Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS6641564 B1
Publication typeGrant
Application numberUS 09/707,162
Publication dateNov 4, 2003
Filing dateNov 6, 2000
Priority dateNov 6, 2000
Fee statusPaid
Also published asEP1331956A2, EP1331956A4, WO2002036179A2, WO2002036179A3, WO2002036179A9
Publication number09707162, 707162, US 6641564 B1, US 6641564B1, US-B1-6641564, US6641564 B1, US6641564B1
InventorsMark C. Kraus
Original AssigneeMedamicus, Inc.
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Safety introducer apparatus and method therefor
US 6641564 B1
Abstract
An introducing apparatus is provided which includes an elongate tubular sheath extending from a sheath proximal end to a sheath distal end. The sheath has a bore sized to receive a dilator therethrough. The sheath further includes at least one tab extending away from a longitudinal axis of the sheath. The dilator extends from a dilator proximal end to a dilator distal end. The introducing apparatus further includes a needle disposed within the dilator, and retractably coupled with the dilator. A distal end of the needle is flexible.
Images(11)
Previous page
Next page
Claims(30)
What is claimed is:
1. An introducing apparatus comprising:
an elongate tubular sheath extending from a sheath proximal end to a sheath distal end, the sheath having a bore including an internal diameter sized to receive a dilator therethrough, the internal diameter sized to receive medial instruments therethrough;
the dilator extending from a dilator proximal end to a dilator distal end;
a needle disposed within the dilator, the needle extending from a needle proximal end to a needle distal end and including an intermediate portion therebetween, the intermediate portion is flexible;
the needle distal end extending out of the dilator distal end in a first position, the needle distal end retracted within the dilator distal end in a second position; and
a needle retraction mechanism coupled with the needle and the dilator, and the needle is retractably coupled with the dilator.
2. The introducing apparatus as recited in claim 1, wherein the sheath is separable without damage to an instrument inserted therethrough.
3. The introducing apparatus as recited in claim 1, wherein the needle distal end is more flexible than the dilator.
4. The introducing apparatus as recited in claim 1, wherein the needle distal end has the same or more flexibility as the dilator.
5. The introducing apparatus as recited in claim 1, wherein the intermediate portion of the needle comprises a flexible coil.
6. The introducing apparatus as recited in claim 1, wherein the intermediate portion and the needle distal end are flexible, and the intermediate portion and the needle distal end are formed of a unitary structure of nitinol.
7. The introducing apparatus as recited in claim 1, further including a gas permeable filter coupled with the dilator.
8. The introducing apparatus as recited in claim 1, wherein the needle proximal end includes a member sized and shaped to prevent re-extension of the needle.
9. The introducing apparatus as recited in claim 1, further comprising a locking mechanism configured to temporarily lock the sheath with the dilator.
10. The introducing apparatus as recited in claim 1, wherein the dilator further includes a blood flashback chamber.
11. The introducing apparatus as recited in claim 1, wherein an intermediate portion of the dilator is further defined by first and second dilator intermediate portions, the dilator first intermediate portion having a greater outer diameter than an outer diameter of the dilator distal end, the dilator second intermediate portion having a greater outer diameter than the outer diameter of the first intermediate portion.
12. The introducing apparatus as recited in claim 1, wherein the needle distal end is echogenic.
13. The introducing apparatus as recited in claim 1, further including a valve coupled with the sheath.
14. The introducing apparatus as recited in claim 13, wherein the valve comprises a sliding valve assembly slidingly engaged with a tab of the sheath, the sliding valve adapted to slide from a first position to a second position, in the first position the sliding valve disposed through the longitudinal axis of the sheath, in the second position the sliding valve disposed away from the longitudinal axis of the sheath.
15. The introducing apparatus as recited in claim 14, wherein the sliding valve assembly includes a membrane coupled with a sliding member.
16. An introducing apparatus comprising:
an elongate tubular sheath extending from a sheath proximal end to a sheath distal end, the sheath having a bore including an internal diameter sized to receive a dilator therethrough;
the sheath including at least one tab extending away from a longitudinal axis of the sheath;
the dilator extending from a dilator proximal end to a dilator distal end;
a needle disposed within the dilator, the needle extending from a needle proximal end to a needle distal end and including an intermediate portion therebetween, at least the needle distal end is flexible;
the needle distal end extending out of the dilator distal end in a first position, the needle distal end retracted within the dilator distal end in a second position; and
a needle retraction mechanism coupled with the needle and the dilator, and the needle is retractably coupled with the dilator.
17. The introducing apparatus as recited in claim 16, wherein the needle includes a catch sized and shaped to prevent extension of the distal end of the needle from the dilator distal end.
18. The introducing apparatus as recited in claim 16, wherein the sheath is separable without damage to an instrument inserted therethrough.
19. The introducing apparatus as recited in claim 16, wherein the needle distal end is more flexible than the dilator.
20. The introducing apparatus as recited in claim 16, wherein the dilator further includes a blood flashback chamber and a gas permeable filter.
21. The introducing apparatus as recited in claim 16, wherein an intermediate portion of the dilator is further defined by first and second dilator intermediate portions, the dilator first intermediate portion having a greater outer diameter than an outer diameter of the dilator distal end, the dilator second intermediate portion having a greater outer diameter than the outer diameter of the first intermediate portion.
22. The introducing apparatus as recited in claim 16, wherein the needle distal end is echogenic.
23. The introducing apparatus as recited in claim 16, further including a valve coupled with the sheath.
24. The introducing apparatus as recited in claim 23, wherein the valve comprises a sliding valve assembly slidingly engaged with the at least one tab, the sliding valve adapted to slide from a first position to a second position, in the first position the sliding valve disposed through the longitudinal axis of the sheath, in the second position the sliding valve disposed away from the longitudinal axis of the sheath.
25. A method comprising:
disposing a needle within a dilator,
retractably coupling said needle with said dilator, the dilator extending to a dilator distal end, where the needle extends to a needle distal end and the needle distal end is more flexible than the dilator, and the needle distal end extends beyond the dilator distal end;
disposing the needle and dilator within a sheath to form an introducing apparatus; and
inserting the introducing apparatus into a body.
26. The method as recited in claim 25, further comprising retracting the needle within the dilator, and removing the needle and the dilator from the sheath.
27. The method as recited in claim 26, further comprising preventing re-extension of the needle from the dilator.
28. The method as recited in claim 25, further comprising removing the dilator and needle from the sheath, inserting an instrument through the sheath, and separating the sheath from the instrument without damage to the instrument.
29. The method as recited in claim 25, further comprising coupling a valve with the sheath.
30. The method as recited in claim 25, further comprising coupling a coil between a position adjacent to the needle distal end and a needle proximal end to form a flexible portion therebetween.
Description
TECHNICAL FIELD

The present invention generally relates to introducers and introducing assemblies. Specifically, it relates to a safety introducer with a safety needle.

