { T xy } Im { T xx } - Im { T yy } ,
where
Tyz is the coupling between a y-axis receiver coil and a z-axis transmitter coil of said antennas;
Txz is the coupling between an x-axis receiver coil and a z-axis transmitter coil of said antennas;
Txy is the coupling between an x-axis receiver coil and a y-axis transmitter coil of said antennas;
Txx is the coupling between an x-axis receiver coil and an x-axis transmitter coil of said antennas; and
Tyy is the coupling between a y-axis receiver coil and a y-axis transmitter coil of said antennas.
11. The method of claim 10 further comprising:
c) calculating the following expressions to derive a dip angle α: α = tan - 1 Im { T xz } k h 2 8 π r - Im { T xx } ,
where kh 2 is a horizontal wave constant.
12. The method of claim 11 further comprising:
d) calculating the following expression to derive the vertical conductivity σν of said formation: σ v = σ h λ 2 = 2 σ h { ( 4 π r ( Im { T xx } + Im { T yy } + Im { T zz } ) k h 2 - 1 } 2 + tan 4 α - tan 2 α } - 1 .
where λ is an anisotropy coefficient.
13. A system for determining a parameter of a subsurface formation from electromagnetic measurements, comprising:
a tool adapted for disposal within said formation, said tool equipped with a tri-axial system of transmitter and receiver antennas for acquiring said measurements; and
computation means for
(i) determining couplings associated with said measurements; and
(ii) calculating the following expression derived from said couplings to determine the horizontal conductivity (σh) of said formation:
(T′ zz −L h)(T′xx −T h)=(T′xz)2,
 where
T′zz is the coupling between a z-axis receiver antenna and a z-axis transmitter antenna;
T′xx is the coupling between an x-axis receiver antenna and an x-axis transmitter antenna;
T′xz is the coupling between an x-axis receiver antenna and a z-axis transmitter antenna;
Lh, Th are elementary functions corresponding to the couplings of said antennas: T h = ik h r 4 π r 3 ( - 1 + ik h r + k h 2 r 2 ) , L h = ik h r 2 π r 3 ( 1 - ik h r ) ;
r is the separation distance between the antennas and kh 2=iωμσh.
14. The system of claim 13, said computation means further comprising means for calculating either of the following expressions to derive a strike angle β: β = tan - 1 T yz T xz , or β = tan - 1 2 T xy T xx - T yy ,
where
Tyz is the coupling between a y-axis receiver antenna and a z-axis transmitter antenna;
Txz is the coupling between an x-axis receiver antenna and a z-axis transmitter antenna;
Txy is the coupling between an x-axis receiver antenna and a y-axis transmitter antenna;
Txx is the coupling between an x-axis receiver antenna and an x-axis transmitter antenna; and
Tyy is the coupling between a y-axis receiver antenna and a y-axis transmitter antenna.
15. The system of claim 14, said computation means further comprising means for calculating a dip angle using said couplings.
16. The system of claim 15, said computation means further comprising means for calculating the vertical conductivity of said formation using said couplings.
17. The system of claim 16 wherein said calculation means applies a least-squares technique in said calculations.
18. A system for determining a parameter of a subsurface formation from electromagnetic measurements, comprising:
a tool adapted for disposal within said formation, said tool equipped with a tri-axial system of transmitter and receiver antennas for acquiring said measurements; and
computation means for
a) determining couplings associated with said measurements; and
b) calculating the following expression derived from said couplings to determine the horizontal conductivity σh of said formation: σ h = 8 π r Im { T xx } Im { T zz } - Im { T xz } 2 ωμ 2 Im { T xx } - Im { T zz } ,
where
T′xx is the coupling between an x-axis receiver antenna and an x-axis transmitter antenna;
T′zz is the coupling between a z-axis receiver antenna and a z-axis transmitter antenna;
T′xz is the coupling between an x-axis receiver antenna and a z-axis transmitter antenna;
ω represents an angular frequency;
r is a separation distance between said antennas; and
μ is a magnetic permeability constant.
19. The system of claim 18, said computation means further comprising means for calculating either of the following expressions to derive a strike angle β: β = tan - 1 Im { T yz } Im { T xz } , or β = tan - 1 2 Im { T xy } Im { T xx } - Im { T yy } ,
where
Tyz is the coupling between a y-axis receiver antenna and a z-axis transmitter antenna;
Txz is the coupling between an x-axis receiver antenna and a z-axis transmitter antenna;
Txy is the coupling between an x-axis receiver antenna and a y-axis transmitter antenna;
Txx is the coupling between an x-axis receiver antenna and an x-axis transmitter antenna; and
Tyy is the coupling between a y-axis receiver antenna and a y-axis transmitter antenna.
20. The system of claim 19, said computation means further comprising means for calculating the following expressions to derive a dip angle α: α = tan - 1 Im { T xz } k h 2 8 π r - Im { T xx } ,
where kh 2 is a horizontal wave constant.
21. The system of claim 20, said computation means further comprising means for calculating the following expression to derive the vertical conductivity σν of said formation: σ v = σ h λ 2 = 2 σ h { ( 4 π r ( Im { T xx } + Im { T yy } + Im { T zz } ) k h 2 - 1 } 2 + tan 4 α - tan 2 α } - 1 .
where λ is an anisotropy coefficient.
Description
1. BACKGROUND OF THE INVENTION

