Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS6591122 B2
Publication typeGrant
Application numberUS 09/810,918
Publication dateJul 8, 2003
Filing dateMar 16, 2001
Priority dateMar 16, 2001
Fee statusPaid
Also published asCA2441015A1, CA2441015C, DE60236259D1, EP1367938A1, EP1367938B1, US7236811, US8229529, US20020161287, US20030220548, US20060020181, WO2002074162A1
Publication number09810918, 810918, US 6591122 B2, US 6591122B2, US-B2-6591122, US6591122 B2, US6591122B2
InventorsJoseph M. Schmitt
Original AssigneeNellcor Puritan Bennett Incorporated
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Device and method for monitoring body fluid and electrolyte disorders
US 6591122 B2
Abstract
A device and a method for measuring body fluid-related metrics using spectrophotometry to facilitate therapeutic interventions aimed at restoring body fluid balance. The specific body fluid-related metrics include the absolute volume fraction of water in the extravascular and intravascular tissue compartments, as well as the shifts of water between these two compartments. The absolute volume fraction of water is determined using algorithms where received radiation measured at two or more wavelengths are combined to form either a single ratio, a sum of ratios or ratio of ratios of the form log [R(λ1)/R(λ2)] in which the received radiation in the numerator depends primarily on the absorbance of water and the received radiation in the denominator depends primarily on the absorbance of water and the sum of the absorbances of non-heme proteins, lipids and water in tissue. The difference between the fraction of water in the intravascular fluid volume (“IFV”) and extravascular fluid volume (“EFV”) compartments are also determined using a differential method that takes advantage of the observation that pulsations caused by expansion of blood vessels in the skin as the heart beats produce changes in the received radiation at a particular wavelength that are proportional to the difference between the effective absorption of light in the blood and the surrounding tissue. This difference, integrated over time, provides a measure of the quantity of the fluid that shifts into and out of the capillaries. A mechanism for mechanically inducing a pulse is built into the device to improve the reliability of measurements of IFV-EFV under weak-pulse conditions.
Images(5)
Previous page
Next page
Claims(38)
What is claimed is:
1. A device for measuring body fluid-related metrics using optical spectrophotometry comprising:
a probe housing configured to be placed proximal to a tissue location which is being monitored;
light emission optics connected to said housing and configured to direct radiation at said tissue location;
light detection optics connected to said housing and configured to receive radiation from said tissue location; and
a processing device configured to process radiation from said light emission optics and said light detection optics to compute said body fluid-related metrics, wherein said body fluid-related metrics comprise absolute volume fractions of water in the extravascular and intravascular bodily tissue compartments and differences between the intravascular fluid volume and extravascular fluid volume fractions.
2. The device of claim 1, further comprising a display device connected to said probe housing and configured to display said body fluid-related metrics.
3. The device of claim 1, wherein said body-fluid metrics are monitored intermittently.
4. The device of claim 1, wherein said body-fluid metrics are monitored continuously.
5. The probe housing of the device of claim 1 further comprising a pressure transducer to measure the compressibility of tissue for deriving an index of a fraction of free water within said tissue.
6. The device of claim 1, wherein said light emission optics are tuned to emit radiation at a plurality of narrow spectral wavelengths chosen so that the biological compound of interest will absorb light at said plurality of narrow spectral wavelengths and so that absorption by interfering species will be at a minimum, where a minimum absorption is an absorption by an interfering species which is less than 10% of the absorption of the biological compound of interest.
7. The device of claim 1, wherein said light emission optics are tuned to emit radiation at a plurality of narrow spectral wavelengths chosen to be preferentially absorbed by tissue water, non-heme proteins and lipids, where preferentially absorbed wavelengths are wavelengths whose absorption is substantially independent of the individual concentrations of non-heme proteins and lipids, and is substantially dependent on the sum of the individual concentrations of non-heme proteins and lipids.
8. The device of claim 1, wherein said light emission optics are tuned to emit radiation at a plurality of narrow spectral wavelengths chosen to ensure that measured received radiation are substantially insensitive to scattering variations and such that the optical path lengths through the dermis at said wavelengths are substantially equal.
9. The device of claim 1, wherein said light emission optics are tuned to emit radiation at a plurality of narrow spectral wavelengths chosen to ensure that measured received radiation from said tissue location are insensitive to temperature variations, where said wavelengths are temperature isosbestic in the water absorption spectrum or said received radiation are combined in a way that substantially cancel temperature dependencies of said individual received radiation when computing tissue water fractions.
10. The device of claim 1, wherein said light emission optics are tuned to emit radiation at a plurality of narrow spectral wavelengths chosen from one of three primary bands of wavelengths of approximately 1100-1350 nm, approximately 1500-1800 nm and approximately 2000-2300 nm.
11. The device of claim 1, wherein said light emission optics and said light detection optics are mounted within said probe housing and positioned with appropriate alignment to enable detection in a transmissive mode.
12. The device of claim 1, wherein said light emission optics and said light detection optics are mounted within said probe housing and positioned with appropriate alignment to enable detection in a reflective mode.
13. The device of claim 1, wherein said light emission optics and said light detection optics are placed within a remote unit and which deliver light to and receive light from said probe housing via optical fibers.
14. The device of claim 1, wherein said light emission optics comprise at least one of a (a) incandescent light source, (b) white light source, and (c) light emitting diode (“LED”).
15. The device of claim 1, wherein said processing device receives and compares at least two sets of optical measurements, where the at least first set of optical measurements corresponds to the detection of light whose absorption is primarily due to water, lipids and non-heme proteins, and where the at least second set of optical measurements corresponds to the detection of light whose absorption is primary due to water, and where a comparison of said at least two optical measurements provides a measure of the absolute water fraction within said tissue location.
16. The device of claim 1, wherein said processing device receives and compares at least two sets of optical measurements, where said at least two sets of optical measurements are based on received radiation from at least two wavelengths and which are combined to form either a single ratio of said received radiation, a sum of ratios of said received radiation or ratios of ratios of said received radiation.
17. The device of claim 1, wherein said processing device receives and compares at least two sets of optical measurements from at least two different wavelengths, where absorption of light at said at least two different wavelengths is primarily due to water which is in the vascular blood and in the extravascular tissue, and where a ratio of said at least two measurements provides a measure of a difference between the fractions of water in the blood and surrounding tissue location.
18. The device of claim 1, wherein said body fluid-related metrics comprise tissue water fraction, and where said tissue water fraction, fw is determined such that fw=c1 log[R(λ1)/R(λ2)]+c0, and where:
calibration constants c0 and c1 are chosen empirically;
R(λ1) is a received radiation at a first wavelength; and
R(λ2) is a received radiation at a second wavelength.
19. The tissue water fraction as determined in claim 18, wherein said first and second wavelengths are approximately 1300 nm and approximately 1168 nm respectively.
20. The tissue water fraction as determined in claim 18, wherein said first and second wavelengths are approximately 1230 nm and approximately 1168 nm respectively.
21. The device of claim 1, wherein said body fluid-related metrics comprise tissue water fraction, and where said tissue water fraction, fw is determined such that fw=c2 log[R(λ1)/R(λ2)]+c1 log[R(λ2)/R(λ3)]+c0, and where:
calibration constants c0, c1 and c2 are chosen empirically;
R(λ1) is a received radiation at a first wavelength;
R(λ2) is a received radiation at a second wavelength; and
R(λ3) is a received radiation at a third wavelength.
22. The tissue water fraction as determined in claim 21, wherein said first, second and third wavelengths are approximately 1190 nm, approximately 1170 nm and approximately 1274 nm respectively.
23. The device of claim 1, wherein said tissue water fraction, fw is determined such that f w = c 1 log [ R ( λ 1 ) / R ( λ 2 ) ] log [ R ( λ 3 ) / R ( λ 2 ) ] + c 0 ,
and where:
calibration constants c0 and c1 are chosen empirically;
R(λ1) is a received radiation at a first wavelength;
R(λ2) is a received radiation at a second wavelength; and
R(λ3) is a received radiation at a third wavelength.
24. The tissue water fraction as determined in claim 23, wherein said first, second and third wavelengths are approximately 1710 nm, approximately 1730 nm and approximately 1740 nm respectively.
25. The device of claim 1, wherein said difference between the water fraction in the blood and the water fraction in the extravascular tissue, is determined such that f w blood - f w tissue = c 1 ( Δ R R ) λ 1 / ( Δ R R ) λ 2 + c 0 ,
and where:
fw blood is the water fraction in the blood;
fw tissue is the water fraction in the extravascular tissue;
calibration constants c0 and c1 are chosen empirically; and ( Δ R R ) λ 1 / ( Δ R R ) λ 2
 is the ratio of dc-normalized received radiation changes at a first wavelength, λ1 and a second wavelength, λ2 respectively, where said received radiation changes are caused by a pulsation caused by expansion of blood vessels in tissue.
26. The body fluid-metric as determined in accordance to claim 25, further comprising an integral of said difference between the water fraction in the blood and the water fraction in the extravascular tissue to provide a measure of the water that shifts into and out of the capillaries.
27. The bodily fluid-metrics as determined in claim 26, wherein said first and second wavelengths are approximately 1320 nm and approximately 1160 nm respectively.
28. A device for measuring body fluid-related metrics using optical spectrophotometry comprising:
a probe housing configured to be placed proximal to a tissue location which is being monitored;
light emission optics connected to said housing and configured to direct radiation at said tissue location;
light detection optics connected to said housing and configured to receive radiation from said tissue location; and
a processing device configured to process radiation from said light emission optics and said light detection optics to compute said body fluid-related metrics, wherein said probe housing further comprises a spring-loaded probe configured to automatically activate a display device connected to said probe housing when said spring-loaded probe is pressed against a tissue location which is being monitored.
29. A device for measuring body fluid-related metrics using optical spectrophotometry comprising:
a probe housing configured to be placed proximal to a tissue location which is being monitored;
light emission optics connected to said housing and configured to direct radiation at said tissue location;
light detection optics connected to said housing and configured to receive radiation from said tissue location; and
a processing device configured to process radiation from said light emission optics and said light detection optics to compute said body fluid-related metrics,
wherein the probe housing further comprises a mechanism for mechanically inducing a pulse within said tissue location to permit measurements of differences between an intravascular fluid volume and an extravascular fluid volume fractions under weak-pulse conditions.
30. A device for measuring body fluid-related metrics using optical spectrophotometry comprising:
a probe housing configured to be placed proximal to a tissue location which is being monitored;
light emission optics connected to said housing and configured to direct radiation at said tissue location;
light detection optics connected to said housing and configured to receive radiation from said tissue location;
a processing device configured to process radiation from said light emission optics and said light detection optics to compute said body fluid-related metrics; and
a display device configured to display body fluid-related metrics comprising percent body water and a water balance, where a water balance is the integrated difference between a water fraction in the blood and a water fraction in the extravascular tissue.
31. A device for measuring the absolute volume fraction of water within human tissue using optical spectrophotometry comprising:
a probe housing configured to be placed proximal to a tissue location which is being monitored;
light emission optics configured to direct radiation at said tissue location, wherein said light emission optics comprises one of a (a) incandescent light sources, (b) white light sources and (c) light emitting diodes (“LEDs”) which are tuned to emit radiation at a plurality of narrow spectral wavelengths chosen to be preferentially absorbed by tissue water, non-heme proteins and lipids;
a photodiode configured to receive radiation from said tissue location;
a processing device configured to process radiation from said light emission optics and said light detection optics to compute said absolute volume fraction of water, wherein said processing device receives and compares at least two sets of optical measurements, where the at least first set of optical measurements corresponds to the detection of light whose absorption is primarily due to water, lipids and non-heme proteins, and where the at least second set of optical measurements corresponds to the detection of light whose absorption is primary due to water, and where a comparison of said at least two optical measurements provides a measure of the absolute water fraction within said tissue location;
a display device connected to said probe housing and configured to display said absolute volume fraction of water; and
said probe housing further comprising a spring-loaded probe configured to automatically activate said display device when said spring-loaded probe is pressed against a tissue location which is being monitored.
32. A device for measuring a difference between an intravascular fluid volume and an extravascular fluid volume using optical spectrophotometry comprising:
a probe housing configured to be placed proximal to a tissue location which is being monitored;
light emission optics configured to direct radiation at said tissue location, wherein said light emission optics comprises one of a (a) incandescent light sources, (b) white light sources or (c) light emitting diodes (“LEDs”) which are tuned to emit radiation at a plurality of narrow spectral wavelengths chosen so that the biological compound of interest will absorb light at said plurality of narrow spectral wavelengths and so that absorption by interfering species will be at a minimum;
a photodiode configured to receive radiation from said tissue location;
a processing device configured to process radiation from said light emission optics and said light detection optics to compute said difference between an intravascular fluid volume and an extravascular fluid volume, wherein said processing device receives and compares at least two sets of optical measurements from at least two different wavelengths, where absorption of light at said at least two different wavelengths is primarily due to water which is in the vascular blood and in the extravascular tissue, and where a comparison of said at least two measurements provides a measure of a difference between the fractions of water in the blood and surrounding tissue location; and
a display device connected to said probe housing and configured to display said difference between an intravascular fluid volume and an extravascular fluid volume.
33. The device of claim 32, where said difference between an intravascular fluid volume and an extravascular fluid volume is determined such that f w blood - f w tissue = c 1 ( Δ R R ) λ 1 / ( Δ R R ) λ 2 + c 0 ,
and where:
fw blood is the water fraction in the blood;
fw tissue is the water fraction in the extravascular tissue; ( Δ R R ) λ 1 / ( Δ R R ) λ 2
 is the ratio of dc-normalized received radiation changes at a first wavelength, λ1 and a second wavelength, λ2 respectively, where said received radiation changes are caused by a pulsation caused by expansion of blood vessels in tissue in response to a heart beat and
calibration constants c0 and c1 are chosen empirically.
34. The body fluid-metric as determined in accordance to claim 33 further comprising an integral of said difference between an intravascular fluid volume and an extravascular fluid volume to provide a measure of the water that shifts into and out of the capillaries.
35. The bodily fluid-metrics as determined in claim 33, wherein said first and second wavelengths are 1320 nm and 1160 nm respectively.
36. The device of claim 32 further comprising a mechanism for mechanically inducing a pulse within said tissue location to enhance measurements of said difference between an intravascular fluid volume and an extravascular fluid volume under weak pulse conditions.
37. A method for measuring body fluid-related metrics in a human tissue location using optical spectrophotometry comprising:
placing a probe housing proximal to said tissue location;
emitting radiation at at least two wavelengths using light emission optics configured to direct radiation at said tissue location;
detecting radiation using light detection optics configured to receive radiation from said tissue location;
processing said radiation from said light emission optics and said light detection optics;
computing said body fluid-related metrics,
wherein said body fluid-related metrics comprise absolute volume fractions of water in the extravascular and intravascular bodily tissue compartments and differences between the intravascular fluid volume and extravascular fluid volume fraction, where said metrics is determined by:
measuring at least two sets of optical measurements based on received radiation of said at least two wavelengths;
combining said at least two sets of optical measurements to form either a single ratio of said received radiation, a sum of ratios of said received radiation or ratios of ratios of said received radiation to form combinations of received radiation;
determining said metrics from said combinations; and
displaying said metrics on a display device connected to said probe housing.
38. A method for measuring a difference between an intravascular fluid volume and an extravascular fluid volume in a human tissue location using optical spectrophotometry comprising:
placing a probe housing proximal to said tissue location;
emitting radiation using light emission optics configured to direct radiation at said tissue location;
detecting radiation using light detection optics configured to receive radiation from said tissue location;
processing said radiation from said light emission optics and said light detection optics;
computing said difference between an intravascular fluid volume and an extravascular fluid volume, and where said difference between an intravascular fluid volume and an extravascular fluid volume is determined such that f w blood - f w tissue = c 1 ( Δ R R ) λ 1 / ( Δ R R ) λ 2 + c 0 ,
 and where:
fw blood is the water fraction in the blood;
fw tissue is the water fraction in the extravascular tissue; ( Δ R R ) λ 1 / ( Δ R R ) λ 2
 is the ratio of dc-normalized received radiation changes at a first wavelength, λ1 and a second wavelength, λ2 respectively, where said received radiation changes are caused by a pulsation caused by expansion of blood vessels in tissue in response to a heart beat;
calibration constants c0 and c1 are chosen empirically; and
displaying said difference between an intravascular fluid volume and an extravascular fluid volume on a display device.
Description
BACKGROUND OF THE INVENTION