BACKGROUND

Introducer devices provide for access to the venous system and are employed for inserting medical devices such as catheters, guidewires, leads, infusion ports, dialysis ports, dialysis catheters, and others. A typical procedure for gaining access to the central venous system or the arterial system with an introducer is the Seldinger Introduction Method. The Seldinger Method provides for insertion of a needle into the vasculature of a patient. Once the needle is in the vessel, the physician aspirates the needle to assure that the needle is in the vessel, and to draw out air present in the bore of the needle. The syringe is removed and discarded. A guide wire is inserted through the needle, and the needle is removed over the guide wire. The introducer, which includes a dilator and the sheath, is placed over the guidewire and inserted into the vessel. With the introducer and wire guide in the vessel, the dilator and wire guide are removed leaving only the sheath in the vessel. The desired medical device is implanted through the bore of the sheath. The sheath is optionally removed from the medical device.

Any time a needle is used it can cause transmission of various pathogens, most notably the Human Inmune Virus (HIV), due to an accidental needle stick of an uninfected person after the needle is withdrawn from the patient, or due to re-use of a needle. Furthermore, the Seldinger Method requires numerous steps, resulting in extra costs, potential trauma, and/or pain for a patient.

Accordingly, what is needed is an introducer and dilator which can eliminate needle re-use or inadvertent needle sticks. What is also needed is an introducer assembly which does not distract or interfere with the implantation process.

SUMMARY

An introducing apparatus is provided which includes an elongate tubular sheath extending from a sheath proximal end to a sheath distal end. The sheath has a bore sized to receive a dilator therethrough, and a bore sized to receive medical instruments therethrough. The dilator extends from a dilator proximal end to a dilator distal end. The introducing apparatus further includes a needle disposed within the dilator, where the needle is retractably coupled with the dilator with a needle retraction mechanism. The needle extends from a needle proximal end to a needle distal end and has an intermediate portion therebetween. The distal end of the needle extends out of the dilator distal end in a first position, and the needle distal end is retracted within the dilator distal end in a second position. At least a portion of the needle is flexible. The needle distal end is optionally echogenic.

Several options for the introducing apparatus are as follows. For example, in one option, the sheath is separable without damage to an instrument inserted therethrough. In another option, the needle distal end is more flexible than the dilator. In yet another option, the needle distal end has the same or less of flexibility as the dilator. A portion of the intermediate portion and the needle distal end are more flexible than the dilator in another option. In another option, the intermediate portion of the needle is a flexible coil. In yet another option, the intermediate portion and the needle distal end are flexible, and the needle is formed of a unitary structure of nitinol.

Further options include an air permeable filter and/or a valve coupled with the sheath. In another option, the dilator includes a catch sized and shaped to prevent re-extension of the needle. In yet another option, the introducing apparatus includes a locking mechanism configured to temporarily lock the sheath with the dilator. The dilator, in another option, further includes a blood flashback chamber. In one option, the intermediate portion of the dilator is further defined by first and second dilator intermediate portions, and the dilator first intermediate portion has a greater outer diameter than an outer diameter of the dilator distal end, and the dilator second intermediate portion has a greater outer diameter than the outer diameter of the first intermediate portion.

In another embodiment, an introducing apparatus is provided which includes an elongate tubular sheath extending from a sheath proximal end to a sheath distal end. The sheath has a bore sized to receive a dilator therethrough. The sheath further includes at least one tab extending away from a longitudinal axis of the sheath. The dilator extends from a dilator proximal end to a dilator distal end. The introducing apparatus further includes a needle disposed within the dilator. The needle extends from a needle proximal end to a needle distal end and has an intermediate portion therebetween. At least a portion of the needle is flexible. The needle distal end is optionally echogenic.

Several options for the introducing apparatus are as follows. For example, in one option, the sheath is separable without damage to an instrument inserted therethrough. In another option, the needle distal end is more flexible than the dilator. In yet another option, the needle distal end has the same or less of flexibility as the dilator.

Further options include a valve coupled with the sheath. In another option, the dilator includes a catch sized and shaped to prevent re-extension of the needle. In yet another option, the introducing apparatus includes a locking mechanism configured to temporarily lock the sheath with the dilator. The dilator, in another option, further includes a blood flashback chamber and a gas permeable filter. In one option, the intermediate portion of the dilator is further defined by first and second dilator intermediate portions, and the dilator first intermediate portion has a greater outer diameter than an outer diameter of the dilator distal end, and the dilator second intermediate portion has a greater outer diameter than the outer diameter of the first intermediate portion.

A method is provided which includes disposing a needle within a dilator, where at least a portion of the needle is more flexible than the dilator. The method further includes retractably coupling a needle with a dilator, the dilator extending to a dilator distal end, where the needle extends to a needle distal end and the needle distal end extends beyond the dilator distal end. The method further includes disposing the needle and dilator within a sheath to form an introducing apparatus, and inserting the introducing apparatus into a body.

Several options for the method are as follows. For example, in one option, the method further includes retracting the needle within the dilator, and removing the needle and the dilator from the sheath. In another option, the method further includes preventing re-extension of the needle from the dilator. In yet another option, the method further includes removing the dilator and needle from the sheath, inserting an instrument through the sheath, and separating the sheath from the instrument without damage to the instrument. A valve is coupled with the sheath in another option.

The introducing apparatus beneficially provides a safety introducer, which allows for the needle to be safely retracted within the dilator after its use, and optionally prevents re-use of the same needle, for example on another patient.