1.1 Field of the Invention

This invention relates to the field of well logging and, more particularly, to improved methods for processing electromagnetic (EM) measurements acquired with a logging tool disposed within homogeneous anisotropic formations to determine parameters of the formation.

1.2 Description of Related Art

Induction logging is a well-known form of EM logging in the field of hydrocarbon exploration and production. Conventional induction logging tools include a transmitter and a receiver array consisting of a set of coil antennas mounted on a support and axially spaced from each other in the direction of the borehole. The transmitter antenna is energized by an alternating current, which in turn generates an electric field that induces eddy currents in the formation surrounding the borehole. The intensity of the eddy currents is proportional to the conductivity of the formation. The field generated in turn by these eddy currents induces an electromotive force in the receiver antenna. The signals detected at a receiver antenna are usually expressed as a complex number (phasor voltage) and reflect interaction with the borehole fluid and the formation. By processing the acquired measurements, the formation and/or borehole parameters are determined.

A coil carrying a current can be represented as a magnetic dipole having a magnetic moment proportional to the current and the area encompassed by the coil. The direction and strength of the magnetic dipole moment can be represented by a vector perpendicular to the area encompassed by the coil. Typical logging tools are equipped with coils of the cylindrical solenoid type comprised of one or more turns of insulated conductor wire. Some logging tools are also implemented with saddle coil or flex circuit antenna configurations.

In conventional induction and propagation logging tools, the transmitter and receiver antennas are generally mounted with their axes along the longitudinal axis of the tool. An emerging technique in the field of well logging is the use of logging tools incorporating antennas having tilted or transverse coils, i.e., where the coil's axis is not parallel to the longitudinal axis of the support. These tools are thus implemented with antennas having a transverse or tilted magnetic dipole. One particular implementation uses a set of three coils having non-parallel axes (referred to herein as tri-axial). FIG. 1 shows a tri-axial transmitter and receiver antenna system wherein the coil axes are independently directed. The aim of these antenna configurations is to provide three-dimensional formation evaluation, including information about resistivity anisotropy in vertical wells and directional sensitivity to bed boundaries that can be used for navigation. Logging tools equipped with tri-axial antenna systems are described in U.S. Pat. Nos. 5,115,198, 5,781,436, 6,147,496, 5,757,191 and WO 00/50926.

The techniques for processing the acquired EM measurements into representative values of the formation parameters involve a number of mathematical calculations. U.S. Pat. No. 4,302,722 (assigned to the present assignee) describes techniques for determining formation conductivity and anisotropy parameters from the acquired measurements. U.S. Pat. Nos. 5,781,436, 5,999,883 and 6,044,325 describe methods for producing estimates of various formation parameters from tri-axial measurements.

It is desirable to obtain a simplified technique for processing EM measurement data, acquired from a logging tool, to determine parameters of a subsurface formation. Thus, there remains a need for simplified techniques for calculating complete couplings of tri-axial measurements to determine the formation parameters.

2. SUMMARY OF THE INVENTION

Systems and methods are provided for determining various subsurface formation parameters from electromagnetic measurements. The measurements are acquired with a logging tool adapted with a system of tri-axial transmitter and receiver antennas disposed within the formation.

One aspect of the invention provides a method for determining a formation parameter from EM measurements acquired with a tri-axial system of antennas. The method includes determining antenna couplings associated with the measurements. The following expression is then derived from the couplings and calculated to determine the horizontal conductivity of the formation:

 (T′ zz −L h)(T′ xx −T h)=(T′ xz)2,

where T′zz is the coupling between a z-axis receiver antenna and a z-axis transmitter antenna; T′xx is the coupling between an x-axis receiver antenna and an x-axis transmitter antenna; T′xz is the coupling between an x-axis receiver antenna and a z-axis transmitter antenna; and Lh, Th are elementary functions corresponding to the couplings of said antennas.