The maintenance of body fluid balance is of foremost concern in the care and treatment of critically ill patients, yet physicians have access to few diagnostic tools to assist them in this vital task. Patients with congestive heart failure, for example, frequently suffer from chronic systemic edema, which must be controlled within tight limits to ensure adequate tissue perfusion and prevent dangerous electrolyte disturbances. Dehydration of infants and children suffering from diarrhea can be life-threatening if not recognized and treated promptly.

The most common method for judging the severity of edema or dehydration is based on the interpretation of subjective clinical signs (e.g., swelling of limbs, dry mucous membranes), with additional information provided by measurements of the frequency of urination, heart rate, serum urea nitrogen SUN/creatinine ratios, and blood electrolyte levels. None of these variables alone, however, is a direct and quantitative measure of water retention or loss.

The indicator-dilution technique, which provides the most accurate direct measure of water in body tissues, is the present de facto standard for assessment of body fluid distribution. It is, however, an invasive technique that requires blood sampling. Additionally, a number of patents have disclosed designs of electrical impedance monitors for measurement of total body water. The electrical-impedance technique is based on measuring changes in the high-frequency (typically 10 KHz-1 MHz) electrical impedance of a portion of the body. Mixed results have been obtained with the electrical-impedance technique in clinical studies of body fluid disturbances as reported by various investigators. The rather poor accuracy of the technique seen in many studies point to unresolved deficiencies of these designs when applied in a clinical setting.

