Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS6616970 B2
Publication typeGrant
Application numberUS 09/988,315
Publication dateSep 9, 2003
Filing dateNov 19, 2001
Priority dateApr 8, 1999
Fee statusPaid
Also published asDE60017489D1, DE60017489T2, EP1043415A2, EP1043415A3, EP1043415B1, US6344264, US20020050102, USRE40962
Publication number09988315, 988315, US 6616970 B2, US 6616970B2, US-B2-6616970, US6616970 B2, US6616970B2
InventorsAnders Lenander, Mikael Lindholm
Original AssigneeSandvik Ab
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Cemented carbide body includes tungsten carbonide, 5-12 wt-% cobalt and 3-11 wt-% of cubic carbides of metals of titanium and tantalum, The cobalt binder phase is highly alloyed with tungsten with a Carbon tungsten ratio 0.75-0.95
US 6616970 B2
Abstract
Methods of making a coated cemented carbide body include: forming a powder mixture having WC, 5-12 wt % Co, 3-11% cubic carbides of Ta and Ti with a ratio of Ta/Ti is 1.0-4.0; adding N in an amount of 0.6-2.0% of the weight of Ta and Ti; milling and spray-drying the mixture to form a powder; compacting and sintering the powder at a temperature of 1300-1500° C., in a controlled atmosphere of about 50 mbar followed by cooling, whereby a body having a binder phase enriched and essentially gamma-phase free surface zone of 5-50 μm in thickness is obtained; applying a pre-coating treatment to the body; and appling a hard, wear-resistant coating to the body.
Images(1)
Previous page
Next page
Claims(5)
We claim:
1. A method of making a coated cemented carbide body having a gamma phase-free and binder rich surface zone comprising the steps of:
(i) forming a powder mixture comprising WC, 5-12 wt. % Co, 3-11 wt. % cubic carbides of Ta and Ti, where the ratio of Ta/Ti is 1.0-4.0;
(ii) adding N in an amount of 0.6-2.0% of the weight of Ta and Ti;
(iii) milling and spray drying the mixture to form a powder material with the desired properties;
(iv) compacting and sintering the powder material at a temperature of 1300-1500° C., in a controlled atmosphere of about 50 mbar followed by cooling, whereby a body having a binder phase enriched and essentially gamma phase free surface zone of 5-50 μm in thickness is obtained;
(v) applying a pre-coating treatment to the body; and
(vi) applying a hard, wear resistant coating.
2. The method of claim 1, further comprising adding a pressing agent and W to the powder mixture in an amount to give the body a CW ratio of 0.75-0.95, the CW ratio is expressed as CW ratio=Ms/(wt. % Co*0.0161), where Ms is the measured saturization magnetization of the body and wt. % Co is the weight percentage of Co in the cemented carbide.
3. The method according to claim 1, wherein the powder mixture comprises 7-10 wt. % of cubic carbides of the metals Ta and Ti.
4. The method according to claim 1, wherein the coating is applied using a CVD-technique.
5. The method according to claim 1, wherein the coating is applied using a MT-CVD-technique.
Description

This application is a divisional of application Ser. No. 09/545,448, filed on Apr. 7, 2000, now U.S. Pat. No. 6,344,264.

BACKGROUND OF THE INVENTION

The present invention relates to a coated cemented carbide cutting tool insert particularly useful for turning operations in steels or stainless steels, and is especially suited for operations with high demands regarding toughness properties of the insert.

High performance cutting tools must nowadays possess high wear resistance, high toughness properties and good resistance to plastic deformation. Improved toughness behaviour of a cutting insert can be obtained by increasing the WC grain size and/or by raising the overall binder phase content, but such changes will simultaneously result in significant loss of the plastic deformation resistance.

