Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS6687962 B2
Publication typeGrant
Application numberUS 10/050,669
Publication dateFeb 10, 2004
Filing dateJan 16, 2002
Priority dateJan 16, 2002
Fee statusPaid
Also published asCN1617682A, CN100431444C, DE60310529D1, DE60310529T2, DE60324343D1, DE60328426D1, EP1476041A2, EP1476041B1, EP1762152A1, EP1762152B1, EP1776888A1, EP1776888B1, US20030131453, WO2003061422A2, WO2003061422A3, WO2003061422B1
Publication number050669, 10050669, US 6687962 B2, US 6687962B2, US-B2-6687962, US6687962 B2, US6687962B2
InventorsMark A. Clarner, Michelle M. Ennis, Michael J. Carbonneau
Original AssigneeVelcro Industries B.V.
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Fastener element patterning
US 6687962 B2
Abstract
A touch fastener product for releasable engagement with itself or another fastener product at various engagement angles, has a sheet-form base and an array of fastener elements with stems integrally molded with and extending from a broad side of the base to a distal head overhanging the base. The fastener elements are arranged in various ordered patterns of straight rows, with the heads of the fastener elements covering the base at a desired head density. The fastener elements define a sufficient number and pattern of pockets between associated groups of adjacent stems to provide a desired bulk locking ratio when engaged with an identical pattern at a zero degree engagement angle.
Images(6)
Previous page
Next page
Claims(73)
What is claimed is:
1. A touch fastener product comprising
a sheet-form base; and
an array of fastener elements each having a stem extending from a broad side of the base to a distal head overhanging the base, the fastener elements arranged in an ordered pattern of straight rows;
wherein the heads of the fastener elements cover the base at a head density of between about 20 and 35 percent; and
wherein the fastener elements are arranged to define a sufficient number and pattern of packets between associated groups of adjacent stems to provide a bulk locking ratio of at least 10 percent when engaged with an identical pattern at a zero degree engagement angle.
2. The touch fastener of claim 1 wherein the head density is between about 25 to 33 percent.
3. The touch fastener of claim 2 wherein the head density is about 31 percent.
4. The touch fastener of claim 1 wherein the fastener elements are arranged to have a bulk engagement ratio, when engaged with an identical pattern at a zero degree engagement angle, of at least 100 percent.
5. The touch fastener of claim 4 wherein the bulk engagement ratio is at least 150 percent.
6. The touch fastener of claim 5 wherein the bulk engagement ratio is at least 200 percent.
7. The touch fastener of claim 1 wherein the bulk locking ratio is at least 20 percent.
8. The touch fastener of claim 7 wherein the bulk locking ratio is at least 25 percent.
9. The touch fastener of claim 1 wherein the fastener elements are arranged in a repeating pattern of row groupings, each row grouping having a three row band of fastener elements spaced apart from adjacent rows of fastener elements by a distance greater than row spacing within the band.
10. The touch fastener of claim 9 wherein the three row band consists of two outer rows of laterally aligned fastener elements and a middle row of fastener elements longitudinally offset from adjacent fastener elements of the outer rows.
11. The touch fastener of claim 10 wherein each fastener element of the middle row is equidistant from two adjacent fastener elements of each of the outer rows.
12. The touch fastener of claim 10 wherein a clearance between opposing surfaces of adjacent fastener element heads along the middle row is less than a nominal lateral extent, measured along the middle row, of the fastener element heads.
13. The touch fastener of claim 10 wherein a clearance between opposing surfaces of adjacent fastener elements of the outer rows, measured across the three row band, is greater than a nominal lateral extent, measured along the middle row, of the fastener element heads.
14. The touch fastener of claim 13 wherein a clearance between opposing surfaces of adjacent fastener element heads along the middle row is less than a nominal lateral extent, measured along the middle row, of the fastener element heads.
15. The touch fastener of claim 9 wherein each row grouping comprises the three row band and at least one single row band of fastener elements.
16. The touch fastener of claim 15 wherein each row group consists of the three row band and a single row band of fastener elements spaced midway between die three row band of the grouping and a three row band of an adjacent grouping.
17. The touch fastener of claim 15 wherein each row group consists of the three row band and two single row bands of fastener elements separated by a distance greater than the row spacing within the three row band.
18. The touch fastener of claim 1 wherein the fastener elements are arranged in a repeating pattern of four-element clusters, each cluster consisting of four fastener elements arranged at four corners of a four-sided polygonal area and spaced from adjacent clusters by a distance greater than a greatest side length of the polygonal area.
19. The touch fastener of claim 18 wherein the four-sided polygonal area is rectangular.
20. The touch fastener of claim 18 wherein the polygonal area is substantially square.
21. The touch fastener of claim 18 wherein the fastener elements are arranged in a repeating pattern of four-element clusters, each cluster consisting of four fastener elements arranged at four corners of a four-sided polygonal area, a clearance between a first pair of opposing fastener element heads at opposite corners of the area being greater than a nominal diameter of the fastener element heads, and a clearance between a second pair of opposing fastener element heads at Opposite corners of the area being less than the nominal diameter of the fastener element heads.