Therefore, there exists a need for methods and devices for monitoring total body water fractions which do not suffer from problems due to their being invasive, subjective and inaccurate.

SUMMARY OF THE INVENTION

Embodiments of the present invention provide devices and methods that measure body fluid-related metrics using spectrophotometry to facilitate therapeutic interventions aimed at restoring body fluid balance. The specific body fluid-related metrics include the absolute volume fraction of water in the extravascular and intravascular tissue compartments, as well as the shifts of water between these two compartments. The absolute volume fraction of water is determined using algorithms where received radiation measured at two or more wavelengths are combined to form either a single ratio, a sum of ratios or ratio of ratios of the form log [R(λ1)/R(λ2)] in which the received radiation in the numerator depends primarily on the absorbance of water and the received radiation in the denominator depends primarily on the absorbance of water and the sum of the absorbances of non-heme proteins and lipids in tissue.

The difference between the fraction of water in the intravascular fluid volume (“IFV”) and extravascular fluid volume (“EFV”) compartments are also determined using a differential method that takes advantage of the observation that pulsations caused by expansion of blood vessels in the skin, as the heart beats, produce changes in the received radiation at a particular wavelength that are proportional to the difference between the effective absorption of light in the blood and the surrounding tissue. This difference, integrated over time, provides a measure of the quantity of the fluid that shifts into and out of the capillaries. A mechanism for mechanically inducing a pulse is built into the device to improve the reliability of measurements of IFV-EFV under weak-pulse conditions.

For a fuller understanding of the nature and advantages of the embodiments of the present invention, reference should be made to the following detailed description taken in conjunction with the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a graph showing tissue water fraction measured on the ear of a pig during an experiment using reflectance measurements at two wavelengths.

FIG. 2 is a graph showing an example regression for prediction of water from reflectances measured at three wavelengths.

FIG. 3 is a graph showing an example regression of a two-wavelength algorithm for determination of the difference between the intravascular and extravascular water fraction from pulsatile reflectances measured two wavelengths.

FIG. 4 is a diagram of an intermittent-mode version of a fluid monitor.

FIG. 5 is a diagram of a continuous-mode version of a fluid monitor.

FIG. 6 is a block diagram of a handheld apparatus for noninvasive measurement and display of tissue water.

DESCRIPTION OF THE SPECIFIC EMBODIMENTS

Embodiments of the present invention overcome the problems of invasiveness, subjectivity, and inaccuracy from which previous methods for body fluid assessment have suffered. The method of diffuse reflectance near-infrared (“NIR”) spectroscopy is employed to measure the absolute fraction of water in skin. An increase or decrease in the free (non protein-bound) water content of the skin produces unique alterations of its NIR reflectance spectrum in three primary bands of wavelengths (1100-1350 nm, 1500-1800 nm, and 2000-2300 nm) in which none-heme proteins (primarily collagen and elastin), lipids, and water absorb. According to the results of numerical simulations and experimental studies carried out by the inventor, the tissue water fraction fw, defined spectroscopically as the ratio of the absorbance of water and the sum of the absorbances of none-heme proteins, lipids, and water in the tissue, can be measured accurately in the presence of nonspecific scattering variation, temperature, and other interfering variables.

In embodiments of this invention, the apparatus and its associated measurement algorithm are designed according to the following guidelines:

1. To avoid the shunting of light through the superficial layers of the epidermis, the light source and detector in optical reflectance probe have low numerical apertures, typically less than 0.3.

2. The spacing between the source and detector in the probe is in the range of 1-5 mm to confine the light primarily to the dermis.

3. The reflectances are measured at wavelengths greater than 1150 nm to reduce the influence of hemoglobin absorption.

4. To ensure that the expression that relates the measured reflectances and fw yields estimates of water fraction that are insensitive to scattering variations, the lengths of the optical paths through the dermis at the wavelengths at which the reflectances are measured are matched as closely as possible. This matching is achieved by judicious selection of wavelength sets that have similar water absorption characteristics. Such wavelength sets may be selected from any one of the three primary wavelength bands (1100-1350 nm, 1500-1800 nm, and 2000-2300 nm) discussed above. Wavelength pairs or sets are chosen from within one of these three primary bands, and not from across the bands. More particularly the wavelength pair of 1180 and 1300 nm are one such wavelength set where the lengths of the optical paths through the dermis at these wavelengths are matched as closely as possible.

5. To ensure that the expression that relates the measured reflectances and fw yields estimates of water fraction that are insensitive to temperature variations, the wavelengths at which the reflectances are measured are chosen to be either close to temperature isosbestic wavelengths in the water absorption spectrum or the reflectances are combined in a way that cancels the temperature dependencies of the individual reflectances. Typically, absorption peaks of various biological tissue components may shift with variations in temperature. Here, wavelengths are selected at points in the absorption spectrum where no significant temperature shift occurs. Alternately, by knowing the value of this temperature shift, wavelength sets may be chosen such that any temperature shift is mathematically canceled out when optical measurements are combined to compute the value of a tissue water metric. Such wavelength sets may be selected from any one of the three primary wavelength bands (1100-1350 nm, 1500-1800 nm, and 2000-2300 nm) discussed above. Wavelength pairs or sets are chosen from within one of these three primary bands, and not from across the bands. More particularly the wavelength pair of 1180 and 1300 nm are one such pair of temperature isosbestic wavelengths in the water absorption spectrum.

6. The reflectances measured at two or more wavelengths are combined to form either a single ratio, a sum of ratios or ratio of ratios of the form log [R(λ1)/R(λ2)] in which the reflectance in the numerator depends primarily on the absorbance of water and the reflectance in the denominator is nearly independent of the fraction of solids (lipids and proteins) in the tissue.

Thus, in one embodiment of the present invention the water fraction, fw is estimated according to the following equation, based on the measurement of reflectances, R(λ) at two wavelengths and the empirically chosen calibration constants c0 and c1:

f w =c 1 log[R1)/R2)]+c 0  (1)

Numerical simulations and in vitro experiments indicate that fw can be estimated with an accuracy of approximately +/−2% over a range of water contents between 50 and 80% using Equation (1), with reflectances R(λ) measured at two wavelengths and the calibration constants c0 and c1 chosen empirically. Examples of suitable wavelength pairs are λ1=1300 nm, λ2=1168 nm, and λ1=1230 nm, λ2=1168 nm.

The ability to measure changes in the water content in the ear of a pig using two-wavelength NIR reflectometry was demonstrated experimentally in a study in which a massive hemorrhage was induced in a pig and the lost blood was replaced with lactated Ringer's solution over a period of several hours. Ringer's solution is a well-known solution of salts in boiled and purified water. FIG. 1 shows the water fraction in the skin of the ear of a pig, measured using Equation (1) with λ1=1300 nm and λ2=1168 nm. Referring to FIG. 1, it should be noted that experimental observations of concern to this embodiment commence when the lactated Ringer's solution was infused 120 minutes after the start of the experiment. It should also be noted that the drift in the water fraction from approximately 77.5% to 75% before the infusion is not related to this infusion experiment, but is related to the base-line hemorrhage portion of the experiment. The results show that the method of the present embodiment correctly reflects the effect of the infusion by showing an increase in tissue water fraction from approximately 75% to 79% while the infusion is continuing. These data suggest that the disclosed embodiment has a clear value as a monitor of rehydration therapy in a critical care setting.

In another embodiment of the present invention the water fraction, fw is estimated according to Equation (2) below, based on the measurement of reflectances, R(λ) at three wavelengths and the empirically chosen calibration constants c0, c1 and c2:

f w =c 2 log[R1)/R2)]+c 1 log [R2)/R3)]+c 0  (2)

Better absolute accuracy can be attained using Equation (2) which incorporates reflectance measurements at an additional wavelength. The results of in vitro experiments on excised skin indicate that the wavelength triple (λ1=1190 nm, λ2=1170 nm, λ3=1274 nm) yields accurate estimates of skin water content based on Equation (2).

In yet another embodiment of the present invention the water fraction, fw is estimated according to Equation (3) below, based on the measurement of reflectances, R(λ) at three wavelengths and the empirically chosen calibration constants c0 and c1: f w = c 1 log [ R ( λ 1 ) / R ( λ 2 ) ] log [ R ( λ 3 ) / R ( λ 2 ) ] + c 0 ( 3 )

Better absolute accuracy can be attained using Equations (3), as is attained using Equations (2), which also incorporates reflectance measurements at an additional wavelength. Numerical simulations as shown in FIG. 2 indicate that an accuracy better than +/−0.5% can be achieved using Equation (3), with reflectances measured at three closely spaced wavelengths: λ1=1710 nm, λ2=1730 nm, and λ3=1740 nm.

Individuals skilled in the art of near-infrared spectroscopy would recognize that, provided that the aforementioned guidelines are followed, additional terms can be added to Equations (1)-(3) to incorporate reflectance measurements made at more than three wavelengths and thus improve accuracy further.