Methods to improve the toughness behaviour by introducing an essentially gamma phase-free and binder phase-enriched surface zone with a thickness of about 20-40 μm on the inserts by so-called “gradient sintering” techniques have been known for some time e.g. U.S. Pat. Nos. 4,277,283, 4,497,874, 4,548,786, 4,640,931, 5,484,468, 5,549,980, 5,649,279, 5,729,823. The characteristics of these patents are that the surface zone has a different composition than the bulk composition, and is depleted of gamma phase and binder phase enriched.

SUMMARY OF THE INVENTION

It has now surprisingly been found that by using a gamma phase consisting essentially of only TaC and TiC in addition to WC, by keeping the ratio between the elements Ta and Ti within specific limits, and having a highly W-alloyed binder phase, the toughness properties of the gradient sintered cutting inserts can be significantly improved without any loss of plastic deformation resistance.

A first aspect of the present invention provides a cutting tool insert for machining steel comprising a cemented carbide body comprising WC, 5-12 wt. % Co, 3-11 wt. % of cubic carbides of the metals Ta and Ti, and less than 0.1 wt. % of Nb where the ratio of Ta/Ti is 1.0-4.0, and the Co-binder phase is highly alloyed with W, having a CW-ratio of 0.75-0.95, the body also comprising a binder phase enriched and essentially gamma phase free surface zone with a thickness of 5-50 μm; and a coating.

A second aspect of the present invention provides a method of making a coated cemented carbide body having a gamma phase-free and binder rich surface zone comprising the steps of:

(i) forming a powder mixture comprising WC, 5-12 wt. % Co, 3-11 wt. % cubic carbides of Ta and Ti, where the ratio of Ta/Ti is 1.0-4.0;

(ii) adding N in an amount of 0.6-2.0% of the weight of Ta and Ti;

(iii) milling and spray drying the mixture to form a powder material with the desired properties;

(iv) compacting and sintering the powder material at a temperature of 1300-1500° C., in a controlled atmosphere of about 50 mbar followed by cooling, whereby a body having a binder phase enriched and essentially gamma phase free surface zone of 5-50 μm in thickness is obtained;

(v) applying a pre-coating treatment to the body; and

(vi) applying a hard, wear resistant coating.

BRIEF DESCRIPTION OF THE DRAWING

FIG. 1 is a plot showing the level of Co enrichment near the surface of an insert formed according to the present invention.

DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

According to the present invention there is now provided a coated cemented carbide insert with a 5-50 μm thick, preferably 10-30 μm thick, essentially gamma phase free and binder phase-enriched surface zone with an average binder phase content (by volume) preferably in the range 1.2-2.0 times the bulk binder phase content.

The gamma phase consists essentially of TaC and TiC and of any WC that dissolves into the gamma phase during sintering. The ratio Ta/Ti is between 1.0 and 4.0, preferably 2.0-3.0.

The binder phase is highly W-alloyed. The content of W in the binder phase can be expressed as a

CW-ratio=M s/(wt. Co*0.0161) where

Ms is the measured saturation magnetization of the cemented carbide body in kA/m and wt-% Co is the weight percentage of Co in the cemented carbide. The CW-ratio takes a value less than or equal to 1. The lower the CW-ratio, the higher the W-content in the binder phase. It has now-been found according to the invention that an improved cutting performance is achieved if the CW-ratio is in the range 0.75-0.95, preferably 0.80-0.85.

The present invention is applicable to cemented carbides with a composition of 5-12, preferably 9-11, weight percent of Co binder phase, and 3-11, preferably 7-10, weight percent TaC+TiC, and the balance being WC. The Nb content should not exceed 0.1 weight percent. The weight ratio Ta/Ti should be 1.0-4.0, preferably 2.0-3.0. The WC preferably has an average grain size of 1.0 to 4.0 μm, more preferably 1.5 to 3.0 μm. The cemented carbide body may contain less than 1 volume % of η-phase (M6C).