Another aspect of the invention provides a method for determining a formation parameter from EM measurements acquired with a tri-axial system of antennas. The method includes determining antenna couplings associated with the measurements. The following expression is then derived from the couplings and calculated to determine the horizontal conductivity σh of the formation: σ h = 8 π r ωμ Im { T xx } Im { T zz } - Im { T xz } 2 2 Im { T xx } - Im { T zz } ,

where T′xx is the coupling between an x-axis receiver antenna and an x-axis transmitter antenna; T′zz is the coupling between a z-axis receiver antenna and a z-axis transmitter antenna; T′xz is the coupling between an x-axis receiver antenna and a z-axis transmitter antenna; ω represents an angular frequency; r is a separation distance between the antennas; and μ is a magnetic permeability constant.

Another aspect of the invention provides a system for determining a formation parameter from electromagnetic measurements. The system includes a tool adapted for disposal within the formation and equipped with a tri-axial system of transmitter and receiver antennas. The system further includes computation means for determining antenna couplings associated with the measurements, and for calculating the following expression derived from the couplings to determine the horizontal conductivity of the formation:

(T′ zz −L h)(T′ xx −T h)=(T′ xz)2,

where T′zz is the coupling between a z-axis receiver antenna and a z-axis transmitter antenna; T′xx is the coupling between an x-axis receiver antenna and an x-axis transmitter antenna; T′xz is the coupling between an x-axis receiver antenna and a z-axis transmitter antenna; and Lh, Th are elementary functions corresponding to the couplings.

Another aspect of the invention provides a system for determining a formation parameter from electromagnetic measurements. The system includes a tool adapted for disposal within the formation and equipped with a tri-axial system of transmitter and receiver antennas. The system further including computation means for determining antenna couplings associated with the measurements, and for calculating the following expression derived from the couplings to determine the horizontal conductivity σh of the formation: σ h = 8 π r ωμ Im { T xx } Im { T zz } - Im { T xz } 2 2 Im { T xx } - Im { T zz } ,

where T′xx is the coupling between an x-axis receiver antenna and an x-axis transmitter antenna; T′zz is the coupling between a z-axis receiver antenna and a z-axis transmitter antenna; T′xz is the coupling between an x-axis receiver antenna and a z-axis transmitter antenna; ω represents an angular frequency; r is a separation distance between the antennas; and μ is a magnetic permeability constant.

3. BRIEF DESCRIPTION OF THE DRAWINGS

Other aspects and advantages of the invention will become apparent upon reading the following detailed description and upon reference to the drawings in which:

FIG. 1 is an illustration of a tri-axial antenna configuration for use as a transmitter-receiver array in accord with the invention.

FIG. 2 is an illustration of formation and tool coordinate systems with corresponding angles.

FIG. 3 shows a flow chart of a method for determining a parameter of a subsurface formation from electromagnetic measurements according to the invention.

FIG. 4 shows a flow chart of a method for determining a parameter of a subsurface formation from electromagnetic measurements in a low frequency limit according to the invention.

FIG. 5 is a schematic diagram of a well logging system in accord with the invention.

4. DETAILED DESCRIPTION OF SPECIFIC EMBODIMENTS

The present invention concerns the processing of EM signal data to determine various parameters of subsurface formations. Therefore, the present disclosure is focused on the derivation of mathematical formulas for the inversion of the acquired data into useful values representative of the formation parameters. It will be appreciated by those skilled in the art that these signal data may be acquired using conventional logging tools.

Moran, J. H. and Gianzero, S., “Effects of formation anisotropy on resistivity-logging measurements”, Geophysics, V, 44, No. 7, July 1979, pp. 1266-1286 (incorporated herein by reference), have derived closed form expressions for the radiation of a magnetic dipole in a homogenous anisotropic medium. In their original solution for the Hertz vector potential and magnetic scalar potential, Moran-Gianzero formulas are stated in the Cartesian coordinate system, which is tied to the formation, with the z-axis being perpendicular to the bedding planes. In the case of arbitrary tool axis orientation of a general tri-axial tool, the measured responses need to be rotated in order to compute all the couplings, i.e., the voltages induced at the receiver coils by respective transmitter coils. This yields rather complicated expressions.