An additional embodiment of the disclosed invention provides the ability to quantify shifts of fluid into and out of the bloodstream through a novel application of pulse spectrophotometry. This additional embodiment takes advantage of the observation that pulsations caused by expansion of blood vessels in the skin as the heart beats produce changes in the reflectance at a particular wavelength that are proportional to the difference between the effective absorption of light in the blood and the surrounding interstitial tissues. Numerical simulation indicate that, if wavelengths are chosen at which water absorption is sufficiently strong, the difference between the fractions of water in the blood, fw blood and surrounding tissue, fw tissue is proportional to the ratio of the dc-normalized reflectance changes (ΔR/R) measured at two wavelengths, according to Equation (4) below: f w blood - f w tissue = c 1 ( Δ R R ) λ 1 / ( Δ R R ) λ 2 + c 0 , ( 4 )

where c0 and c1 are empirically determined calibration constants. This difference, integrated over time, provides a measure of the quantity of fluid that shifts into and out of the capillaries. FIG. 3 shows the prediction accuracy expected for the wavelength pair λ1=1320 nm and λ2=1160 nm.

FIGS. 4 and 5 show diagrams of two different versions of an instrument for measuring the amount of water in body tissues. The simplest version of the instrument 400 shown in FIG. 4 is designed for handheld operation and functions as a spot checker. Pressing the spring-loaded probe head 410 against the skin 412 automatically activates the display of percent tissue water 414. The use of the spring-loaded probe head provides the advantages of automatically activating the display device when needed and turning the device off when not in use, thereby extending device and battery life. Moreover, this unique use of a spring-loaded probe also provides the force needed to improve the reliability of measurements. Percent tissue water represents the absolute percentage of water in the skin beneath the probe (typically in the range 0.6-0.9). The force exerted by a spring or hydraulic mechanism (not shown) inside the probe head 410 pushes out most of the blood in the skin below the probe to reduce the error caused by averaging the intravascular and extravascular fluid fractions. A pressure transducer (not shown) within the probe head 410 measures the compressibility of the skin for deriving an index of the fraction of free (mobile) water.

The more advanced version of the fluid monitor 500 shown in FIG. 5 is designed for use as a critical-care monitor. In addition to providing a continuous display of the absolute volume fraction of water 510 at the site of measurement 512, it also provides a trend display of the time-averaged difference between the intravascular fluid volume (“IFV”) and extravascular fluid volume (“EFV”) fractions 514, updated every few seconds. This latter feature would give the physician immediate feedback on the net movement of water into or out of the blood and permit rapid evaluation of the effectiveness of diuretic or rehydration therapy. To measure the IFV-EFV difference, the monitor records blood pulses in a manner similar to a pulse oximeter. Therefore, placement of the probe on the finger or other well-perfused area of the body would be required. In cases in which perfusion is too poor to obtain reliable pulse signals, the IFV-EFV display would be blanked, but the extravascular water fraction would continue to be displayed. A mechanism for mechanically inducing the pulse is built into the probe to improve the reliability of the measurement of IFV-EFV under weak-pulse conditions.

FIG. 6. is a block diagram of a handheld device 600 for measuring tissue water fraction within the IFV and the EFV, as well as shifts in water between these two compartments with a pulse inducing mechanism. Using this device 600, patient places his/her finger 610 in the probe housing. Rotary solenoid 612 acting through linkage 614 and collar 616 induces a mechanical pulse to improve the reliability of the measurement of IFV-EFV. LEDs 618 emit light at selected wavelengths and photodiode 620 measure the transmitted light. Alternately, the photodiode 620 can be placed adjacent to the LEDs to allow for the measurement of the reflectance of the emitted light. Preamplifier 622 magnifies the detected signal for processing by the microprocessor 624. Microprocessor 624, using algorithms described above, determines the tissue water fraction within the IFV and the EFV, as well as shifts in water between these two compartments, and prepares this information for display on display device 626. Microprocessor 624 is also programmed to handle the appropriate timing between the rotary solenoid's operation and the signal acquisition and processing. The design of the device and the microprocessor integrates the method and apparatus for reducing the effect of noise on measuring physiological parameters as described in U.S. Pat. No. 5,853,364, assigned to Nellcor Puritan Bennett, Inc., now a division of the assignee of the present invention, the entire disclosure of which is hereby incorporated herein by reference. Additionally, the design of the device and the microprocessor also integrates the electronic processor as described in U.S. Pat. No. 5,348,004, assigned to Nellcor Incorporated, now a division of the assignee of the present invention, the entire disclosure of which is hereby incorporated herein by reference.