Inserts according to the invention are further provided with a coating preferably comprising 3-12 μm columnar TiCN-layer followed by a 1-8 μm thick Al2O3-layer deposited, for example, according to any of the U.S. Pat. Nos. 5,766,782, 5,654,035, 5,974,564, 5,702,808, preferably a κ-Al2O3-layer and preferably with an outermost thin layer of TiN which preferably is removed in the edge line by brushing or by blasting.

According to the invention, by applying coatings with different thickness on the cemented carbide body the property of the coated insert can be optimised to suit specific cutting conditions.

In one embodiment, a cemented carbide insert produced according to the invention is provided with a coating of: 6 μm TiCN, 5 μm Al2O3 and 1 μm TiN. This coated insert is particularly suited for cutting operation in steel.

In another embodiment, a cemented carbide insert produced according to the invention is provided with a coating of: 4 μm TiN, 2 μm Al2O3 and 1 μm TiN. This coating is particularly suited for cutting operations in stainless steels.

The invention also relates to a method of making cutting inserts comprising a cemented carbide substrate of a binder phase of Co, WC, a gamma phase of Ta and Ti, a binder phase enriched surface zone essentially free of gamma phase, and a coating. A powder mixture containing 5-12, preferably 9-11, weight percent of binder phase consisting of Co, and 3-11, preferably 7-10, weight percent TaC+TiC, and the balance WC with an average grain size of 1.0-4.0 μm, more preferably 1.5-3.0 μm, is prepared. The Nb content should not exceed 0.1 weight percent. The weight ratio Ta/Ti should be 1.0-4.0, preferably 2.0-3.0. Well-controlled amounts of nitrogen have to be added either the powder as carbonitrides and/or added during the sintering process via the sintering gas atmosphere. The amount of nitrogen added will determine the rate of dissolution of the cubic phases during the sintering process and hence determine the overall distribution of the elements in the cemented carbide after solidification. The optimum amount of nitrogen to be added depends on the composition of the cemented carbide and, in particular, on the amount of cubic phases and varies between 0.6 and 2.0% of the weight of the elements Ti and Ta. The exact conditions depend to a certain extent on the design of the sintering equipment being used. It is within the purview of the skilled artisan to determine whether the requisite surface zone of the cemented carbide have been obtained and to modify the nitrogen addition and the sintering process in accordance with the present specification in order to obtain the desired result.

The raw materials are mixed with pressing agent and, optionally W, such that the desired CW-ratio is obtained. The mixture is milled and spray dried to obtain a powder material with the desired properties. Next, the powder material is compacted and sintered. Sintering is performed at a temperature of 1300-1500° C., in a controlled atmosphere of about 50 mbar followed by cooling. After conventional post sintering treatments, including edge rounding, a hard, wear resistant coating according to above is deposited by CVD- or MT-CVD-technique.

EXAMPLE 1

A.) Cemented carbide turning inserts of the style CNMG 120408-PM and SNMG120412-PR with the composition 9.9 wt % Co, 6.0 wt % TaC, 2.5 wt % TiC, and 0.3 wt % TiN, with the balance WC having an average grain size of 2.0 μm were produced according to the invention. The nitrogen was added to the carbide powder as TiCN. Sintering was done at 1450° C. in a atmosphere of Ar at a total pressure of about 50 mbar.

Metallographic investigation showed that the inserts had a gamma phase free zone of 15 μm. FIG. 1 shows a plot of the Co enrichment near the surface measured by an image analysis technique. The Co is enriched to a peak level of 1.3 times the bulk content. Magnetic saturation values were recorded and used for calculating CW-values. An average CW-value of 0.81 was obtained.

After a pre-coating treatment like edge honing, cleaning etc. the inserts were coated in a CVD-process comprising a first thin layer (less than 1 μm) of TiN followed by 6 μm thick layer of TiCN with columnar grains by using MTCVD-techniques (process temperature 850° C. and CH3CN as the carbon/nitrogen source). In a subsequent process step during the same coating cycle, a 5 μm thick κ-Al2O3 layer was deposited according to U.S. Pat. No. 5,974,564. On top of the κ-Al2O3 layer a 1.0 μm TiN layer was deposited. The coated inserts were brushed in order to smoothly remove the TiN coating from the edge line.