The homogenous anisotropic formation with transverse anisotropy, having horizontal and vertical conductivity σh and σν, respectively is considered. The antenna or field source is treated as a magnetic dipole of strength M located at x=0, y=0, z=0. The usual anisotropy coefficient λ2, horizontal and vertical wave constants and relevant distances are defined as λ 2 = σ h σ v r 2 = x 2 + y 2 + z 2 k h 2 = ωμσ h s 2 = x 2 + y 2 + λ 2 z 2 k v 2 = ωμσ v ρ 2 = x 2 + y 2 . ( 1 )

The electric and magnetic field vectors are computed from the Hertz vector potential π and the magnetic scalar potential Φ

{circumflex over (σ)}E=iωμ 0σν∇×π  (2)

H=iωμσ hπ+∇Φ  (3)

Potentials are linked by the gauge (Moran and Gianzero, 1979)

∇·({circumflex over (σ)}π)=σνΦ  (4)

The magnetic field vector is computed using the Hertz vector potential π and the magnetic scalar potential Φ. Expressions given in Table I (Moran and Gianzero, 1979) are: x - excitation M x = M , M y = 0 , M z = 0 π = M ik v s 4 πλ s x ^ + M x 4 πρ 2 ( λ z ik v s s - z ik h r r ) z ^ Φ = M ik h x 4 π ρ 2 ( ik v s - ik h r + ρ 2 r 2 ( 1 - 1 ik h r ) ik h r ) , ( 5 ) y - excitation M x = 0 , M y = M , M z = 0 π = M ik v s 4 πλ s y ^ + M y 4 πρ 2 ( λ z ik v s s - z ik h r r ) z ^ Φ = M ik h y 4 π ρ 2 ( ik v s - ik h r + ρ 2 r 2 ( 1 - 1 ik h r ) ik h r ) , ( 6 ) z - excitation M x = 0 , M y = 0 , M z = M π = M ik h s 4 π r z ^ Φ = M ik h z 4 π r 2 ( 1 - 1 ik h r ) ik h r . ( 7 )

Expression for a magnetic field in the formation coordinate system: A transfer matrix T″ relates field H″ and magnetic dipole moment of the source M″ in the formation coordinate system H = T · M = [ T xx T xy T xz T yx T yy T yz T zx T zy T zz ] · [ M x M y M z ] , ( 8 )

where Tn1n2=(coupling between n1-axis receiver antenna, n2-axis transmitter antenna). FIG. 2 shows the coordinate systems and corresponding rotation angles described herein.

In FIG. 2, x″-y″-z″ represents the formation coordinate system and x-y-z the tool coordinates system, α is the relative dip angle, and β is the dip-azimuth (strike) angle. Distances ρ and s and coordinates x, y and z may be written in terms of transmitter-receiver spacing r, dip angle α, and the dip-azimuth angle β:

ρ2=r2 sin2 α

x=−r sin α

z=r cos α

y=0

s=r{square root over (sin2 α+λ2 cos2 α)}  (9)

The transfer matrix T″ and Equations in expressions (3)-(7) are differentiated and simplified analytically in the formation coordinate system (with the z axis perpendicular to the bedding planes) T = [ T xx T xy T xz T yx T yy T yz T zx T zy T zz ] = T h · I + ( L h - T h ) · [ sin 2 α 0 - sin αcos α 0 0 0 - sin αcos α 0 cos 2 α ] + 1 4 π ( k v k h s ik v s - k h 2 r ik h r ) · [ 0 0 0 0 1 0 0 0 0 ] + ik h 4 π r 2 sin 2 α ( ik v s - ik h r ) · [ - 1 0 0 0 1 0 0 0 0 ] , ( 10 )

where I is the identity matrix and Lh and Th are elementary functions corresponding to the couplings of longitudinal (axial) and transverse coil pairs separated by distance r in a homogenous isotropic medium of conductivity σh, i.e., T h = ik h r 4 π r 3 ( - 1 + ik h r + k h 2 r 2 ) L h = ik h r 2 π r 3 ( 1 - ik h r ) . ( 11 )

Expression for a magnetic field in the tool coordinate system: Equation (10) is transformed to the local coordinate system, where z′ is the longitudinal tool axis, x′ the transverse direction “North” (x′ with z′ defines the plane perpendicular to bedding), and y′ is the other transverse direction (“East”), defined such that x′-y′-z′ make a right-handed coordinate system. The rotation matrix is given by Moran and Gianzero, 1979: R = [ cos αcos β cos αsin β - sin α - sin β cos β 0 sin αcos β sin αsin β cos α ] . ( 12 )

The rotation may be decomposed into separate rotations about the z and y axes for angles β and α, respectively. Therefore, R may be written as a product of two rotation matrices: R = R α · R β = [ cos α 0 - sin α 0 1 0 sin α 0 cos α ] · [ cos β sin β 0 - sin β cos β 0 0 0 1 ] . ( 13 )

As a first step, the rotation for angle α is performed. Then

T′=R α T ·T″·R α  (14)

relates magnetic dipole and field components in the new coordinate system tied to the tool: H = T · M , [ H x1 H y1 H z1 ] = T · [ M x1 M y1 M z1 ] , ( 15 )

where T = T h · I + ( L h - T h ) · [ 0 0 0 0 0 0 0 0 1 ] + 1 4 π ( k v k h s ik v s - k h 2 r ik h r ) · [ 0 0 0 0 1 0 0 0 0 ] + ik h 4 π r 2 sin 2 α ( ik h r - ik v s ) · [ cos 2 α 0 - sin α cos α 0 - 1 0 - sin α cos α 0 sin 2 α ] . ( 16 )