22. The touch fastener of claim 1 wherein the array has an overall fastener element density of at least 200 fastener elements per square inch (31 fastener elements per square centimeter).
23. The touch fastener of claim 22 wherein the fastener element density is at least 500 fastener elements per square inch (78 fastener elements per square centimeter).
24. The touch fastener of claim 1 wherein the array includes at least 10 rows of at least 50 fastener elements each.
25. The touch fastener of claim 1 wherein the fastener element stems extend perpendicular to the base.
26. The touch fastener of claim 1 wherein the fastener element heads each have upper surfaces that are generally flat over an area covering their respective stems.
27. The touch fastener of claim 1 wherein the fastener element heads each have an overall thickness, measured along their respective stems, of less than about 0.015 inch (0.38 millimeter).
28. The touch fastener of claim 1 wherein the fastener element stems are of square cross-section.
29. The touch fastener of claim 1 wherein the fastener element heads each have a maximum lateral extent, measured in a direction perpendicular to their respective stems, of between about 0.01 and 0.04 inch (025 and 1.0 millimeter).
30. The touch fastener of claim 1 having an overall thickness, including a thickness of the sheet-form base and an average height of the fastener elements, of less than about 0.075 inch (1.9 millimeters).
31. The touch fastener of claim 1 wherein the fastener element heads each have a lateral extent, measured along their respective rows, greater than a nominal distance between opposing surfaces of adjacent heads within each row.
32. The touch fastener of claim 1 wherein the fastener element stems are integrally molded with and extend perpendicularly from the base.
33. The touch fastener of claim 1 wherein the fastener elements are arranged to have a bulk overlap ratio, when engaged with an identical pattern at a zero degree engagement angle, of less than about 2.0 percent.
34. The touch fastener of claim 33 wherein the bulk overlap ratio is about zero percent.
35. The touch fastener of claim 1 wherein the fastener elements are constructed and arranged to provide an engagement resistance ratio, when engaged with an identical pattern at a 45 degree engagement angle, of less than about 2.5.
36. The touch fastener of claim 35 wherein the engagement resistance ratio is less than about 2.0.
37. The touch fastener of claim 1 wherein the fastener elements are constructed and arranged to provide an engagement resistance ratio, when engaged with an identical pattern at a 90 degree engagement angle, of less than about 1.7.
38. The touch fastener of claim 37 wherein the engagement resistance ratio is loss than about 1.2.
39. The touch fastener of claim 1 folded over and engaged with itself.
40. In combination, two strips of the product of claim 1 with their respective arrays of fastener elements engaged at a zero degree engagement angle.
41. The combination of claim 40 having an overall thickness, when compressed under a light load sufficient to engage the fastener elements of each strip against the base of the other strip, of less than about 0.08 inch (2 millimeters).
42. A touch fastener product comprising
a sheet-form base; and
an array of fastener elements each having a stem extending from a broad side of the base to a distal head overhanging the base and having an upper surface that is generally flat over an area covering its respective stem, the fastener elements arranged in an ordered pattern of straight rows;
wherein the fastener element heads cover the base at a head density of between about 20 and 35 percent; and
wherein the fastener elements are arranged to provide a bulk engagement ratio of at least 100 percent when engaged with an identical pattern at a zero degree engagement angle.
43. The touch fastener of claim 42 wherein the fastener elements are arranged to define a sufficient number and pattern of pockets between associated groups of adjacent stems to provide a bulk locking ratio of at least 10 percent when engaged with an identical pattern at a zero degree engagement angle.
44. The touch fastener of claim 42 wherein the fastener element stems are integrally molded with and extend perpendicularly from the base.
45. The touch fastener of claim 42 wherein the fastener elements are arranged in a repeating pattern of row groupings, each row grouping having a three row band of fastener elements spaced apart from adjacent rows of fastener elements by a distance greater than row spacing within the band.
46. The touch fastener of claim 45 wherein the three row band consists of two outer rows of laterally aligned fastener elements and a middle row of fastener elements longitudinally offset from adjacent fastener elements of the outer rows.
47. The touch fastener of claim 42 wherein the fastener elements are arranged in a repeating pattern of four-element clusters, each cluster consisting of four fastener elements arranged at four corners of a four-sided polygonal area and spaced from adjacent clusters by a distance greater than a greatest side length of the polygonal area.