As will be understood by those skilled in the art, other equivalent or alternative methods for the measurement of tissue water fraction within the IFV and the EFV, as well as shifts in water between these two compartments according to the embodiments of the present invention can be envisioned without departing from the essential characteristics thereof. For example, the device can be operated in either a handheld or a tabletop mode, and it can be operated intermittently or continuously. Moreover, individuals skilled in the art of near-infrared spectroscopy would recognize that additional terms can be added to the algorithms used herein to incorporate reflectance measurements made at more than three wavelengths and thus improve accuracy further. Also, light sources or light emission optics other then LED's including and not limited to incandescent light and narrowband light sources appropriately tuned to the desired wavelengths and associated light detection optics may be placed within the probe housing which is placed near the tissue location or may be positioned within a remote unit; and which deliver light to and receive light from the probe location via optical fibers. Additionally, although the specification describes embodiments functioning in a back-scattering or a reflection mode to make optical measurements of reflectances, other embodiments can be working in a forward-scattering or a transmission mode to make these measurements. These equivalents and alternatives along with obvious changes and modifications are intended to be included within the scope of the present invention. Accordingly, the foregoing disclosure is intended to be illustrative, but not limiting, of the scope of the invention which is set forth in the following claims.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US4066068Nov 26, 1975Jan 3, 1978Servo Med AbMethod and apparatus for determining the amount of a substance emitted by diffusion from a surface such as a derm surface
US4364008Oct 2, 1980Dec 14, 1982Jacques Steven LFocusing probe for moisture measurement device
US4711244Sep 12, 1985Dec 8, 1987American Cyanamid CompanyDigital moisture dermatometer
US4723554Aug 15, 1986Feb 9, 1988Massachusetts Institute Of TechnologySkin pallor and blush monitor
US4805623Sep 4, 1987Feb 21, 1989Vander CorporationSpectrophotometric method for quantitatively determining the concentration of a dilute component in a light- or other radiation-scattering environment
US4850365Mar 14, 1988Jul 25, 1989Futrex, Inc.Near infrared apparatus and method for determining percent fat in a body
US4860753Nov 4, 1987Aug 29, 1989The Gillette CompanyMonitoring apparatus
US5086781Nov 14, 1989Feb 11, 1992Bookspan Mark ABioelectric apparatus for monitoring body fluid compartments
US5146091Dec 4, 1990Sep 8, 1992Inomet, Inc.Body fluid constituent measurement utilizing an interference pattern
US5277181Dec 12, 1991Jan 11, 1994Vivascan CorporationNoninvasive measurement of hematocrit and hemoglobin content by differential optical analysis
US5337745Nov 12, 1993Aug 16, 1994Benaron David ADevice and method for in vivo qualitative or quantative measurement of blood chromophore concentration using blood pulse spectrophotometry
US5348004Mar 31, 1993Sep 20, 1994Nellcor IncorporatedElectronic processor for pulse oximeter
US5377674Jan 13, 1994Jan 3, 1995Kuestner; J. ToddMethod for non-invasive and in-vitro hemoglobin concentration measurement
US5499627Oct 4, 1994Mar 19, 1996In-Line Diagnostics CorporationSystem for noninvasive hematocrit monitoring
US5615689Dec 12, 1994Apr 1, 1997St. Luke's-Roosevelt HospitalMethod of predicting body cell mass using bioimpedance analysis
US5701902 *Sep 14, 1994Dec 30, 1997Cedars-Sinai Medical CenterSpectroscopic burn injury evaluation apparatus and method
US5720284Mar 29, 1996Feb 24, 1998Nihon Kohden CorporationApparatus for measuring hemoglobin
US5747789Jul 11, 1996May 5, 1998Dynamics Imaging, Inc.Method for investigation of distribution of physiological components in human body tissues and apparatus for its realization
US5755672 *Jun 18, 1996May 26, 1998Moritex CorporationMeasuring equipment of fat and water amount existing on the object
US5788643Apr 22, 1997Aug 4, 1998Zymed Medical Instrumentation, Inc.Process for monitoring patients with chronic congestive heart failure
US5853364Jun 7, 1996Dec 29, 1998Nellcor Puritan Bennett, Inc.Method and apparatus for estimating physiological parameters using model-based adaptive filtering
US5906582 *Sep 12, 1995May 25, 1999Seiko Epson CorporationOrganism information measuring method and arm wear type pulse-wave measuring method
US6149591 *Dec 3, 1998Nov 21, 2000Duke UniversityRefractometric devices especially adapted for the in vivo detection of refractive indices of cervical mucus
US6336044 *Sep 10, 1999Jan 1, 2002Futrex Inc.Reliable body fat measurement in self-service health parameter Measuring system
US6370426 *Apr 20, 2000Apr 9, 2002Nova Technology CorporationMethod and apparatus for measuring relative hydration of a substrate
US6442408 *Sep 25, 2000Aug 27, 2002Instrumentation Metrics, Inc.Method for quantification of stratum corneum hydration using diffuse reflectance spectroscopy
FR2710517A1 * Title not available
JPH0440940A * Title not available
JPH05329163A * Title not available
JPH11244266A * Title not available
WO1998034097A1 *Jan 30, 1998Aug 6, 1998University College LondonDetermination of the ratio of absorption coefficients at different wavelengths in a scattering medium
WO2000071025A1 *May 22, 2000Nov 30, 2000Infralytic GmbhMethod and device for measuring the degree of organization of water in human and animal bodies
Non-Patent Citations
Reference
1 *Attas, M. et al., "Long-Wavelength Near-Infrared Spectroscopic Imaging for In-Vivo Skin Hydration Measurements," Vibrational Spectroscopy (Feb. 28, 2002), vol. 28,, No. 1, p. 37-43.*
2 *Edwardson, P. et al, "The Use of FT-IR for the Determination of Stratum Corneum Hydration In Vitro and In Vivo," J. Pharmaceutical & Biomed. Analysis, vol. 9, Nos. 10-12, pp. 1089-1094, 1991.*
3Johnson et al., "Monitoring of Extracellular and Total Body Water during Hemodialysis Using Multifrequency Bio-Electrical Impedance Analysis," Kidney and Blood Pressure Research, 19:94-99 (1996).
4 *Lucassen, G., et al., "Water Content and Water Profiles in Skin Measured by FTIR and Raman Spectroscopy," Proc. SPIE, vol. 4162, pp 39-45 (2000).*
5 *Martin, Kathleen, "In Vivo Measurements of Water in Skin by Near-Infrared Reflectance," Applied Spectroscopy, vol. 52, No. 7, 1998, pp 1001-7.*
6 *Takeo, T. et al., "Skin Hydration State Estimation Using a Fiber-Optic Refractometer," Applied Optics, vol. 33. No. 19, Jul. 1994, p. 4267-72.*
7Thompson et al., Can bioelectrical impedance be used to measure total body water in dialysis patients? Physiol. Meas., 14:455-461 (1993).
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US7239902Oct 30, 2003Jul 3, 2007Nellor Puritan Bennett IncorporatedDevice and method for monitoring body fluid and electrolyte disorders
US7277741Mar 9, 2004Oct 2, 2007Nellcor Puritan Bennett IncorporatedPulse oximetry motion artifact rejection using near infrared absorption by water
US7409863 *Oct 5, 2005Aug 12, 2008Sensata Technologies Maryland, Inc.Pressure sensor
US7643858Sep 28, 2006Jan 5, 2010Nellcor Puritan Bennett LlcSystem and method for detection of brain edema using spectrophotometry
US7647084Jul 28, 2006Jan 12, 2010Nellcor Puritan Bennett LlcMedical sensor and technique for using the same
US7650177Aug 1, 2006Jan 19, 2010Nellcor Puritan Bennett LlcMedical sensor for reducing motion artifacts and technique for using the same
US7657292Nov 18, 2005Feb 2, 2010Nellcor Puritan Bennett LlcMethod for evaluating extracellular water concentration in tissue
US7657294Aug 8, 2005Feb 2, 2010Nellcor Puritan Bennett LlcCompliant diaphragm medical sensor and technique for using the same
US7657295Feb 2, 2010Nellcor Puritan Bennett LlcMedical sensor and technique for using the same
US7657296Jul 28, 2006Feb 2, 2010Nellcor Puritan Bennett LlcUnitary medical sensor assembly and technique for using the same
US7658652Feb 9, 2010Nellcor Puritan Bennett LlcDevice and method for reducing crosstalk
US7676253Mar 9, 2010Nellcor Puritan Bennett LlcMedical sensor and technique for using the same
US7680522Sep 29, 2006Mar 16, 2010Nellcor Puritan Bennett LlcMethod and apparatus for detecting misapplied sensors
US7684842Mar 23, 2010Nellcor Puritan Bennett LlcSystem and method for preventing sensor misuse
US7684843Mar 23, 2010Nellcor Puritan Bennett LlcMedical sensor and technique for using the same
US7693559Apr 6, 2010Nellcor Puritan Bennett LlcMedical sensor having a deformable region and technique for using the same
US7698002Apr 13, 2010Nellcor Puritan Bennett LlcSystems and methods for user interface and identification in a medical device
US7706896Sep 29, 2006Apr 27, 2010Nellcor Puritan Bennett LlcUser interface and identification in a medical device system and method
US7720516Nov 16, 2004May 18, 2010Nellcor Puritan Bennett LlcMotion compatible sensor for non-invasive optical blood analysis
US7725146Sep 29, 2005May 25, 2010Nellcor Puritan Bennett LlcSystem and method for pre-processing waveforms