Expression (16) may be re-written as a sum of the response of a vertical tool (at relative dip α=0) in a homogenous isotropic medium of conductivity σh, and two terms corresponding to coupling due to anisotropy and anisotropy and dipping: T = [ T h 0 0 0 T h 0 0 0 L h ] + 1 4 π ( k v k h s ik v s - k h 2 r ik h r ) · [ 0 0 0 0 1 0 0 0 0 ] + ik h 4 π r 2 sin 2 α ( ik h r - ik v s ) · [ cos 2 α 0 - sin α cos α 0 - 1 0 - sin α cos α 0 sin 2 α ] . ( 17 )

It should be noted that in the limit α→0, the last two terms become lim α 0 ( k v k h s ik v s - k h 2 r ik h r ) · = k v 2 - k h 2 r ik h r lim α 0 ( ik h r 2 sin 2 α ( ik h r - ik v s ) ) = k v 2 - k h 2 2 r ik h r . ( 18 )

The additional rotation for the strike angle β gives the following relation between the field and magnetic dipole strength components: H = T · M , [ H x H y H z ] = T · [ M x M y M z ] ( 19 )

T=R β T ·T′·R β  (20)

i.e., T = [ T h 0 0 0 T h 0 0 0 L h ] + 1 4 π ( k v k h s ik v s - k h 2 r ik h r ) · [ sin 2 β - sin βcos β 0 - sin βcos β cos 2 β 0 0 0 0 ] + ik h 4 π r 2 sin 2 α ( ik h r - ik v s ) · [ cos 2 α - ( 1 + cos 2 α ) sin 2 β ( 1 + cos 2 α ) sin βcos β - sin α cos α cos β ( 1 + cos 2 α ) sin βcos β - 1 + ( 1 + cos 2 α ) sin 2 β - sin αcos αsin β - sin αcos αcosβ - sin αcos αsin β sin 2 α ] ( 21 )

Extracting conductivities and dip and strike angles from tri-axial measurements: From Equation (21), it is possible to extract the strike angle β, β = tan - 1 T yz T xz , or , alternatively , ( 22 ) β = tan - 1 2 T xy T xx - T yy . ( 23 )

After deriving β, it is possible to do the rotation to the primed coordinate system and to use Equation (17) to determine the dip angle α and horizontal and vertical conductivity σh and σν. Couplings from Equation (17) are simplified to T xx = T h + ik h 4 π r 2 ( ik h r - ik v s ) · cot 2 α T xz = - ik h 4 π r 2 ( ik h r - ik v s ) · cot α T zz = L h + ik h 4 π r 2 ( ik h r - ik v s ) = ik h r 2 π r 3 - ik h 4 π r 2 ( ik h r + ik v s ) T yy = T h + 1 4 π { ( k v k h s + ik h 4 π r 2 ) ik v s - ( k h 2 r + ik h 4 π r 2 sin 2 α ) ik h r } . ( 24 )

System (24) may be solved using a least-squares technique. The resulting values may then be substituted in the following equations to derive the desired formation parameters.

After a trivial algebraic manipulation of system (24), an equation having horizontal conductivity as the only unknown is obtained:

(T′ zz −L h)(T′ xx −T h)=(T′ xz)2.  (25)

Now, the dip angle can be determined by combining the first two equations of system (24),

T′ xx =T h −T′ xz·cot α  (26)

or, α = tan - 1 T xz T h - T xx . ( 27 )

The vertical conductivity is obtained from the third equation of system (24). An identity that can be used is: T xx + T yy + T zz = 1 4 π ( k h 2 r ik h r + k h k v s ik v s ) . ( 28 )

Low frequency limit expressions for conductivities and dip and strike angles: Closed form expressions for these four parameters may also be derived in the low frequency limit, i.e., for (kh r)→0 and (kν r)→0.