These and other embodiments, aspects, advantages, and features of the present invention will be set forth in part in the description which follows, and in part will become apparent to those skilled in the art by reference to the following description of the invention and referenced drawings or by practice of the invention. The aspects, advantages, and features of the invention are realized and attained by means of the instrumentalities, procedures, and combinations particularly pointed out in the appended claims and their equivalents.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates a perspective view of an introducing apparatus as constructed in accordance with one embodiment;

FIG. 2 illustrates a perspective view of a disassembled introducing apparatus as constructed in accordance with one embodiment;

FIG. 3A illustrates side cross-sectional view of a portion of an introducing apparatus as constructed in accordance with one embodiment;

FIG. 3B illustrates side cross-sectional view of a portion of an introducing apparatus as constructed in accordance with one embodiment;

FIG. 4 illustrates a perspective view of a disassembled introducing apparatus as constructed in accordance with another embodiment;

FIG. 5 illustrates a perspective view of a portion of an introducing apparatus as constructed in accordance with one embodiment;

FIG. 6 illustrates a perspective view of a portion of an introducing apparatus as constructed in accordance with one embodiment;

FIG. 7 illustrates a side elevational view of an introducing apparatus as constructed in accordance with one embodiment.

FIG. 8 illustrates a cross-sectional view of a dilator and needle assembly as constructed in accordance with one embodiment.

FIG. 9 illustrates a valve and stop cock assembly for use in arterial applications.

FIG. 10 illustrates a cross-sectional view taken along A—A of FIG. 11, of the introducer apparatus as constructed in accordance with one embodiment.

FIG. 11 illustrates a side elevational view of an introducer apparatus as constructed in accordance with one embodiment.

FIG. 12 illustrates a cross-sectional view of an actuator assembly constructed in accordance with one embodiment.

FIG. 13 illustrates a side elevational view of a needle as constructed in accordance with another embodiment.

DESCRIPTION OF THE EMBODIMENTS

In the following detailed description, reference is made to the accompanying drawings which form a part hereof, and in which is shown by way of illustration specific embodiments in which the invention may be practiced. These embodiments are described in sufficient detail to enable those skilled in the art to practice the invention, and it is to be understood that other embodiments may be utilized and that structural changes may be made without departing from the scope of the present invention. Therefore, the following detailed description is not to be taken in a limiting sense, and the scope of the present invention is defined by the appended claims and their equivalents.

An introducer assembly 100, as shown in FIGS. 1 and 2, includes generally a sheath 140 and a dilator 120 through the sheath 140, and a needle 300 disposed within the dilator 120. The dilator 120 and the needle 300 allow for the introducer assembly 100 to be introduced into a vessel of a patient. The dilator 120 extends from a dilator distal end 122 to a dilator proximal end 124, where the dilator distal end 122 is insertable into a patient. Disposed between the dilator distal end 122 and the dilator proximal end 124 is a dilator intermediate portion 121. The dilator distal end 122 optionally ends in a tapered end 123, as shown in more detail in FIGS. 3A and 3B. In another option, the dilator distal end 122 has a tapered end 123, and a second tapered portion 125, where the second tapered portion 125 is disposed in the dilator intermediate portion 121. In one option, an outer surface 336 of the needle 300 directly abuts an inner surface 118 of the dilator, thereby allowing the introducing assembly 100 to have a thin outer diameter.

Referring again to FIGS. 1 and 2, at the dilator proximal end 124 is a hub 126 having a bore 128 therethrough. The dilator 120 also includes a passage 119 therethrough, aligned with the bore 128, which allows the dilator 120 to be inserted over the sheath 140. In a further option, the dilator 120 includes a blood flashback chamber 180, which is coupled with the hub 126 of the dilator 120, as shown in more detail in FIG. 8 The blood flashback chamber 180 is filled with blood as the physician inserts the needle 300 of the introducer assembly 100 within a vessel of a patient. One end of the flashback chamber 180 is sealed by a gas permeable filter 182 which allows air to pass therethrough, although prevents blood to pass from the flashback chamber 180.

During use of the assembly 100 (FIG. 1), once the needle has entered a blood pressure environment, the pressure will cause the blood to exit the hole in the blood vessel made by the needle 300. The blood enters a distal end 304 of the needle 300, and travels through the passage 143 of the sheath 140, which has a lower pressure than blood pressure. The blood will travel from the distal end 304 of the needle 300 to the proximal end 302 of the needle 300 and into the flashback chamber 180 located at the proximal end 302 of the needle 300. The blood pressure, which is greater than the ambient pressure outside of the blood vessel, will force the air in the needle 300 out of the gas permeable filter 182 coupled with the flashback chamber 180.

The gas permeable filter 180 is in contact with the ambient environment outside of the needle 300, to which the air escapes. Once all of the air has been pushed out of the needle 300 by the blood pressure, the blood appears in the flashback chamber 180. The filter 180 prevents blood from exiting the chamber 180. The flashback chamber 180 is visible to the user, indicating to the user that the needle 300 has been aspirated, and that access to the blood vessel has been obtained. In another option, the flashback chamber 180 further includes a luer fitting 305. The user optionally attaches a syringe to the luer fitting 305, and aspirates the needle 300 using the syringe.

The dilator 120 is sized to be received by the sheath 140 therein. The sheath 140 allows for additional instruments to be inserted therethrough and inserted into the patient. The sheath 140 includes various types of sheaths, for instance, the sheath 140 can comprise a sheath which has a strengthening braid of material. Alternatively, the sheath 140 includes those which are modified to prevent bends in the elongate sheath. The sheath 140 is defined in part by a longitudinal axis 147, and the sheath 140 extends from a sheath distal end 142 to a sheath proximal end 148. The sheath 140 is coaxial with the dilator 120, and optionally the needle 300, where they each share the same longitudinal axis 147. The distal end 142 of the sheath 140 is first inserted into the patient and the proximal end 148 remains outside of the patient. Near the distal end 142 is an optional tapered portion 144 which provides a transition to a cylindrical portion 146. The sheath 140 also includes a passage 143 therethrough, where the passage 143 is substantially aligned with the longitudinal axis 147 of the sheath 140. The passage 143 allows for the introduction of the dilator 120 therethrough. After the introducer assembly 100 has been inserted into a patient, and the dilator 120 is removed, other medical instruments can be easily inserted into and through the sheath 140, and introduced into the patient.