48. The touch fastener of claim 42 wherein the fastener elements are arranged in a repeating pattern of four-element clusters, each cluster consisting of four fastener elements arranged at four corners of a four-sided polygonal area, a clearance between a first pair of opposing fastener element heads at opposite corners of the area being greater than a nominal diameter of the fastener element heads, and a clearance between a second pair of opposing fastener element heads at opposite corners of the area being less than the nominal diameter of the fastener element heads.
49. The touch fastener of claim 42 wherein the array has an overall fastener element density of at least 200 fastener elements per square inch (31 fastener elements per square centimeter).
50. The touch fastener of claim 42 wherein the fastener element heads each have upper surfaces that are generally flat over an area covering their respective stems.
51. The touch fastener of claim 42 wherein the fastener elements are arranged to have a bulk overlap ratio, when engaged with an identical pattern at a zero degree engagement angle, of less than about 2.0 percent.
52. The touch fastener of claim 42 wherein the fastener elements are constructed and arranged to provide an engagement resistance ratio, when engaged with an identical pattern at a 45 degree engagement angle, of less than about 2.5.
53. A touch fastener product comprising
a sheet-form base; and
an array of fastener elements each having a stem extending from a broad side of the base to a distal head overhanging the base;
wherein the fastener elements are arranged in a repeating pattern of row groupings, each row grouping having a three row band of fastener elements spaced apart from adjacent rows of fastener elements by a distance greater than row spacing within the band.
54. The touch fastener of claim 53 wherein the fastener element stems are integrally molded with and extend perpendicularly from the base.
55. The touch fastener of claim 53 wherein the fastener elements are arranged to provide a bulk engagement ratio of at least 100 percent when engaged with an identical pattern at a zero degree engagement angle.
56. The touch fastener of claim 53 wherein the fastener elements are arranged to define a sufficient number and pattern of pockets between associated groups of adjacent stems to provide a bulk locking ratio of at least 10 percent when engaged with an identical pattern at a zero degree engagement angle.
57. The touch fastener of claim 53 wherein the three row band consists of two outer rows of laterally aligned fastener elements and a middle row of fastener elements longitudinally offset from adjacent fastener elements of the outer rows.
58. The touch fastener of claim 57 wherein each fastener element of the middle row is equidistant from two adjacent fastener elements of each of the outer rows.
59. The touch fastener of claim 57 wherein a clearance between opposing surfaces of adjacent fastener element heads along the middle row is less than a nominal lateral extent, measured along the middle row, of the fastener element heads.
60. The touch fastener of claim 57 wherein a clearance between opposing surfaces of adjacent fastener elements of the outer rows, measured across the three row band, is greater than a nominal lateral extent, measured along the middle row, of the fastener element heads.
61. The touch fastener of claim 60 wherein a clearance between opposing surfaces of adjacent fastener element heads along the middle row is less than a nominal lateral extent, measured along the middle row, of the fastener element heads.
62. The touch fastener of claim 53 wherein each row grouping comprises the three row band and at least one single row band of fastener elements.
63. The touch fastener of claim 62 wherein each row group consists of the three row band and a single row band of fastener elements spaced midway between the three row band of the grouping and a three row band of an adjacent grouping.
64. The touch fastener of claim 62 wherein each row group consists of the three row band and two single row bands of fastener elements separated by a distance greater than the row spacing within the three row band.
65. The touch fastener of claim 53 wherein the fastener element heads cover the base at a head density of between 20 and 35 percent.
66. The touch fastener of claim 53 wherein the array has an overall fastener element density of at least 200 fastener elements per square inch (31 fastener elements per square centimeter).
67. The touch fastener of claim 53 wherein the fastener elements are arranged to have a bulk overlap ratio, when engaged with an identical pattern at a zero degree engagement angle, of less than about 2.0 percent.
68. The touch fastener of claim 53 wherein the fastener elements are constructed and arranged to provide an engagement resistance ratio, when engaged with an identical pattern at a 45 degree engagement angle, of less than about 2.5.
69. The touch fastener of claim 53 wherein the fastener elements are arranged in an ordered pattern of straight rows.
70. A touch fastener product comprising
a sheet-form base; and
an array of fastener elements each having a stem extending from a broad side of the base to a distal head overhanging the base, the fastener elements arranged in an ordered pattern of straight rows;
wherein the fastener elements are constructed and arranged to provide an engagement resistance ratio, when engaged with an identical pattern at a 45 degree engagement angle, of less than about 2.5.
71. The touch fastener of claim 70 wherein the engagement resistance ratio is less than about 2.0.
72. The touch fastener of claim 70 wherein the fastener elements are constructed and arranged to provide an engagement resistance ratio, when engaged with an identical pattern at a 90 degree engagement angle, of less than about 1.8.
73. The touch fastener of claim 72 wherein the engagement resistance ratio is less than about 1.2.
Description
TECHNICAL FIELD