US7725147Sep 29, 2005May 25, 2010Nellcor Puritan Bennett LlcSystem and method for removing artifacts from waveforms
US7729736Aug 30, 2006Jun 1, 2010Nellcor Puritan Bennett LlcMedical sensor and technique for using the same
US7738937Jul 28, 2006Jun 15, 2010Nellcor Puritan Bennett LlcMedical sensor and technique for using the same
US7794266Sep 14, 2010Nellcor Puritan Bennett LlcDevice and method for reducing crosstalk
US7796403Sep 14, 2010Nellcor Puritan Bennett LlcMeans for mechanical registration and mechanical-electrical coupling of a faraday shield to a photodetector and an electrical circuit
US7848891Sep 29, 2006Dec 7, 2010Nellcor Puritan Bennett LlcModulation ratio determination with accommodation of uncertainty
US7869849Jan 11, 2011Nellcor Puritan Bennett LlcOpaque, electrically nonconductive region on a medical sensor
US7869850Sep 29, 2005Jan 11, 2011Nellcor Puritan Bennett LlcMedical sensor for reducing motion artifacts and technique for using the same
US7880884Feb 1, 2011Nellcor Puritan Bennett LlcSystem and method for coating and shielding electronic sensor components
US7881762Sep 30, 2005Feb 1, 2011Nellcor Puritan Bennett LlcClip-style medical sensor and technique for using the same
US7881781Feb 1, 2011Cardiac Pacemakers, Inc.Thoracic impedance detection with blood resistivity compensation
US7887345Jun 30, 2008Feb 15, 2011Nellcor Puritan Bennett LlcSingle use connector for pulse oximetry sensors
US7890153Feb 15, 2011Nellcor Puritan Bennett LlcSystem and method for mitigating interference in pulse oximetry
US7890154Dec 3, 2008Feb 15, 2011Nellcor Puritan Bennett LlcSelection of ensemble averaging weights for a pulse oximeter based on signal quality metrics
US7894869Mar 9, 2007Feb 22, 2011Nellcor Puritan Bennett LlcMultiple configuration medical sensor and technique for using the same
US7899510Mar 1, 2011Nellcor Puritan Bennett LlcMedical sensor and technique for using the same
US7904130Mar 8, 2011Nellcor Puritan Bennett LlcMedical sensor and technique for using the same
US7907997 *Mar 15, 2011Cardiac Pacemakers, Inc.Enhancements to the detection of pulmonary edema when using transthoracic impedance
US7922665Sep 28, 2006Apr 12, 2011Nellcor Puritan Bennett LlcSystem and method for pulse rate calculation using a scheme for alternate weighting
US7925511Apr 12, 2011Nellcor Puritan Bennett LlcSystem and method for secure voice identification in a medical device
US8007441May 7, 2009Aug 30, 2011Nellcor Puritan Bennett LlcPulse oximeter with alternate heart-rate determination
US8060171Aug 1, 2006Nov 15, 2011Nellcor Puritan Bennett LlcMedical sensor for reducing motion artifacts and technique for using the same
US8062221Sep 30, 2005Nov 22, 2011Nellcor Puritan Bennett LlcSensor for tissue gas detection and technique for using the same
US8064975Nov 22, 2011Nellcor Puritan Bennett LlcSystem and method for probability based determination of estimated oxygen saturation
US8068890Nov 29, 2011Nellcor Puritan Bennett LlcPulse oximetry sensor switchover
US8068891Sep 29, 2006Nov 29, 2011Nellcor Puritan Bennett LlcSymmetric LED array for pulse oximetry
US8070508Dec 6, 2011Nellcor Puritan Bennett LlcMethod and apparatus for aligning and securing a cable strain relief
US8071935Jun 30, 2008Dec 6, 2011Nellcor Puritan Bennett LlcOptical detector with an overmolded faraday shield
US8073518 *May 2, 2006Dec 6, 2011Nellcor Puritan Bennett LlcClip-style medical sensor and technique for using the same
US8092379Sep 29, 2005Jan 10, 2012Nellcor Puritan Bennett LlcMethod and system for determining when to reposition a physiological sensor
US8092993Jan 10, 2012Nellcor Puritan Bennett LlcHydrogel thin film for use as a biosensor
US8095192Dec 2, 2005Jan 10, 2012Nellcor Puritan Bennett LlcSignal quality metrics design for qualifying data for a physiological monitor
US8109882Feb 7, 2012Nellcor Puritan Bennett LlcSystem and method for venous pulsation detection using near infrared wavelengths
US8112375Mar 27, 2009Feb 7, 2012Nellcor Puritan Bennett LlcWavelength selection and outlier detection in reduced rank linear models
US8116852Sep 29, 2006Feb 14, 2012Nellcor Puritan Bennett LlcSystem and method for detection of skin wounds and compartment syndromes
US8133176Sep 30, 2005Mar 13, 2012Tyco Healthcare Group LpMethod and circuit for indicating quality and accuracy of physiological measurements
US8135448Nov 18, 2005Mar 13, 2012Nellcor Puritan Bennett LlcSystems and methods to assess one or more body fluid metrics
US8140272Mar 27, 2009Mar 20, 2012Nellcor Puritan Bennett LlcSystem and method for unmixing spectroscopic observations with nonnegative matrix factorization
US8145288Aug 22, 2006Mar 27, 2012Nellcor Puritan Bennett LlcMedical sensor for reducing signal artifacts and technique for using the same
US8160668Sep 29, 2006Apr 17, 2012Nellcor Puritan Bennett LlcPathological condition detector using kernel methods and oximeters
US8160683Dec 30, 2010Apr 17, 2012Nellcor Puritan Bennett LlcSystem and method for integrating voice with a medical device
US8160726Feb 16, 2010Apr 17, 2012Nellcor Puritan Bennett LlcUser interface and identification in a medical device system and method
US8175665Mar 9, 2007May 8, 2012Nellcor Puritan Bennett LlcMethod and apparatus for spectroscopic tissue analyte measurement
US8175667May 8, 2012Nellcor Puritan Bennett LlcSymmetric LED array for pulse oximetry
US8175670Sep 15, 2006May 8, 2012Nellcor Puritan Bennett LlcPulse oximetry signal correction using near infrared absorption by water
US8175671Sep 22, 2006May 8, 2012Nellcor Puritan Bennett LlcMedical sensor for reducing signal artifacts and technique for using the same
US8180419May 15, 2012Nellcor Puritan Bennett LlcTissue hydration estimation by spectral absorption bandwidth measurement
US8190224May 29, 2012Nellcor Puritan Bennett LlcMedical sensor for reducing signal artifacts and technique for using the same
US8190225May 29, 2012Nellcor Puritan Bennett LlcMedical sensor for reducing signal artifacts and technique for using the same
US8195262Jun 5, 2012Nellcor Puritan Bennett LlcSwitch-mode oximeter LED drive with a single inductor
US8195263Sep 18, 2007Jun 5, 2012Nellcor Puritan Bennett LlcPulse oximetry motion artifact rejection using near infrared absorption by water
US8195264Jun 5, 2012Nellcor Puritan Bennett LlcMedical sensor for reducing signal artifacts and technique for using the same
US8199007Jun 12, 2012Nellcor Puritan Bennett LlcFlex circuit snap track for a biometric sensor
US8204567Dec 13, 2007Jun 19, 2012Nellcor Puritan Bennett LlcSignal demodulation
US8219170Jul 10, 2012Nellcor Puritan Bennett LlcSystem and method for practicing spectrophotometry using light emitting nanostructure devices
US8221319Jul 17, 2012Nellcor Puritan Bennett LlcMedical device for assessing intravascular blood volume and technique for using the same
US8233954Jul 31, 2012Nellcor Puritan Bennett LlcMucosal sensor for the assessment of tissue and blood constituents and technique for using the same
US8238994Jun 12, 2009Aug 7, 2012Nellcor Puritan Bennett LlcAdjusting parameters used in pulse oximetry analysis
US8255025Aug 28, 2012Nellcor Puritan Bennett LlcBronchial or tracheal tissular water content sensor and system
US8260391Sep 4, 2012Nellcor Puritan Bennett LlcMedical sensor for reducing motion artifacts and technique for using the same
US8265724Mar 9, 2007Sep 11, 2012Nellcor Puritan Bennett LlcCancellation of light shunting
US8275553Sep 25, 2012Nellcor Puritan Bennett LlcSystem and method for evaluating physiological parameter data
US8280469Mar 9, 2007Oct 2, 2012Nellcor Puritan Bennett LlcMethod for detection of aberrant tissue spectra
US8292809Oct 23, 2012Nellcor Puritan Bennett LlcDetecting chemical components from spectroscopic observations
US8311601Nov 13, 2012Nellcor Puritan Bennett LlcReflectance and/or transmissive pulse oximeter
US8311602Nov 13, 2012Nellcor Puritan Bennett LlcCompliant diaphragm medical sensor and technique for using the same
US8315684Nov 20, 2012Covidien LpOximeter ambient light cancellation
US8315685Jun 25, 2009Nov 20, 2012Nellcor Puritan Bennett LlcFlexible medical sensor enclosure
US8319401Nov 27, 2012Nellcor Puritan Bennett LlcAir movement energy harvesting with wireless sensors
US8346327Mar 9, 2007Jan 1, 2013Covidien LpMethod for identification of sensor site by local skin spectrum data
US8346328Jan 1, 2013Covidien LpMedical sensor and technique for using the same
US8352004Jan 8, 2013Covidien LpMedical sensor and technique for using the same
US8352009Jan 5, 2009Jan 8, 2013Covidien LpMedical sensor and technique for using the same
US8352010May 26, 2009Jan 8, 2013Covidien LpFolding medical sensor and technique for using the same
US8357090Jan 22, 2013Covidien LpMethod and apparatus for estimating water reserves
US8364220Sep 25, 2008Jan 29, 2013Covidien LpMedical sensor and technique for using the same
US8364221Jan 29, 2013Covidien LpPatient monitoring alarm escalation system and method
US8364224Jan 29, 2013Covidien LpSystem and method for facilitating sensor and monitor communication
US8366613Dec 24, 2008Feb 5, 2013Covidien LpLED drive circuit for pulse oximetry and method for using same