The sheath 140 includes at least one tab 210 which extends radially outward from the sheath 140. In one embodiment, the sheath 140 includes two tabs 220 which are disposed 180 degrees from each other. Optionally, tab break lines 222 (FIG. 5) are disposed between along the sheath 140, for instance between the two tabs 220 are tab break lines 222 (FIG. 5).

In another option, the sheath 140 is splittable such that the sheath 140 is separable into two or more components. The sheath 140 is separable or splittable away from instruments inserted therethrough which prevents disruption to or removal of instruments or devices which have been inserted through the sheath 140. The splittable sheath 140 is separable from the instruments inserted therethrough, where no damage occurs to the instruments during the removal of the sheath 140. For example, in one option, the sheath 140 includes at least one score line 141, as shown in FIG. 5. The sheath 140 is externally scored, and optionally two scores 141 are 180 degrees from each other. The scores 141 are aligned with the optional tab break lines 222 such that the tab break lines 222 and the scores 141 are disposed between the two tabs 220. Alternatively, the sheath 140 is splittable using a slitting device, a rip cord or strengthening strip running along the longitudinal length of the sheath, a weakening which allows the introducer to be ripped apart, or other techniques which allow the sheath 140 to separate without damage to an instrument inserted therethrough, or without disruption to the procedure.

It should be noted that the introducer assembly 100 can be used for both venous and arterial applications. For arterial applications, it may not be necessary to remove the sheath while a medical instrument is inserted therethrough. In one option, the sheath 140 is not separable. FIG. 9 illustrates an example of a valve 139 to be used with the introducer assembly 100, for example, for arterial applications. The introducer 100 is disposed through the valve 139, and the valve 139 is coupled with a proximal end 148 of the sheath 140. In a further option, a stop cock 137 is coupled with the valve 139. The stop cock 137 allows for the introduction of fluids therethrough and into the patient.

Referring again to FIGS. 1 and 2, as mentioned above, a needle 300 is disposed within the dilator 120. In one option, the needle is retractably coupled with the dilator. The needle 300 extends from a needle proximal end 302 to a needle distal end 304, and includes a needle intermediate portion 306 therebetween. The needle 300 is coaxial with the sheath 140 and the dilator 120 (FIG. 1). For instance, a longitudinal axis of the needle 300 is aligned with the longitudinal axis 147 of the sheath 140 (FIG. 1), when the needle 300 is in the extended and retracted positions.

In one option, the needle distal end 304 is echogenic, which allows for the physician to view the needle 300 during the process of implanting the medical device. The needle 300 is movably disposed within the dilator 120, as shown in FIGS. 3A and 3B. The distal end 304 of the needle extends out from the dilator distal end 122 in a first position (FIG. 3A). The needle distal end 304 is retracted within the dilator 120 in a second position (FIG. 3B), and the needle 300 is retractably coupled with the dilator.

The needle 300, in one option, is flexible along a portion of or the entire needle, allowing the needle to be inserted further into a vessel than conventional needles. For example, the needle 300 is formed of flexible material, such as nitinol. In one option, the needle 300 is formed of a unitary structure of nitinol. In another option, at least a portion of the needle 300 is flexible. For instance, a portion of the needle 300 is formed of a flexible material such as nitinol. In another option, at least a portion of the needle 300 is flexible as it includes a first portion 310 formed of a spring coil 307, as shown in FIG. 13. In yet another option, the spring coil 307 is coated with a material, such as Teflon. Other coatings which maintain flexibility of the needle 300 are suitable as well. In yet a further option, a second portion 308 of rigid or semi-rigid material is coupled with the spring coil 307. The second portion 308, in one option, has a length 309 of about 0.5 inches.

Since the needle is flexible, the guidewire is no longer necessary to introduce devices into a patient. This allows for the assembly to be manufactured more cost effectively, and further allows for a faster introduction process. In another option, only the needle distal end 304 and/or the needle intermediate portion 306 is flexible. Optionally, the needle 300 has the same or more flexibility than the dilator 120. The needle 300 is flexible enough to permit insertion of the needle 300 through the right side subclavian vein into the superior venacava without kinking or causing the dilator to perforate the vein. In another option, the needle 300 is flexible enough such that it is insertable around the aortic bifurcation without kinking or causing the dilator to perforate a femoral artery. In a further option, the needle 300 is flexible enough such that it can be bent into a circle having a 0.5 inch radius. In addition, the needle 300 has sufficient flexibility and column strength to be pushed through the vasculature by a user without kinking the needle 300.

FIGS. 10 and 11 illustrate the needle 300, the sheath 140 and the dilator 120 in greater detail. The needle 300 is attached to a needle hub 340, which is retractably coupled with the dilator 120. A rear barrel 344 is coupled with the dilator 120, where the rear barrel 344 does not move relative to the dilator 120. A bias member 342, such as a spring, is disposed within the hub 126 of the dilator 120, and biases the needle hub 340 and the needle 300 toward the proximal end of the assembly 100 toward a retracted position. A needle retainer 346 releasably retains the needle hub 340 against the bias of the bias member 342.

The rear barrel 344 has a hollow central bore, and includes at least one locking aperture 348 in a sidewall 350 of the rear barrel 344. The proximal end 352 of the rear barrel 344 is generally open for receiving the needle hub 340 and a connector hub 354 therein, where the connector hub 354 in one option comprises a luer fitting. The rearel 344 further includes a stop 356 which limits displacement of the needle 300, and limits the retraction of the needle 300.

The needle hub 340 is generally cylindrical and is coupled with the needle 300. The needle retainer 346 includes an actuator 358. In one option, the actuator 358 comprises a deforinable arm. Coupled with at least a portion of an actuator 358 is an actuator button 360. The actuator button 360 is received within the locking aperture 348 when the needle 300 is disposed in the retracted position. The actuator button 360 is configured to cooperate with the locking aperture 348 in the rear barrel 344, to releasably engage the needle hub 340 with the rear barrel 344.