In the low frequency limit, the following is valid: lim k h r 0 k v r 0 ( Re { T xx } ) = lim k h r 0 k v r 0 ( Re { T h } ) = - 1 4 π r 3 lim k h r 0 k v r 0 ( Re { T yy } ) = lim k h r 0 k v r 0 ( Re { T h } ) = - 1 4 π r 3 lim k h r 0 k v r 0 ( Re { T zz } ) = lim k h r 0 k v r 0 ( Re { L h } ) = 1 2 π r 3 lim k h r 0 k v r 0 ( Re { T xz } ) = 0 and ( 29 ) lim k h r 0 k v r 0 ( Im { T h } ) = k h 2 8 π r lim k h r 0 k v r 0 ( Im { T h } ) = k h 2 8 π r lim k h r 0 k v r 0 ( Im { L h } ) = k h 2 4 π r . ( 30 )

Then, Equations (22)-(28) can be further simplified and approximate expressions for horizontal and vertical conductivity, apparent dip and strike angle are obtained as follows. The dip-azimuth angle is computed from Equation (22) or (23), β = tan - 1 Im { T yz } Im { T xz } or , ( 31 ) β = tan - 1 2 Im { T xy } Im { T xx } - Im { T yy } . ( 32 ) ( Im { T zz } - k h 2 4 π r ) ( Im { T xx } - k h 2 8 π r ) = Im { T xz } 2 or , ( 33 ) k h 2 8 π r ( 2 Im { T xx } - Im { T zz } ) - k h 4 32 π 2 r 2 = Im { T xx } Im { T zz } - Im { T xz } 2 . ( 34 )

In the low frequency limit kh 4 can be neglected, so kh 2 can be computed as k h 2 = 8 π r Im { T xx } Im { T zz } - Im { T xz } 2 2 Im { T xx } - Im { T zz } . ( 35 )

Equation (35) yields an approximate formula for horizontal conductivity, σ h = 8 π r ωμ Im { T xx } Im { T zz } - Im { T xz } 2 2 Im { T xx } - Im { T zz } . ( 36 )

Apparent dip can be computed from Equation (27), α = tan - 1 Im { T xz } k h 2 8 π r - Im { T xx } . ( 37 )

The vertical conductivity may be computed from Equation (28). The expression for Tzz′ from system (24) may look simpler, but it should be noted that it is not possible to determine σν for α=0. Therefore, system (24) in the low frequency limit becomes, Im { T xx } + Im { T yy } + Im { T zz } = 1 4 π ( k h 2 r + k h k v s ) , ( 38 )

or, in terms of anisotropy coefficient λ, Im { T xx } + Im { T yy } + Im { T zz } = k h 2 4 π r ( 1 + 1 λ sin 2 α + λ 2 cos 2 α ) . ( 39 )

Solving Equation (39) gives solutions for λ and σν, λ 2 = 1 2 { { 4 π r ( Im { T xx } + Im { T yy } + Im { T zz } ) k h 2 - 1 } 2 + tan 4 α - tan 2 α } , ( 40 ) σ v = σ h λ 2 = 2 σ h { { 4 π r ( Im { T xx } + Im { T yy } + Im { T zz } ) k h 2 - 1 } 2 + tan 4 α - tan 2 α } - 1 . ( 41 )

FIG. 3 shows a flow chart outlining a process of the invention. At 50, the couplings between respective receiver and transmitter antennas are acquired as described above. At 55, the horizontal conductivity of the formation is determined by solving Equation (25) as derived from the coupling computations set forth above. At 60, the relative dip angle is computed from Equation (27). And at 65, the vertical conductivity of the formation is computed from Equation (28).

FIG. 4 shows another flow chart outlining a process of the invention. At 100, the couplings between respective receiver and transmitter antennas are acquired as described above. At 105, the horizontal conductivity of the formation is determined by calculation of Equation (36) as derived from the coupling computations set forth above. At 110, the relative dip angle is computed from Equation (37). And at 115, the vertical conductivity of the formation is computed from Equation (41).

Program storage device: It will be apparent to those of ordinary skill having the benefit of this disclosure that the invention may be implemented by programming one or more suitable general-purpose computers to perform algebraic calculations. The programming may be accomplished through the use of one or more program storage devices readable by the computer processor and encoding one or more programs of instructions executable by the computer for performing the operations described above. The program storage device may take the form of, e.g., one or more floppy disks; a CD-ROM or other optical disk; a magnetic tape; a read-only memory chip (ROM); and other forms known in the art or subsequently developed. The program of instructions may be “object code,” i.e., in binary form that is executable more-or-less directly by the computer; in “source code” that requires compilation or interpretation before execution; or in some intermediate form such as partially compiled code. The precise forms of the program storage device and of the encoding of instructions are immaterial here. Alternatively, the expressions of the invention may be computed using commercial software, such as MATHEMATICA or MATLAB.

Logging system: The present invention can be implemented in a logging system 200 with a logging tool 205 adapted to be moveable through a borehole and an apparatus 210 coupled to the tool 205 as shown in FIG. 5. Certain conventional details are omitted in FIG. 5 for clarity of illustration. The apparatus 210 comprises a surface computer (such as the general-purpose computer and program storage device described above) coupled to the tool 205 by a wireline cable 215. The tool 205 may be any conventional induction tool that embodies a tri-axial antenna configuration. It will be appreciated by those skilled in the art that the techniques of the invention may be implemented in wireline or while-drilling operations.