B.) Cemented carbide turning inserts of the style CNMG 120408-PM and SNMG120412-PR with the composition 10.0 wt % Co, 2.9 wt % TaC, 3.4 wt % TiC, 0.5 wt % NbC and 0.2 wt % TiN and the balance WC with an average grain size of 2.1 μm were produced. The inserts were sintered in the same process as A. Metallographic investigation showed that the produced inserts had a gamma phase free zone of 15 μm. Magnetic saturation values were recorded and used for calculating CW-values. An average CW-value of 0.81 was obtained. The inserts were subject to the same pre-coating treatment as A, coated in the same coating process and also brushed in the saute way as A.

C.) Cemented carbide turning inserts of the style CNMG 120408-PM and SNMG120412-PR with the composition 10.0 wt % Co, 3.0 wt % TaC, 6.3 wt % ZrC and balance WC with an average grain size of 2.5 μm were produced.

Metallographic investigation showed that the produced inserts had a gamma phase free zone of 12 μm. Magnetic saturation values were recorded and used for calculating CW-values. An average CW-value of 0.79 was obtained. The inserts were subject to the same pre-coating treatment as A, coated in the same coating process and also brushed in the same way as A.

EXAMPLE 2

Inserts from A, B and C were tested with respect to toughness in a longitudinal turning operation with interrupted cuts.

Material; Carbon steel SS1312.

Cutting data:

Cutting speed 130 m/min
Depth of cut 1.5 mm

Feed=Starting with 0.15 mm and gradually increased by 0.10 mm/min until breakage of the edge

8 edges of each variant were tested

Inserts style: CNMG120408-PM

Results:

Mean feed at breakage
Inserts A 0.31 mm/rev
Inserts B 0.22 mm/rev
Inserts C 0.22 mm/rev

EXAMPLE 3

Inserts from A, B and C were tested with respect to resistance to plastic deformation in longitudinal turning of alloyed steel (AISI 4340).

Insert style: CNMG 120408-PM

Cutting data:

Cutting speed = 100 m/min
Feed = 0.7 mm/rev.
Depth of cut = 2 mm
Time in cut = 0.50 min

The plastic deformation was measured as the edge depression at the nose of the inserts.

Results:

Edge depression, μm
Insert A 49
Insert B 63
Insert C 62

EXAMPLE 4

Tests performed at an end user producing rear shaft for lorries. The inserts from A and C were tested in a three turning operations with high toughness demands due to interrupted cuts. The inserts were run until breakage of the edge. The insert style SNMG120412-PR was used.

Results:

Number of machined components
Operation  1  2  3
Variant A 172 219 119
Variant C  20  11  50

Examples 2, 3 and 4 show that the inserts A according to the invention surprisingly exhibit much better toughness in combination with somewhat better plastic deformation resistance in comparison to conventional inserts B and C.