The needle 300 is operable between a projecting position illustrated in FIG. 3A and retracted position illustrated in FIG. 3B. In one example, the actuator button 360 allows a user to move the needle 300 from an extended position (FIG. 10) to a retracted position (FIG. 3B). A flat 362 of the actuator button 360 is engaged with a portion of the rear barrel 344 and retains the needle 300 in an extended position (FIG. 10). Once the actuator button 360 is depressed toward a longitudinal axis of the assembly 100, the flat 362 is released from the rear barrel 344, and the bias member 342 forces the needle 300 into a retracted position (FIG. 3B).

The assembly 300 optionally further provides for preventing re-extension of the needle 300 after retraction of the needle 300 within the dilator 120, so that a contaminated distal end 304 of the needle 300 is not exposed and cannot be reexposed. In one option, actuator 358 assists in preventing the re-extension of the needle 300, where the actuator 358 is shown in FIG. 12 in greater detail. The actuator button 360 includes a shoulder 364 that engages a flange 366 on an interior surface of the rear barrel 344, as shown in FIG. 10. As the needle 300 is retracted within the dilator 120, the needle retainer 346 moves past the flange 366, and flexes radially outwardly when it is displaced past the flange 366 and into the larger inner diameter 368. The shoulder 364 of the actuator button 360 abuts up against the flange 366 and prevents re-extension of the needle 300, if a user attempts to re-extend the needle 300.

In a further option, the sheath 140 includes a valve assembly 150 coupled therewith, as shown in more detail in FIGS. 4 and 5. Optionally, the valve assembly 150 is movably coupled with the at least one tab 210, where the valve assembly 150 is movable relative to a top surface 212 of the at least one tab 210. In another example, the valve assembly 150 is slidingly coupled with the at least one tab 210.

The valve assembly 150 includes a seal 152 and a valve support member 154. The valve support member 154, in combination with the seal 152, provide a hemostatic valve which seals against instruments which are disposed therethrough. In addition, the valve assembly 150 provides a seal for the passage 142 of the sheath 140, where little or no air is allowed to enter the vessel of a patient. The seal 152, in one option, comprises a membrane. A further option is that the seal 152 includes a slitted portion 156 therein. The slitted portion 156 can includes, but is not limited to, a number of different options such as a slit, a partial slit, a line of weakness, or a perforated line. In yet another option, the seal 152 comprises multiple sealing components, for instance, which are disposed adjacent to one another.

The valve support member 154 retains the seal 152. In addition, the valve support member 154 is coupled with the sheath 140, and allows for the valve assembly 150 to move relative to the sheath 140. The valve assembly 150 moves relative to the sheath in many different manners.

In one example, the valve support member 154 is adapted to slide along a longitudinal axis of the at least one tab. The valve support member 154, in one option, is disposed around only a portion of the seal 152. In another option, the valve support member 154 flexes as an instrument is disposed through the seal 152. The movable valve assembly 150 is adapted to slide from a first position, as shown in FIG. 5, to a second position, as shown in FIG. 6. In the first position, the movable valve assembly 150 is disposed through the longitudinal axis of the sheath, sealing the passage of the sheath 140. In the second position, the movable valve assembly 150 is disposed away from the longitudinal axis of the sheath.

In another example, the movable valve assembly 150 is adapted to rotate about a hinge point on the at least one tab of the sheath. As the movable valve assembly 150 rotates, the valve assembly 150 slides on a top surface of the at least one tab. In another embodiment, the movable valve assembly 150 is adapted to rotate about a hinge point on the at least one tab. As the movable valve assembly 150 rotates about the hinge point, at least a portion of the valve assembly 150 is lifted away from the top surface of the at least one tab. The movable valve assembly 150 advantageously prevents blood from exiting the sheath 140 before or after a medical instrument has been inserted into the sheath 140. Instead of placing a thumb over the passage 143, or allowing blood to flow from the sheath 140, the physician moves the movable valve assembly 150 over the passage 143, and prevents blood from leaving the sheath 140.

Referring to FIGS. 4 and 7, the sheath 140 optionally further includes locking features such that axial movement between the dilator 120 and sheath 140 is prevented, and optionally further includes anti-rotation features which prevent the dilator 120 from rotating relative to the sheath 140. The dilator 120 includes a rotatable fastener 134 (shown in a cut-away view) rotatably coupled therewith. The rotatable fastener 134 allows for coupling of the dilator 120 to the sheath 140 such that axial movement between the dilator 120 and sheath 140 is prevented. Optionally, the rotatable fastener 134 includes a threaded portion which threadingly engages with the lip 162 of the sheath hub 160.

The dilator 120 optionally includes anti-rotation features, as discussed in co-pending application Ser. No. 09/540,712 entitled “Locking Catheter Introducing System” filed on Mar. 31, 2000, and incorporated by reference herein. The anti-rotation features resist and optionally prevent the dilator 120 from rotating relative to the sheath 140. In addition, additional features allow for the anti-rotation features to be overcome, such that the user can selectively rotate the dilator 120 or can selectively lock the rotational movement of the dilator 120. The anti-rotation features, in one option, are disposed on a coupling portion of the dilator 120, and for example include a flat on the coupling portion of the dilator 120.

To assemble the introducing apparatus 100 of FIG. 4, the needle 300 is retractably coupled with the dilator 120. The distal end 122 of the dilator 120 is disposed within the sheath 140 until the dilator hub 126 is proximate to the proximal end 148 of the sheath 140. The rotatable fastener 134 is pressed against the lip 162 of the sheath 140 and the rotatable fastener 134 is rotated. As the fastener 134 is rotated, the dilator 120 becomes further inserted into the sheath 140, and becomes axially fixed to the sheath 140 as the threads engage the lip 162 of the sheath 140. In addition, as the fastener 134 is rotated, the anti-rotation features of the dilator 120 and/or the sheath 140 become seated such that further rotation of the rotatable fastener 134 does not cause rotation of the dilator 120 relative to the sheath 140, even when the fastener 134 is rotated to remove the axial fixation of the dilator 120 relative to the sheath 140.