This invention relates to patterning touch fastener elements, and more particularly to self-engageable patterns of mushroom-type fastener elements.

BACKGROUND

Touch fasteners generally include those with male fastener elements, such as those shaped as mushrooms, palm trees or hooks, engageable with loop or fibrous elements or with complementary arrays or patterns of male fastener elements. Patterns of male fastener elements that are engageable with themselves, or with another fastener having a similar pattern, are called self-engageable. To be self-engageable, a fastener element pattern must have an arrangement of fastener elements that allow the heads of two identical such arrays to pass by one another, and then to engage one another with their overhanging portions. In order for the heads of the mating fasteners to pass one another during engagement, the overall percentage of the area of each fastener element array occupied by the footprints of the heads, or the head density as it is sometimes called, must be less than 50 percent. The ratio of individual inter-element engagements to the total number of fastener elements of one of the identical engaged arrays is the bulk engagement ratio. Because one fastener element may be simultaneously engaged with multiple fastener elements of another array, it is possible for bulk engagement ratios to exceed 100 percent. Typically, the stems of the fastener elements are flexible to allow the heads to pass by one another as the fastener arrays are brought into engagement.

In many previous patterns of fastener elements, the elements were arranged in straight, ordered rows, and very efficient methods are available for molding fastener element stems integrally with a base in straight rows, such as by continuous molding of stems and base on a rotating mold roll made up of stacked plates, many plates each providing the cavities for a respective row of fastener element stems, as disclosed in U.S. Pat. No. 4,794,028. After stem molding, the fastener element heads may be formed by heating the stem ends and then pressing against them with a chilled surface, as is shown in U.S. Pat. No. 6,248,276, or by otherwise flowing resin of the distal stem ends to form overhanging heads. While readily formed, many straight-row patterns tend to perform best for self-engagement at an engagement angle, the angle between the directions of extent of the rows of the engaged arrays, of zero degrees. For enabling engagement at a variety of other angles, it has been suggested that fastener elements should be arranged with a very low degree of order rather than in equally spaced, straight rows. While such unordered arrangements can provide for more uniform engagement rations over a wide variety of engagement angles, such that the mating arrays can be engaged without precise alignment, this typically comes at a reduction in the bulk engagement ratio at a zero degree engagement angle, the engagement orientation occurring most frequently in many fixed-position applications, and places some limitations on manufacturing method. Furthermore, with most unordered patterns there will be some degree of undesirable direct overlap of the stem positions of the engaging arrays in almost any engagement orientation, forcing the overlapped stems to buckle or significantly deflect laterally to complete engagement. The ratio of the number of overlapped stems to the overall number of fastener elements in one of the arrays is called the bulk overlap ratio.