US8376955 *Sep 29, 2009Feb 19, 2013Covidien LpSpectroscopic method and system for assessing tissue temperature
US8380271Jun 15, 2006Feb 19, 2013Covidien LpSystem and method for generating customizable audible beep tones and alarms
US8386000Feb 26, 2013Covidien LpSystem and method for photon density wave pulse oximetry and pulse hemometry
US8386002Feb 26, 2013Covidien LpOptically aligned pulse oximetry sensor and technique for using the same
US8391941Jul 17, 2009Mar 5, 2013Covidien LpSystem and method for memory switching for multiple configuration medical sensor
US8391943Mar 31, 2010Mar 5, 2013Covidien LpMulti-wavelength photon density wave system using an optical switch
US8396527Sep 22, 2006Mar 12, 2013Covidien LpMedical sensor for reducing signal artifacts and technique for using the same
US8401606Mar 19, 2013Covidien LpNuisance alarm reductions in a physiological monitor
US8401607Mar 19, 2013Covidien LpNuisance alarm reductions in a physiological monitor
US8401608Mar 19, 2013Covidien LpMethod of analyzing photon density waves in a medical monitor
US8406865Sep 30, 2008Mar 26, 2013Covidien LpBioimpedance system and sensor and technique for using the same
US8417309Apr 9, 2013Covidien LpMedical sensor
US8417310Apr 9, 2013Covidien LpDigital switching in multi-site sensor
US8423109Jun 20, 2008Apr 16, 2013Covidien LpMethod for enhancing pulse oximery calculations in the presence of correlated artifacts
US8423112Apr 16, 2013Covidien LpMedical sensor and technique for using the same
US8428675Aug 19, 2009Apr 23, 2013Covidien LpNanofiber adhesives used in medical devices
US8428676Mar 31, 2010Apr 23, 2013Covidien LpThermoelectric energy harvesting with wireless sensors
US8433382Apr 30, 2013Covidien LpTransmission mode photon density wave system and method
US8433383Apr 30, 2013Covidien LpStacked adhesive optical sensor
US8437822Mar 27, 2009May 7, 2013Covidien LpSystem and method for estimating blood analyte concentration
US8437826Nov 7, 2011May 7, 2013Covidien LpClip-style medical sensor and technique for using the same
US8442608May 14, 2013Covidien LpSystem and method for estimating physiological parameters by deconvolving artifacts
US8452364Dec 24, 2008May 28, 2013Covidien LLPSystem and method for attaching a sensor to a patient's skin
US8452366Mar 16, 2009May 28, 2013Covidien LpMedical monitoring device with flexible circuitry
US8457722Jun 4, 2013Covidien LpDevice and method for monitoring body fluid and electrolyte disorders
US8483788Feb 28, 2010Jul 9, 2013Covidien LpMotion compensation in a sensor
US8483790Mar 7, 2007Jul 9, 2013Covidien LpNon-adhesive oximeter sensor for sensitive skin
US8483818Feb 23, 2011Jul 9, 2013Cardiac Pacemakers, Inc.Enhancements to the detection of pulmonary edema when using transthoracic impedance
US8494604Sep 21, 2009Jul 23, 2013Covidien LpWavelength-division multiplexing in a multi-wavelength photon density wave system
US8494606Aug 19, 2009Jul 23, 2013Covidien LpPhotoplethysmography with controlled application of sensor pressure
US8494786Jul 30, 2009Jul 23, 2013Covidien LpExponential sampling of red and infrared signals
US8498683Apr 30, 2010Jul 30, 2013Covidien LLPMethod for respiration rate and blood pressure alarm management
US8505821Jun 30, 2009Aug 13, 2013Covidien LpSystem and method for providing sensor quality assurance
US8509866Jan 26, 2007Aug 13, 2013Covidien LpDevice and method for monitoring body fluid and electrolyte disorders
US8509869May 15, 2009Aug 13, 2013Covidien LpMethod and apparatus for detecting and analyzing variations in a physiologic parameter
US8512260Feb 15, 2011Aug 20, 2013The Regents Of The University Of Colorado, A Body CorporateStatistical, noninvasive measurement of intracranial pressure
US8515511Sep 29, 2009Aug 20, 2013Covidien LpSensor with an optical coupling material to improve plethysmographic measurements and method of using the same
US8528185Aug 21, 2009Sep 10, 2013Covidien LpBi-stable medical sensor and technique for using the same
US8538500Oct 20, 2011Sep 17, 2013Covidien LpSystem and method for probability based determination of estimated oxygen saturation
US8553223Mar 31, 2010Oct 8, 2013Covidien LpBiodegradable fibers for sensing
US8560036Dec 28, 2010Oct 15, 2013Covidien LpSelection of ensemble averaging weights for a pulse oximeter based on signal quality metrics
US8571621Jun 24, 2010Oct 29, 2013Covidien LpMinimax filtering for pulse oximetry
US8577434Dec 24, 2008Nov 5, 2013Covidien LpCoaxial LED light sources
US8577436Mar 5, 2012Nov 5, 2013Covidien LpMedical sensor for reducing signal artifacts and technique for using the same
US8600469Feb 7, 2011Dec 3, 2013Covidien LpMedical sensor and technique for using the same
US8610769Feb 28, 2011Dec 17, 2013Covidien LpMedical monitor data collection system and method
US8611977Mar 8, 2004Dec 17, 2013Covidien LpMethod and apparatus for optical detection of mixed venous and arterial blood pulsation in tissue
US8622916Oct 30, 2009Jan 7, 2014Covidien LpSystem and method for facilitating observation of monitored physiologic data
US8632463Apr 25, 2006Jan 21, 2014Philometron, Inc.Gateway platform for biological monitoring and delivery of therapeutic compounds
US8634891May 20, 2009Jan 21, 2014Covidien LpMethod and system for self regulation of sensor component contact pressure
US8649839Jun 24, 2010Feb 11, 2014Covidien LpMotion compatible sensor for non-invasive optical blood analysis
US8660626Feb 4, 2011Feb 25, 2014Covidien LpSystem and method for mitigating interference in pulse oximetry
US8666467Jun 13, 2012Mar 4, 2014Lawrence A. LynnSystem and method for SPO2 instability detection and quantification
US8690769Apr 21, 2009Apr 8, 2014Philometron, Inc.Metabolic energy monitoring system
US8690864Mar 9, 2007Apr 8, 2014Covidien LpSystem and method for controlling tissue treatment
US8696593Sep 27, 2006Apr 15, 2014Covidien LpMethod and system for monitoring intracranial pressure
US8702606May 16, 2008Apr 22, 2014Covidien LpPatient monitoring help video system and method
US8704666Sep 21, 2009Apr 22, 2014Covidien LpMedical device interface customization systems and methods
US8728001Jan 7, 2010May 20, 2014Lawrence A. LynnNasal capnographic pressure monitoring system
US8728059Sep 29, 2006May 20, 2014Covidien LpSystem and method for assuring validity of monitoring parameter in combination with a therapeutic device
US8744543May 21, 2010Jun 3, 2014Covidien LpSystem and method for removing artifacts from waveforms
US8750953Feb 18, 2009Jun 10, 2014Covidien LpMethods and systems for alerting practitioners to physiological conditions
US8781753Sep 6, 2012Jul 15, 2014Covidien LpSystem and method for evaluating physiological parameter data
US8788001Sep 21, 2009Jul 22, 2014Covidien LpTime-division multiplexing in a multi-wavelength photon density wave system
US8798704Sep 13, 2010Aug 5, 2014Covidien LpPhotoacoustic spectroscopy method and system to discern sepsis from shock
US8801622Mar 7, 2011Aug 12, 2014Covidien LpSystem and method for pulse rate calculation using a scheme for alternate weighting
US8818475Mar 28, 2013Aug 26, 2014Covidien LpMethod for enhancing pulse oximetry calculations in the presence of correlated artifacts
US8838196Mar 14, 2013Sep 16, 2014Covidien LpNuisance alarm reductions in a physiological monitor
US8855749Aug 16, 2010Oct 7, 2014Covidien LpDetermination of a physiological parameter
US8862194Jun 30, 2008Oct 14, 2014Covidien LpMethod for improved oxygen saturation estimation in the presence of noise
US8862196May 6, 2011Oct 14, 2014Lawrence A. LynnSystem and method for automatic detection of a plurality of SP02 time series pattern types
US8874180Feb 28, 2010Oct 28, 2014Covidien LpAmbient electromagnetic energy harvesting with wireless sensors
US8874181Oct 29, 2012Oct 28, 2014Covidien LpOximeter ambient light cancellation
US8897850Dec 29, 2008Nov 25, 2014Covidien LpSensor with integrated living hinge and spring
US8914088Sep 30, 2008Dec 16, 2014Covidien LpMedical sensor and technique for using the same
US8923945Sep 13, 2010Dec 30, 2014Covidien LpDetermination of a physiological parameter
US8930145Jul 28, 2010Jan 6, 2015Covidien LpLight focusing continuous wave photoacoustic spectroscopy and its applications to patient monitoring
US8932227Feb 10, 2006Jan 13, 2015Lawrence A. LynnSystem and method for CO2 and oximetry integration
US8965473Oct 6, 2011Feb 24, 2015Covidien LpMedical sensor for reducing motion artifacts and technique for using the same
US8968193Sep 30, 2008Mar 3, 2015Covidien LpSystem and method for enabling a research mode on physiological monitors
US8983800Oct 11, 2005Mar 17, 2015Covidien LpSelection of preset filter parameters based on signal quality
US9010634Jun 30, 2009Apr 21, 2015Covidien LpSystem and method for linking patient data to a patient and providing sensor quality assurance
US9031793Sep 5, 2012May 12, 2015Lawrence A. LynnCentralized hospital monitoring system for automatically detecting upper airway instability and for preventing and aborting adverse drug reactions
US9042952Feb 10, 2006May 26, 2015Lawrence A. LynnSystem and method for automatic detection of a plurality of SPO2 time series pattern types
US9053222May 7, 2009Jun 9, 2015Lawrence A. LynnPatient safety processor