During the implant process of the introducer assembly 100, the physician will stick the vessel with the needle and advance the needle and dilator into the vessel until the dilator distal end is about to enter the opening made by the needle. When the needle has entered the vessel, the pressure of the venous system will cause blood to flow up through the needle into the flash back chamber portion of the dilator hub, which allows the physician one way to visually confirm that the needle has entered the vessel. After verifying the vessel has been accessed by the needle, the dilator is advanced into the vessel. Since the needle is flexible, no guidewire is necessary as the dilator is directed through the vessel. Before, during, or after the dilator advancement through the vessel, the needle is retracted into the dilator. In one option, once the needle has been retracted, it can not be re-extended from the dilator. The physician optionally further advances the introducer assembly into the vessel. The dilator and retracted needle are removed from the sheath, leaving the sheath in the vessel. A medical device is implanted through the sheath and into the vessel of the patient. The sheath is removed from the medical device without damage to the vessel or the medical device by, for example, peeling or slitting the sheath with a tool.

Use of the apparatus, as described above and including the many variations, includes retractably coupling a needle with a dilator, the dilator extending to a dilator distal end, where the needle extends to a needle distal end and the needle distal end is more flexible than the dilator, and the needle distal end extends beyond the dilator distal end. The method further includes disposing the needle and dilator within a sheath to form an introducing apparatus, and inserting the introducing apparatus into a body.

Several options for the method are as follows. For example, in one option, the method further includes retracting the needle within the dilator, and removing the needle and the dilator from the sheath. In another option, the method further includes preventing re-extension of the needle from the dilator. In yet another option, the method further includes removing the dilator and needle from the sheath, inserting an instrument through the sheath, and separating the sheath from the instrument without damage to the instrument. A valve is coupled with the sheath in another option.

The present introducing assembly requires fewer parts, includes fewer steps than the traditional Seldinger Technique, and is less expensive to manufacture, and insert into a patient. A further benefit is that once the needle is retracted, the dilator cannot accidentally stick the implanter. In addition, the mechanism which prevents re-extension prevents the introducer used on one patient from being used on another patient. Since the guidewire is no longer necessary, fewer steps are needed to introduce an instrument into a patient, resulting in a faster process, and less trauma to a patient. Yet another advantage is that a more effective seal is made around the catheter or medical instrument since the device which retains or supports the valve flexes, for example, as instruments are inserted therethrough. The introducing assembly can be manufactured in a wide variety of sizes, and allows for any type of medical device or fluid to be disposed therethrough.