Many straight row or otherwise highly ordered patterns allow the engaged arrays of fastener elements to move laterally with respect to each other, or slip. Gross slip can occur in the direction of the rows of some straight row patterns, or in incremental motions in multiple directions in other patterns.

Further improvements in the arrangement of fastener elements in self-engageable patterns are desired.

SUMMARY

According to one aspect of the invention, a touch fastener product has a sheet-form base and an array of fastener elements, each fastener element having a stem extending from a broad side of the base to a distal head overhanging the base. The fastener elements are arranged in an ordered pattern of straight rows, with the heads of the fastener elements covering the base at a head density of between about 20 and 35 percent. The fastener elements are arranged to define a sufficient number and pattern of pockets between associated groups of adjacent stems to provide a bulk locking ratio of at least 10 percent when engaged with an identical pattern at a zero degree engagement angle. Preferably, the head density is between about 25 to 33 percent, or about 31 percent for some applications.

In some embodiments, the fastener elements are arranged to have a bulk engagement ratio, when engaged with an identical pattern at a zero degree engagement angle, of at least 100 percent, preferably at least 150 percent, and more preferably at least 200 percent.

In some cases, the bulk locking ratio is at least 20 percent, preferably at least 25 percent.

The fastener elements, for some applications, are advantageously arranged in a repeating pattern of row groupings, with each row grouping having a three row band of fastener elements spaced apart from adjacent rows of fastener elements by a distance greater than row spacing within the band. In some cases, the three row band consists of two outer rows of laterally aligned fastener elements and a middle row of fastener elements longitudinally offset from adjacent fastener elements of the outer rows. The middle row is preferably equidistant from two adjacent fastener elements of each of the outer rows.

In some configurations, a clearance between opposing surfaces of adjacent fastener element heads along the middle row is less than a nominal lateral extent, measured long the middle row, of the fastener element heads, such that during engagement, at least some of the fastener element stems of the middle row are deflected.

Preferably, particularly in such configurations, a clearance between opposing surfaces of adjacent fastener elements of the outer rows, measured across the three row band, is greater than a nominal lateral extent, measured long the middle row, of the fastener element heads, such that engagement does not require the deflection of both fastener elements of each opposing outer row pair.

In some patterns, each row grouping comprises the three row band and at least one single row band of fastener elements. For example, in one case, each row group consists of the three row band and a single row band of fastener elements spaced midway between the three row band of the grouping and a three row band of an adjacent grouping. In another illustrated pattern, each row group consists of the three row band and two single row bands of fastener elements separated by a distance greater than the row spacing within the three row band.

In some embodiments, the fastener elements are arranged in a repeating pattern of four-element clusters, with each cluster consisting of four fastener elements arranged at four corners of a four-sided polygonal area and spaced from adjacent clusters by a distance greater than a greatest side length of the polygonal area. The four-sided polygonal area may be rectangular, for example, or substantially square.

In some constructions, the fastener elements are arranged in a repeating pattern of four-element clusters, with each cluster consisting of four fastener elements arranged at four corners of a four-sided polygonal area. A clearance between a first pair of opposing fastener element heads at opposite corners of the area is greater than a nominal diameter of the fastener element heads, and a clearance between a second pair of opposing fastener element heads at opposite corners of the area is less than the nominal diameter of the fastener element heads.

For many touch fastener applications, the array should have an overall fastener element density of at least 200 fastener elements per square inch (31 fastener elements per square centimeter), preferably at least 500 fastener elements per square inch (78 fastener elements per square centimeter).

The array should include, for most tough fastener applications, at least 10 rows of at least 50 fastener elements each.

In many embodiments, the fastener element stems have one or more of the following features: they are of square or rectangular cross-section; they extend perpendicular to the base; and they are integrally molded with the base. In particular, integral molding of the fastener element stems and the base offers several advantages, such as avoiding the need to handle and attach individual stems, and elimination of a stem-base interface.