US9075910Mar 11, 2011Jul 7, 2015Philometron, Inc.Physiological monitor system for determining medication delivery and outcome
US9078610Feb 22, 2010Jul 14, 2015Covidien LpMotion energy harvesting with wireless sensors
US9089275May 11, 2005Jul 28, 2015Cardiac Pacemakers, Inc.Sensitivity and specificity of pulmonary edema detection when using transthoracic impedance
US20030220548 *May 20, 2003Nov 27, 2003Mallinckrodt Inc.Device and method for monitoring body fluid and electrolyte disorders
US20040230106 *Oct 30, 2003Nov 18, 2004Nellcor Puritan Bennett IncorporatedDevice and method for monitoring body fluid and electrolyte disorders
US20050197579 *Mar 8, 2004Sep 8, 2005Nellcor Puritan Bennett IncorporatedMethod and apparatus for optical detection of mixed venous and arterial blood pulsation in tissue
US20050203357 *Mar 9, 2004Sep 15, 2005Nellcor Puritan Bennett IncorporatedPulse oximetry motion artifact rejection using near infrared absorption by water
US20060052678 *Sep 2, 2005Mar 9, 2006Drinan Darrel DMonitoring platform for wound and ulcer monitoring and detection
US20060058593 *Sep 2, 2005Mar 16, 2006Drinan Darrel DMonitoring platform for detection of hypovolemia, hemorrhage and blood loss
US20060072868 *Oct 5, 2005Apr 6, 2006Bateman David EPressure sensor
US20060084864 *Sep 30, 2005Apr 20, 2006Schmitt Joseph MDevice and method for monitoring body fluid and electrolyte disorders
US20060253005 *Apr 11, 2006Nov 9, 2006Drinan Darrel DGateway platform for biological monitoring and delivery of therapeutic compounds
US20060253016 *Nov 18, 2005Nov 9, 2006R Baker Clark JrSystems and methods to assess one or more body fluid metrics
US20060258952 *May 11, 2005Nov 16, 2006Cardiac Pacemakers, Inc.Enhancements to the detection of pulmonary edema when using transthoracic impedance
US20060264720 *Jul 26, 2006Nov 23, 2006Nellcor Puritan Bennett Incorporated A Corporation Of DelawareSwitch-mode oximeter LED drive with a single inductor
US20060293609 *May 11, 2005Dec 28, 2006Cardiac Pacemakers, Inc.Sensitivity and specificity of pulmonary edema detection when using transthoracic impedance
US20070118027 *Nov 18, 2005May 24, 2007Baker Clark R JrMethod for evaluating extracellular water concentration in tissue
US20070129614 *Jan 26, 2007Jun 7, 2007Nellcor Puritan Bennett Inc.Device and method for monitoring body fluid and electrolyte disorders
US20070260131 *May 2, 2006Nov 8, 2007Chin Rodney PClip-style medical sensor and technique for using the same
US20070299357 *Jun 9, 2006Dec 27, 2007Diana VillegasBronchial or tracheal tissular water content sensor and system
US20080076983 *Sep 27, 2006Mar 27, 2008Nellcor Puritan Bennett IncorporatedTissue hydration estimation by spectral absorption bandwidth measurement
US20080076986 *Sep 20, 2006Mar 27, 2008Nellcor Puritan Bennett Inc.System and method for probability based determination of estimated oxygen saturation
US20080081956 *Sep 29, 2006Apr 3, 2008Jayesh ShahSystem and method for integrating voice with a medical device
US20080081974 *Sep 29, 2006Apr 3, 2008Nellcor Puritan Bennett IncorporatedPathological condition detector using kernel methods and oximeters
US20080081975 *Sep 28, 2006Apr 3, 2008Geeta AgasheSystem and method for detection of brain edema using spectrophotometry
US20080082009 *Sep 28, 2006Apr 3, 2008Nellcor Puritan Bennett Inc.System and method for pulse rate calculation using a scheme for alternate weighting
US20080082338 *Sep 29, 2006Apr 3, 2008O'neil Michael PSystems and methods for secure voice identification and medical device interface
US20080082339 *Sep 29, 2006Apr 3, 2008Nellcor Puritan Bennett IncorporatedSystem and method for secure voice identification in a medical device
US20080097175 *Sep 29, 2006Apr 24, 2008Boyce Robin SSystem and method for display control of patient monitor
US20080114226 *Sep 29, 2006May 15, 2008Doug MusicSystems and methods for user interface and identification in a medical device
US20080146906 *Sep 29, 2006Jun 19, 2008Nellcor Puritan Bennett IncorporatedSystem and method for detection of skin wounds and compartment syndromes
US20080189783 *Sep 29, 2006Aug 7, 2008Doug MusicUser interface and identification in a medical device system and method
US20080220512 *Mar 9, 2007Sep 11, 2008Nellcor Puritan Bennett LlcTunable laser-based spectroscopy system for non-invasively measuring body water content
US20080221406 *Mar 9, 2007Sep 11, 2008Baker Clark RMethod and apparatus for estimating water reserves
US20080221409 *Mar 9, 2007Sep 11, 2008Nellcor Puritan Bennett LlcSystem and method for controlling tissue treatment
US20080221411 *Mar 9, 2007Sep 11, 2008Nellcor Puritan Bennett LlcSystem and method for tissue hydration estimation
US20080221426 *Mar 9, 2007Sep 11, 2008Nellcor Puritan Bennett LlcMethods and apparatus for detecting misapplied optical sensors
US20090080007 *Sep 22, 2008Mar 26, 2009Brother Kogyo Kabushiki KaishaPrinting device and method therefor
US20090154573 *Dec 13, 2007Jun 18, 2009Nellcor Puritan Bennett LlcSignal Demodulation
US20090327515 *Dec 31, 2009Thomas PriceMedical Monitor With Network Connectivity
US20100049004 *Feb 25, 2010Philometron, Inc.Metabolic energy monitoring system
US20100076336 *Dec 1, 2009Mar 25, 2010Stahmann Jeffrey EThoracic impedance detection with blood resistivity compensation
US20100081960 *Apr 1, 2010Nellcor Puritan Bennett LlcBioimpedance System and Sensor and Technique for Using the Same
US20100113908 *Oct 30, 2009May 6, 2010Nellcor Puritan Bennett LlcSystem And Method For Facilitating Observation Of Monitored Physiologic Data
US20100113909 *Oct 30, 2009May 6, 2010Nellcor Puritan Bennett LlcSystem And Method For Facilitating Observation Of Monitored Physiologic Data
US20110034783 *Aug 10, 2009Feb 10, 2011Nellcor Puritan Bennett LlcSystems and methods for balancing power consumption and utility of wireless medical sensors
US20110071366 *Mar 24, 2011Nellcor Puritan Bennett LlcDetermination Of A Physiological Parameter
US20110071374 *Jun 24, 2010Mar 24, 2011Nellcor Puritan Bennett LlcMinimax Filtering For Pulse Oximetry
US20110071376 *Mar 24, 2011Nellcor Puritan Bennett LlcDetermination Of A Physiological Parameter
US20110077473 *Mar 31, 2011Nellcor Puritan Bennett LlcPatient sensor intercommunication circuitry for a medical monitor
US20110077485 *Sep 30, 2009Mar 31, 2011Nellcor Puritan Bennett LlcMethod Of Analyzing Photon Density Waves In A Medical Monitor
US20110077547 *Sep 29, 2009Mar 31, 2011Nellcor Puritan Bennett LlcSpectroscopic Method And System For Assessing Tissue Temperature
US20110098544 *Dec 30, 2010Apr 28, 2011Nellcor Puritan Bennett LlcSystem and method for integrating voice with a medical device
US20110172545 *Jul 14, 2011Gregory Zlatko GrudicActive Physical Perturbations to Enhance Intelligent Medical Monitoring
US20110201962 *Aug 18, 2011The Regents Of The University Of ColoradoStatistical, Noninvasive Measurement of Intracranial Pressure
US20110208010 *Aug 25, 2011Nellcor Puritan Bennett LlcMotion energy harvesting with wireless sensors
US20110213208 *Sep 1, 2011Nellcor Puritan Bennett LlcAmbient electromagnetic energy harvesting with wireless sensors
US20110213226 *Feb 28, 2010Sep 1, 2011Nellcor Puritan Bennett LlcMotion compensation in a sensor
US20110224912 *Sep 15, 2011Philometron, Inc.Physiological Monitor System for Determining Medication Delivery and Outcome
US20120323095 *Aug 29, 2012Dec 20, 2012Nellcor Puritan Bennett LlcMethod for detection of aberrant tissue spectra
USD626561Nov 2, 2010Nellcor Puritan Bennett LlcCircular satseconds indicator and triangular saturation pattern detection indicator for a patient monitor display panel
USD626562Nov 2, 2010Nellcor Puritan Bennett LlcTriangular saturation pattern detection indicator for a patient monitor display panel
USD736250Oct 8, 2010Aug 11, 2015Covidien LpPortion of a display panel with an indicator icon
WO2007061755A2Nov 16, 2006May 31, 2007Nellcor Puritan Bennett LlcSystems and methods to assess one or more body fluid metrics
WO2007145861A2May 30, 2007Dec 21, 2007Nellcor Puritan Bennett LlcBronchial or tracheal tissular water content sensor and system
Classifications
U.S. Classification600/310
International ClassificationG01N21/35, A61B5/00, A61B5/1455, A61B5/145, A61B5/024
Cooperative ClassificationA61B5/0053, G01N21/359, A61B5/02438, A61B5/14546, A61B5/4878, A61B5/0059
European ClassificationA61B5/00M, A61B5/145P, A61B5/48W4B, A61B5/00P, G01N21/35G
Legal Events
DateCodeEventDescription
Sep 10, 2001ASAssignment
Owner name: NELLCOR PURITAN BENNETT INCORPORATED, CALIFORNIA
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SCHMITT, JOSEPH M;REEL/FRAME:012152/0831
Effective date: 20010719
Jan 8, 2007FPAYFee payment
Year of fee payment: 4
Jan 10, 2011FPAYFee payment
Year of fee payment: 8
May 30, 2012ASAssignment
Owner name: NELLCOR PURITAN BENNETT LLC, COLORADO
Free format text: CHANGE OF NAME;ASSIGNOR:NELLCOR PURITAN BENNETT INCORPORATED;REEL/FRAME:028290/0199
Effective date: 20061220
Dec 10, 2012ASAssignment
Owner name: COVIDIEN LP, MASSACHUSETTS
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:NELLCOR PURITAN BENNETT LLC;REEL/FRAME:029433/0582
Effective date: 20120929
Dec 24, 2014FPAYFee payment
Year of fee payment: 12