It is to be understood that the above description is intended to be illustrative, and not restrictive. Many other embodiments will be apparent to those of skill in the art upon reading and understanding the above description. It should be noted that embodiments or portions thereof discussed in different portions of the description or referred to in different drawings can be combined to form additional embodiments of the present invention. The scope of the invention should, therefore, be determined with reference to the appended claims, along with the full scope of equivalents to which such claims are entitled.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US3630192 *Jul 14, 1969Dec 28, 1971Jamshidi KhosrowInstrument for internal organ biopsy
US4046144 *Sep 18, 1975Sep 6, 1977Mcfarlane Richard HCatheter placement assembly
US4230123 *Oct 31, 1978Oct 28, 1980Hawkins Jr Irvin FNeedle sheath complex and process for decompression and biopsy
US4488545 *Dec 10, 1982Dec 18, 1984Sherwood Medical CompanyCatheter placement device
US4531937Jan 24, 1983Jul 30, 1985Pacesetter Systems, Inc.Introducer catheter apparatus and method of use
US4629450 *May 6, 1985Dec 16, 1986Terumo CorporationCatheter introducing instrument
US4772266 *May 4, 1987Sep 20, 1988Catheter Technology Corp.Catheter dilator/sheath assembly and method
US4907598 *Apr 19, 1988Mar 13, 1990Alberto BauerGuillotine biopsy needle provided with flexible stylus and cannula
US4944728 *Oct 17, 1988Jul 31, 1990Safe Medical Devices, Inc.Intravenous catheter placement device
US4978334 *Sep 8, 1988Dec 18, 1990Toye Frederic JApparatus and method for providing passage into body viscus
US4994034 *Jul 11, 1989Feb 19, 1991Botich Michael JRetractable needle hypodermic syringe system
US4995866 *Dec 15, 1989Feb 26, 1991Microvena CorporationCombined needle and dilator apparatus
US5057083 *Jul 25, 1989Oct 15, 1991C. R. Bard, Inc.Vascular dilator with truncated tip
US5098392 *Jun 28, 1991Mar 24, 1992Fleischhacker John JLocking dilator for peel away introducer sheath
US5169387 *Apr 3, 1991Dec 8, 1992Kronner Richard FMethod and apparatus for catheterization of a body cavity
US5188599 *Feb 15, 1991Feb 23, 1993Med-Design, Inc.Retractable needle system
US5190528 *Oct 19, 1990Mar 2, 1993Boston UniversityPercutaneous transseptal left atrial cannulation system
US5295974 *Jan 7, 1991Mar 22, 1994Laughlin D Michael OShielded hypodermic needle with I.V. cannula
US5407431 *Sep 27, 1993Apr 18, 1995Med-Design Inc.Intravenous catheter insertion device with retractable needle
US5409469 *Nov 4, 1993Apr 25, 1995Medtronic, Inc.Introducer system having kink resistant splittable sheath
US5454790 *May 9, 1994Oct 3, 1995Innerdyne, Inc.Method and apparatus for catheterization access
US5531694Mar 6, 1995Jul 2, 1996Clemens; Anton H.Needle retraction system
US5575777Apr 10, 1995Nov 19, 1996Becton Dickinson And CompanyRetractable needle cannula insertion set with refinements to better control leakage, retraction speed and reuse
US5616135Dec 1, 1995Apr 1, 1997Specialized Health Products, Inc.Self retracting medical needle apparatus and methods
US5685855Jul 23, 1996Nov 11, 1997Erskine; Timothy J.Protected needle catheter placement device with sampling provisions and method for its use
US5685863Aug 15, 1995Nov 11, 1997Mdc Investment Holdings Inc.Retractable needle apparatus for transmission of intravenous fluids
US5702367 *Jul 29, 1996Dec 30, 1997Becton Dickinson And CompanyRetractable-needle cannula insertion set with refinements to better control leakage, retraction speed, and reuse
US5741233 *Oct 20, 1995Apr 21, 1998Tfx Medical, IncorporatedIntroducer device and methods of use thereof
US5755693 *Feb 16, 1995May 26, 1998Menlo Care, Inc.Bloodless splittable introducer
US5766135 *Oct 17, 1996Jun 16, 1998Terwilliger; Richard A.Echogenic needle tip
US5797880 *Sep 5, 1996Aug 25, 1998Becton And Dickinson And CompanyCatheter and placement needle assembly with retractable needle
US5851212 *Jun 11, 1997Dec 22, 1998Endius IncorporatedSurgical instrument
US5873854 *Dec 23, 1996Feb 23, 1999Datascope Investment Corp.Method for percutaneous insertion of catheters
US5964740 *Apr 7, 1997Oct 12, 1999Asahi Kogaku Kogyo Kabushiki KaishaTreatment accessory for an endoscope
US5989220 *May 26, 1998Nov 23, 1999Retractable Technologies Inc.Self-retracting IV catheter introducer
US6016595Nov 4, 1998Jan 25, 2000Dysarz; Edward D.Method and device to form a spring needle cannula
US6077244 *Apr 30, 1998Jun 20, 2000Mdc Investment Holdings, Inc.Catheter insertion device with retractable needle
US6096005 *Jun 20, 1996Aug 1, 2000Mdc Investment Holdings, Inc.Retractable needle medical devices
US6102894May 10, 1999Aug 15, 2000Dysarz; Edward D.Modular retractable spring needle cannula blood collection device
US6120494 *Jun 9, 1999Sep 19, 2000Medtronic, Inc.Method of placing a cannula
US6156010 *Jun 17, 1998Dec 5, 2000Injectimed, Inc.Method and apparatus for introducing an intravenous catheter
US6379337Dec 23, 1999Apr 30, 2002Owais Mohammad M. B. B. S.Retractable safety needles for medical applications
US6379338Oct 4, 2000Apr 30, 2002David M. GarvinRetracting tip for catheter set
US6398743Jul 28, 2000Jun 4, 2002Mdc Investment Holdings, Inc.Medical device for inserting a guide wire having a retractable needle
US20020045843 *Apr 18, 2001Apr 18, 2002Barker John M.Medical device with shield having a retractable needle
US20030032922 *Sep 25, 2002Feb 13, 2003Moorehead H. RobertTrapping of intravenous needle associated with a long catheter, and related methods
USRE31855 *Nov 22, 1982Mar 26, 1985Cook, Inc.Tear apart cannula
EP0232994A2 *Jan 22, 1987Aug 19, 1987Sherwood Medical CompanyCatheter introducer
WO1998024494A1 *Dec 5, 1997Jun 11, 1998Michael J BotichMedical device with retractable needle
WO2000006221A1 *May 13, 1999Feb 10, 2000John BarkerRetractable needle medical device
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US6994693 *Jul 17, 2002Feb 7, 2006Yale UniversityTunneler-needle combination for tunneled catheter placement
US7001396 *Mar 26, 2003Feb 21, 2006Enpath Medical, Inc.Safety introducer assembly and method
US7025746Dec 24, 2002Apr 11, 2006Yale UniversityVascular access device
US7070582 *Aug 9, 2002Jul 4, 2006Boston Scientific Scimed, Inc.Injection devices that provide reduced outflow of therapeutic agents and methods of delivering therapeutic agents
US7172604 *Mar 9, 2004Feb 6, 2007Cole John PFollicular extraction punch and method
US7354434Apr 4, 2005Apr 8, 2008Galil Medical Ltd.Method of controlling the temperature of gasses passing through a Joule-Thomson orifice
US7442187Jan 27, 2005Oct 28, 2008Boston Scientific Scimed, Inc.Multiple needle injection catheter
US7618430 *Apr 9, 2002Nov 17, 2009Biosense Webster, Inc.Retractable dilator needle