In many constructions, the fastener element heads have one or more of the following features: they each have upper surfaces that are generally flat over an area covering their respective stems; they each have an overall thickness, measured along their respective stems, of less than about 0.015 inch (0.38 millimeter); and they each have a maximum lateral extent, measured in a direction perpendicular to their respective stems, of between about 0.01 and 0.04 inch (0.25 and 1.0 millimeter).

In some patterns, the fastener element heads each have a lateral extent, measured along their respective rows, greater than a nominal distance between opposing surfaces of adjacent heads within each row.

In some preferred embodiments, the touch fastener has an overall thickness, including a thickness of the sheet-form base and an average height of the fastener elements, of less than about 0.075 inch (1.9 millimeters).

It is preferred that the fastener elements are arranged to have a bulk overlap ratio, when engaged with an identical pattern at a zero degree engagement angle, of less than about 2.0 percent, more preferably about zero percent.

It is also preferred that the fastener elements be constructed and arranged to provide an engagement resistance ratio, when engaged with an identical pattern at a 45 degree engagement angle, of less than about 2.5, more preferably less than about 2.0.

In some cases, the fastener elements are constructed and arranged to provide an engagement resistance ratio, when engaged with an identical pattern at a 90 degree engagement angle, of less than about 1.7, preferably less than about 1.2.

One aspect of the invention features folding such a fastener product over onto itself and engaging two portions of the fastener element array. Another aspect features such a fastener product so folded over and engaged with itself. Yet another aspect features two strips of the above-described product with their respective arrays of fastener elements engaged, such as at a zero degree engagement angle. Such an engaged pair of fastener strips preferably has an overall thickness, when compressed under a light load sufficient to engage the fastener elements of each strip against the base of the other strip, of less than about 0.08 inch (2 millimeters).

According to yet another aspect of the invention, a touch fastener product has a sheet-form base and an array of fastener elements, with each fastener element having a stem extending from a broad side of the base to a distal head overhanging the base and having an upper surface that is generally flat over an area covering its respective stem. The fastener elements are arranged in an ordered pattern of straight rows, with the fastener element heads covering the base at a head density of between about 20 and 35 percent. The fastener elements are arranged to provide a bulk engagement ratio of at least 100 percent when engaged with an identical pattern at a zero degree engagement angle.

In some preferred embodiments, the fastener elements are arranged to define a sufficient number and pattern of pockets between associated groups of adjacent stems to provide a bulk locking ratio of at least 10 percent when engaged with an identical pattern at a zero degree engagement angle.

Preferably, the fastener element stems are integrally molded with and extend perpendicularly from the base.

In many preferred patterns, the fastener elements are arranged in a repeating pattern of row groupings, with each row grouping having a three row band of fastener elements spaced apart from adjacent rows of fastener elements by a distance greater than row spacing within the band. The three row band may consist of two outer rows of laterally aligned fastener elements and a middle row of fastener elements longitudinally offset from adjacent fastener elements of the outer rows, for example.

In some patterns, the fastener elements are arranged in a repeating pattern of four-element clusters, with each cluster consisting of four fastener elements arranged at four corners of a four-sided polygonal area and spaced from adjacent clusters by a distance greater than a greatest side length of the polygonal area.

In some cases, the fastener elements are arranged in a repeating pattern of four-element clusters, with each cluster consisting of four fastener elements arranged at four corners of a four-sided polygonal area, a clearance between a first pair of opposing fastener element heads at opposite corners of the area being greater than a nominal diameter of the fastener element heads, and a clearance between a second pair of opposing fastener element heads at opposite corners of the area being less than the nominal diameter of the fastener element heads.

The fastener elements are preferably arranged to have a bulk overlap ratio, when engaged with an identical pattern at a zero degree engagement angle, of less than about 2.0 percent.

The fastener elements are also preferably constructed and arranged to provide an engagement resistance ratio, when engaged with an identical pattern at a 45 degree engagement angle, of less than about 2.5.

According to another aspect of the invention, a touch fastener product has a sheet-form base and an array of fastener elements, each fastener element having a stem extending from a broad side of the base to a distal head overhanging the base. The fastener elements are arranged in a repeating pattern of row groupings, each row grouping having a three row band of fastener elements spaced apart from adjacent rows of fastener elements by a distance greater than row spacing within the band.