The formation parameters can be determined in near real-time by sending the measured response data to the surface as they are acquired, or it can be determined from a recorded-mode by recording the data on a suitable recordable medium. The system of FIG. 5 transmits the measured data from the tool 205 to the surface computer 210 by electronics (not shown) housed in the tool 205. The data may be sent to the surface computer 210 along the wireline cable 215 or by known telemetry techniques as known in the art for while-drilling applications. It will be understood that alternative means can be employed for communicating the acquired data to the surface as the precise form of communication is immaterial to the implementation of the disclosed techniques.

Once received by the surface computer 210, the data can be recorded, processed, or computed as desired by the user to generate the desired formation parameters. The parameter values can then be recorded or displayed on a suitable medium. Alternatively, some or all of the processing can be performed downhole and the data can be recorded uphole, downhole, or both.

The invention may be implemented in a system having a plurality of antennas or coils as known in the art. Such antennas may be placed on the logging tool in various sets or configurations and operated at various frequencies to obtain the desired EM measurements. For example, when used for induction-type measurements, a system of the invention may include one or more “bucking” antennas (not shown) disposed near a transmitter or receiver antenna. It is well known that signals measured with induction frequencies are affected by direct transmitter-to-receiver coupling. Thus a bucking antenna is typically used to eliminate or reduce these coupling effects. It will also be appreciated by those skilled in the art that the axial spacing and placement of the antennas along the tool may be varied to alter the signal strength and measurement sensitivity.