US7625355 *Nov 17, 2005Dec 1, 2009Chun Ho YuEasy drainage catheter assembly
US7722567Dec 21, 2005May 25, 2010Yale UniversityAccess device
US7744571Jun 23, 2008Jun 29, 2010Medical Components, Inc.Tearaway sheath assembly with hemostasis valve
US7763008Sep 11, 2009Jul 27, 2010Chun Ho YuMethod employing a drainage catheter assembly for delivering a catheter to a body
US7803130Jan 4, 2007Sep 28, 2010Vance Products Inc.Deflectable tip access sheath
US7815623Oct 5, 2005Oct 19, 2010Genzyme CorporationStepped cannula
US7842038 *May 4, 2006Nov 30, 2010Warsaw Orthopedic, Inc.Method for using retractable stylet and cannula combination to form an opening in bone
US7892207Apr 27, 2006Feb 22, 2011Warsaw Orthopedic, Inc.Dilating stylet and cannula
US7905884Apr 27, 2006Mar 15, 2011Warsaw Orthopedic, Inc.Method for use of dilating stylet and cannula
US7909798 *Jul 24, 2008Mar 22, 2011Oscor Inc.Peel-away introducer sheath having pitched peel lines and method of making same
US7922696Jan 24, 2008Apr 12, 2011Access Scientific, Inc.Access device
US8029472 *Oct 23, 2006Oct 4, 2011Carefusion 303, Inc.Safety catheter system and method
US8105286 *Apr 18, 2008Jan 31, 2012Access Scientific, Inc.Access device
US8137317 *Sep 14, 2004Mar 20, 2012Oscor Inc.Locking vascular introducer assembly with adjustable hemostatic seal
US8147456Apr 5, 2010Apr 3, 2012Medical Components, Inc.Hub for tearaway sheath assembly
US8152829Oct 14, 2009Apr 10, 2012Biosense Webster, Inc.Retractable dilator needle
US8167899 *May 4, 2006May 1, 2012Warsaw Orthopedic, Inc.Retractable stylet and cannula combination
US8182493Aug 17, 2006May 22, 2012Cole John PFollicular extraction punch and method
US8192402 *Apr 18, 2008Jun 5, 2012Access Scientific, Inc.Access device
US8202251Mar 13, 2009Jun 19, 2012Access Scientific, Inc.Access device
US8202279Nov 9, 2006Jun 19, 2012Cole John PFollicular extraction punch and method
US8211117Dec 9, 2008Jul 3, 2012Hsc Development LlcFollicular extraction method and device
US8257358Nov 30, 2010Sep 4, 2012Warsaw Orthopedic, Inc.Method for using retractable stylet and cannula combination to form an opening in bone
US8262619 *Sep 30, 2010Sep 11, 2012Tyco Healthcare Group LpIntroducer sheath for catheters
US8298189Apr 5, 2010Oct 30, 2012Medical Components, Inc.Hemostasis valve
US8337458Sep 27, 2010Dec 25, 2012Genzyme Corporation, A Sanofi CompanyStepped cannula
US8372076Feb 2, 2011Feb 12, 2013Warsaw Orthopedic, Inc.Method for use of dilating stylet and cannula
US8403911Apr 21, 2009Mar 26, 2013Becton, Dickinson And CompanySystems and methods for improving catheter hole array efficiency
US8496629Aug 10, 2010Jul 30, 2013Becton, Dickinson And CompanyCatheter hole having a flow breaking feature
US8603071 *Apr 11, 2008Dec 10, 2013Cook Medical Technologies LlcLocking device for sheath or catheter
US8672888May 25, 2010Mar 18, 2014Yale UniversityAccess device
US8672889Jun 25, 2008Mar 18, 2014Kimberly-Clark Worldwide, Inc.Soft tissue tunneling device
US8753354Jan 3, 2006Jun 17, 2014John P. ColeEnhanced follicular extraction punch and method
US8758231May 12, 2010Jun 24, 2014Cook Medical Technologies LlcAccess sheath with active deflection
US20030181942 *Jan 24, 2003Sep 25, 2003Sutton Gregg S.Atrial appendage blood filtration systems
US20080154204 *Feb 27, 2008Jun 26, 2008The Johns Hopkins UniversityMethod and device for subretinal drug delivery
US20080255542 *Apr 11, 2008Oct 16, 2008William Cook Europe ApsLocking device for sheath or catheter
US20090112169 *Oct 29, 2008Apr 30, 2009Animas CorporationMedical Device Flexible Conduit and Method of Manufacture
US20090112180 *Oct 31, 2008Apr 30, 2009Lifescan, Inc.Method for Inserting a Medical Device Flexible Conduit into a User's Target Site
US20090112185 *Oct 30, 2008Apr 30, 2009Lifescan, Inc.Integrated Conduit Insertion Medical Device
US20110082342 *Dec 13, 2010Apr 7, 2011Tyco Healthcare Group LpOrifice introducer device
US20110224680 *Mar 2, 2011Sep 15, 2011Boston Scientific Neuromodulation CorporationSystem and method for making and using a lead introducer for an implantable electrical stimulation system
US20120065590 *May 12, 2010Mar 15, 2012Access Scientific, Inc.Access device with valve
US20120232564 *Mar 11, 2011Sep 13, 2012Greatbatch Ltd.Epidural needle for spinal cord stimulation
US20120277847 *Jul 9, 2012Nov 1, 2012Endologix, Inc.Catheter system and methods of using same
US20130072941 *Jul 30, 2012Mar 21, 2013Francisca Tan-MaleckiCement Injector and Cement Injector Connectors, and Bone Cement Injector Assembly
EP2486880A2 *Apr 18, 2008Aug 15, 2012Access Scientific, Inc.Access device
EP2486951A2 *Apr 18, 2008Aug 15, 2012Access Scientific, Inc.Access device
WO2006119156A1 *May 1, 2006Nov 9, 2006Disc Dynamics IncCatheter holder for spinal implant
WO2008131300A2Apr 18, 2008Oct 30, 2008Access Scientific IncAccess device
WO2009142904A1 *May 5, 2009Nov 26, 2009Becton, Dickinson And CompanyConical diffuser tip
WO2012135761A1 *Mar 30, 2012Oct 4, 2012Access Scientific, Inc.Access device
Classifications
U.S. Classification604/164.1, 604/164.01, 604/165.01, 604/167.01, 604/110, 604/164.05, 604/168.01, 604/160, 604/167.04, 606/185
International ClassificationA61B17/34, A61M25/06
Cooperative ClassificationA61B17/3415, A61M2025/09125, A61B2017/347, A61B17/3498, A61M25/065, A61M25/0612, A61M25/0668
European ClassificationA61B17/34E, A61M25/06E
Legal Events
DateCodeEventDescription
May 4, 2011FPAYFee payment
Year of fee payment: 8
Jan 6, 2009ASAssignment
Owner name: GREATBATCH LTD., NEW YORK
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:QUAN EMERTEQ CORP.;REEL/FRAME:022062/0011
Effective date: 20081230
Mar 10, 2008ASAssignment
Owner name: QUAN EMERTEQ CORP., MINNESOTA
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ENPATH MEDICAL, INC.;REEL/FRAME:020617/0788
Effective date: 20080310
Feb 19, 2008ASAssignment
Owner name: MANUFACTURERS AND TRADERS TRUST COMPANY (M&T), NEW
Free format text: SECURITY INTEREST;ASSIGNOR:ENPATH MEDICAL, INC.;REEL/FRAME:020525/0515
Effective date: 20070709
May 4, 2007FPAYFee payment
Year of fee payment: 4
May 17, 2004ASAssignment
Owner name: ENPATH MEDICAL, INC., MINNESOTA
Free format text: CHANGE OF NAME;ASSIGNOR:MEDAMICUS, INC.;REEL/FRAME:015328/0301
Effective date: 20040124
Owner name: ENPATH MEDICAL, INC. 15301 HIGHWAY 55 WESTPLYMOUTH
Free format text: CHANGE OF NAME;ASSIGNOR:MEDAMICUS, INC. /AR;REEL/FRAME:015328/0301
Apr 2, 2001ASAssignment
Owner name: MEDAMICUS, INC., MINNESOTA
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:KRAUS, MARK C.;REEL/FRAME:011668/0586
Effective date: 20010226
Owner name: MEDAMICUS, INC. 15301 HIGHWAY 55 WESTMINNEAPOLIS,
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:KRAUS, MARK C. /AR;REEL/FRAME:011668/0586