The foregoing has described the principles, preferred embodiments and modes of operation of the present invention. However, the invention should not be construed as being limited to the particular embodiments discussed. Thus the above-described embodiments should be regarded as illustrative rather than restrictive, and it should be appreciated that variations may be made in those embodiments by workers skilled in the art without departing from the scope of the present invention as defined by the following claims.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US4277283Dec 19, 1978Jul 7, 1981Sumitomo Electric Industries, Ltd.Sintered hard metal and the method for producing the same
US4497874Apr 28, 1983Feb 5, 1985General Electric CompanyCoated carbide cutting tool insert
US4610931Mar 8, 1984Sep 9, 1986Kennametal Inc.Preferentially binder enriched cemented carbide bodies and method of manufacture
US4708037 *Dec 19, 1986Nov 24, 1987Gte Laboratories IncorporatedCoated cemented carbide tool for steel roughing applications and methods for machining
US5484468Feb 7, 1994Jan 16, 1996Sandvik AbCemented carbide with binder phase enriched surface zone and enhanced edge toughness behavior and process for making same
US5494635 *May 20, 1993Feb 27, 1996Valenite Inc.Stratified enriched zones formed by the gas phase carburization and the slow cooling of cemented carbide substrates, and methods of manufacture
US5549980Jun 10, 1994Aug 27, 1996Sandvik AbCemented carbide with binder phase enriched surface zone
US5649279Nov 17, 1994Jul 15, 1997Sandvik AbCemented carbide with binder phase enriched surface zone
US5654035Sep 22, 1995Aug 5, 1997Sandvik AbMethod of coating a body with an α-alumina coating
US5674564May 30, 1995Oct 7, 1997Sandvik AbAlumina-coated sintered body
US5702808Nov 14, 1995Dec 30, 1997Sandvik AbAl2 O2 -coated cutting tool preferably for near net shape machining
US5729823Mar 14, 1996Mar 17, 1998Sandvik AbCemented carbide with binder phase enriched surface zone
US5766782Dec 29, 1994Jun 16, 1998Sandvik AbTool having outermost layer of alumina with controlled microstructure in contact with titanium oxycarbonitride layer; wear resistance
US5786069Aug 28, 1996Jul 28, 1998Sandvik AbCoated turning insert
US6326093 *Sep 6, 2000Dec 4, 2001Sandvik AbCemented carbide insert and method of making same
US6468680 *Jul 5, 1999Oct 22, 2002Sandvik AbCemented carbide insert with binder phase enriched surface zone
EP0697465A1Jun 19, 1995Feb 21, 1996Iscar Ltd.Tungsten-based cemented carbide powder mix and cemented carbide products made therefrom
EP1026271A1Feb 1, 2000Aug 9, 2000Sandvik AktiebolagCemented carbide insert
WO1997009463A1Aug 30, 1996Mar 13, 1997Sandvik AbCoated turning insert
WO1998003691A1Jul 8, 1997Jan 29, 1998Ove AlmCemented carbide insert for turning, milling and drilling
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
USRE41248 *Jul 12, 2006Apr 20, 2010Sanvik Intellectual Property AktiebolagMethod of making cemented carbide insert
Classifications
U.S. Classification427/249.19, 427/376.1, 427/255.391
International ClassificationB23P15/28, C22C1/05, B22F3/24, B23B27/14, C22C29/08
Cooperative ClassificationB22F2998/10, C22C29/08, B22F2005/001
European ClassificationC22C29/08
Legal Events
DateCodeEventDescription
Feb 9, 2007FPAYFee payment
Year of fee payment: 4
Aug 22, 2006RFReissue application filed
Effective date: 20060710
Jun 30, 2005ASAssignment
Owner name: SANDVIK INTELLECTUAL PROPERTY AKTIEBOLAG, SWEDEN
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SANDVIK INTELLECTUAL PROPERTY HB;REEL/FRAME:016621/0366
Effective date: 20050630
Owner name: SANDVIK INTELLECTUAL PROPERTY AKTIEBOLAG,SWEDEN
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SANDVIK INTELLECTUAL PROPERTY HB;US-ASSIGNMENT DATABASE UPDATED:20100427;REEL/FRAME:16621/366
May 31, 2005ASAssignment
Owner name: SANDVIK INTELLECTUAL PROPERTY HB, SWEDEN
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SANDVIK AB;REEL/FRAME:016290/0628
Effective date: 20050516
Owner name: SANDVIK INTELLECTUAL PROPERTY HB,SWEDEN
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SANDVIK AB;US-ASSIGNMENT DATABASE UPDATED:20100427;REEL/FRAME:16290/628