While the systems and methods of this invention have been described as specific embodiments, it will be apparent to those skilled in the art that variations may be applied to the structures and in the steps or in the sequence of steps of the methods described herein without departing from the concept and scope of the invention. All such similar variations apparent to those skilled in the art are deemed to be within the scope of the invention as defined by the claims.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US4302722Jun 15, 1979Nov 24, 1981Schlumberger Technology CorporationInduction logging utilizing resistive and reactive induced signal components to determine conductivity and coefficient of anisotropy
US5115198Sep 14, 1989May 19, 1992Halliburton Logging Services, Inc.Pulsed electromagnetic dipmeter method and apparatus employing coils with finite spacing
US5329448 *Aug 7, 1991Jul 12, 1994Schlumberger Technology CorporationMethod and apparatus for determining horizontal conductivity and vertical conductivity of earth formations
US5757191Dec 9, 1994May 26, 1998Halliburton Energy Services, Inc.Virtual induction sonde for steering transmitted and received signals
US5781436Jul 26, 1996Jul 14, 1998Western Atlas International, Inc.Method and apparatus for transverse electromagnetic induction well logging
US5886526 *Jun 16, 1997Mar 23, 1999Schlumberger Technology CorporationApparatus and method for determining properties of anisotropic earth formations
US5999883Mar 17, 1998Dec 7, 1999Western Atlas International, Inc.Conductivity anisotropy estimation method for inversion processing of measurements made by a transverse electromagnetic induction logging instrument
US6044325Jul 21, 1998Mar 28, 2000Western Atlas International, Inc.Conductivity anisotropy estimation method for inversion processing of measurements made by a transverse electromagnetic induction logging instrument
US6147496Jul 1, 1997Nov 14, 2000Shell Oil CompanyDetermining electrical conductivity of a laminated earth formation using induction logging
US6181138Feb 22, 1999Jan 30, 2001Halliburton Energy Services, Inc.Directional resistivity measurements for azimuthal proximity detection of bed boundaries
US6385545 *Aug 2, 2000May 7, 2002Baker Hughes IncorporatedMethod and apparatus for determining dip angle and horizontal and vertical conductivities
US6393364 *May 30, 2000May 21, 2002Halliburton Energy Services, Inc.Determination of conductivity in anisotropic dipping formations from magnetic coupling measurements
Non-Patent Citations
Reference
1BF Kriegshauser et al., "A New Multicomponent Induction Logging Tool to Resolve Anistropic Formations," SPWLA 41st Annual Logging Symposium, Paper D, pp. 1-14 (Jun. 4-7, 2000).
2BF Kriegshauser et al., "Increased Oil-in-Place in Low Resistivity Reservoirs from Multicomponent Induction Log Data," SPWLA 41st Annual Logging Symposium, Paper A, pp. 1-14 (Jun. 4-7, 2000).
3JH Moran and S Gianzero, "Effects of Formation Anistropy on Resistivity-Logging Measurements," Geophysics, pp. 1266-1286 (Jul. 1979).
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US6794875 *May 20, 2002Sep 21, 2004Halliburton Energy Services, Inc.Induction well logging apparatus and method
US7023212Dec 31, 2004Apr 4, 2006Schlumberger Technology CorporationInsulated sleeve with conductive electrodes to reduce borehole effects for an induction tool
US7027923Dec 12, 2003Apr 11, 2006Schlumberger Technology CorporationMethod for determining sonde error for an induction or propagation tool with transverse or triaxial arrays
US7043370 *Aug 29, 2003May 9, 2006Baker Hughes IncorporatedReal time processing of multicomponent induction tool data in highly deviated and horizontal wells
US7091722Sep 29, 2004Aug 15, 2006Schlumberger Technology CorporationMethod and apparatus for measuring mud resistivity
US7091877Jan 14, 2004Aug 15, 2006Schlumberger Technology CorporationApparatus and methods for determining isotropic and anisotropic formation resistivity in the presence of invasion
US7138897Sep 9, 2004Nov 21, 2006Schlumberger Technology CorporationInduction measurements with reduced borehole effects
US7193420Jan 17, 2006Mar 20, 2007Schlumberger Technology CorporationInsulated sleeve with conductive electrodes to reduce borehole effects for an induction tool
US7202670Jun 24, 2004Apr 10, 2007Schlumberger Technology CorporationMethod for characterizing a subsurface formation with a logging instrument disposed in a borehole penetrating the formation
US7379818Apr 6, 2006May 27, 2008Baker Hughes IncorporatedCorrection of cross-component induction measurements for misalignment using comparison of the XY formation response
US7382135Apr 21, 2004Jun 3, 2008Schlumberger Technology CorporationDirectional electromagnetic wave resistivity apparatus and method
US7386430Mar 19, 2004Jun 10, 2008Schlumberger Technology CorporationMethod of correcting triaxial induction arrays for borehole effect
US7423426May 3, 2007Sep 9, 2008Baker Hughes IncorporatedSelective excitation in earth's magnetic field nuclear magnetic resonance well logging tool
US7514930Dec 2, 2003Apr 7, 2009Schlumberger Technology CorporationApparatus and method for addressing borehole eccentricity effects
US7536261Apr 13, 2006May 19, 2009Schlumberger Technology CorporationAnti-symmetrized electromagnetic measurements
US7619540May 17, 2006Nov 17, 2009Schlumberger Technology CorporationApparatus and methods for determining isotropic and anisotropic formation resistivity in the presence of invasion
US7663363Jun 1, 2007Feb 16, 2010Baker Hughes IncorporatedMethod and apparatus for high signal-to-noise ratio NMR well logging
US7733093Dec 26, 2007Jun 8, 2010Schlumberger Technology CorporationMethod of and apparatus for measuring tensor resistivity
US7759943May 22, 2007Jul 20, 2010Schlumberger Technology CorporationSubsurface electromagnetic measurements using cross-magnetic dipoles
US8571797May 8, 2008Oct 29, 2013Schlumberger Technology CorporationDetermining borehole corrected formation on properties
US8736271 *Jul 17, 2009May 27, 2014Schlumberger Technology CorporationMethod and apparatus for measuring resistivity of formations
US20110291659 *Jul 17, 2009Dec 1, 2011Dominique DionMethod and apparatus for measuring resistivity of formations
WO2003100466A1 *May 19, 2003Dec 4, 2003Halliburton Energy Serv IncInduction well logging apparatus and method
WO2007117631A2 *Apr 5, 2007Oct 18, 2007Baker Hughes IncCorrection of cross-component induction measurements for misalignment using comparison of the xy formation response
WO2011130587A2 *Apr 15, 2011Oct 20, 2011Schlumberger Canada LimitedMethod and apparatus for determining geological structural dip using mulitaxial induction measurements
WO2013036509A1 *Sep 5, 2012Mar 14, 2013Schlumberger Canada LimitedReal-time formation anisotropy and dip evaluation using multiaxial induction measurements
Classifications
U.S. Classification702/7, 702/10, 324/338
International ClassificationG01V3/28
Cooperative ClassificationG01V3/28
European ClassificationG01V3/28
Legal Events
DateCodeEventDescription
Nov 24, 2010FPAYFee payment
Year of fee payment: 8
Dec 1, 2006FPAYFee payment
Year of fee payment: 4
Jun 26, 2001ASAssignment
Owner name: SCHLUMBERGER TECHNOLOGY CORPORATION, TEXAS
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:OMERAGIC, DZEVAT;REEL/FRAME:011955/0775
Effective date: 20010626
Owner name: SCHLUMBERGER TECHNOLOGY CORPORATION P.O. BOX 2175
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:OMERAGIC, DZEVAT /AR;REEL/FRAME:011955/0775