Preferably, the fastener element stems are integrally molded with, and extend perpendicularly from, the base, and the fastener elements are arranged in an ordered pattern of straight rows.

The fastener elements are arranged, in some patterns, to provide a bulk engagement ratio of at least 100 percent when engaged with an identical pattern at a zero degree engagement angle.

In some embodiments, the fastener elements are arranged to define a sufficient number and pattern of pockets between associated groups of adjacent stems to provide a bulk locking ratio of at least 10 percent when engaged with an identical pattern at a zero degree engagement angle.

In some arrangements, the three row band consists of two outer rows of laterally aligned fastener elements and a middle row of fastener elements longitudinally offset from adjacent fastener elements of the outer rows. Preferably, each fastener element of the middle row is equidistant from two adjacent fastener elements of each of the outer rows.

In some configurations, a clearance between opposing surfaces of adjacent fastener element heads along the middle row is less than a nominal lateral extent, measured long the middle row, of the fastener element heads, such that during engagement, at least some of the fastener element stems of the middle row are deflected.

Preferably, particularly in such configurations, a clearance between opposing surfaces of adjacent fastener elements of the outer rows, measured across the three row band, is greater than a nominal lateral extent, measured long the middle row, of the fastener element heads, such that engagement does not require the deflection of both fastener elements of each opposing outer row pair.

In some patterns, each row grouping comprises the three row band and at least one single row band of fastener elements. For example, in one case, each row group consists of the three row band and a single row band of fastener elements spaced midway between the three row band of the grouping and a three row band of an adjacent grouping. In another illustrated pattern, each row group consists of the three row band and two single row bands of fastener elements separated by a distance greater than the row spacing within the three row band.

Preferably, the fastener element heads cover the base at a head density of between 20 and 35 percent, and the array has an overall fastener element density of at least 200 fastener elements per square inch (31 fastener elements per square centimeter).

According to another aspect of the invention, a touch fastener product includes a sheet-form base and an array of fastener elements each having a stem extending from a broad side of the base to a distal head overhanging the base, with the fastener elements arranged in an ordered pattern of straight rows. Notably, the fastener elements are constructed and arranged to provide an engagement resistance ratio, when engaged with an identical pattern at a 45 degree engagement angle, of less than about 2.5 (preferably, less than about 2.0).

In some embodiments, the fastener elements are constructed and arranged to provide an engagement resistance ratio, when engaged with an identical pattern at a 90 degree engagement angle, of less than about 1.8 (preferably, less than about 1.2).

By proper patterning, engagement and performance properties of self-engageable fastener element arrays can be enhanced, while maintaining a high degree of pattern order that lends itself to various manufacturing processes and tooling. In many cases, this can even be accomplished with fastener elements aligned in straight rows. Many of these patterns and fastener element constructions are also useful for engaging loops or fibers of a female fastener.

The details of one or more embodiments of the invention are set forth in the accompanying drawings and the description below. Other features, objects, and advantages of the invention will be apparent from the description and drawings, and from the claims.

DESCRIPTION OF DRAWINGS

FIG. 1 is a perspective view of a self-engageable fastener.

FIG. 2 is a side view of the fastener engaged with an identical fastener.

FIG. 3 is an enlarged side view of a single fastener element.

FIG. 4 shows a first fastener element head pattern.

FIG. 5 shows the pattern of FIG. 4, with fastener element stem outlines shown.

FIG. 6 shows a second fastener element pattern.

FIG. 7 shows a third fastener element pattern.

FIG. 8 shows a fourth fastener element pattern.

FIGS. 9 and 10 illustrate a fastener element forming method.

FIGS. 11A-11C illustrate array shifting for calculating pattern parameters.

FIGS. 12A and 12B show the pattern of FIG. 4 engaged with an identical pattern at engagement angles of 45 and 90 degrees, respectively.

Like reference symbols in the various drawings indicate like elements.

DETAILED DESCRIPTION

Referring first to FIG. 1, fastener 10 consists of a sheet-form, flexible resin base 12 and an array of mushroom-shaped fastener elements 14. Each fastener element 14 has a stem 16 integrally molded with and extending perpendicularly from a broad side of base 12 to a distal head 18 that overhangs the base on substantially all sides of the stem. As shown, fastener elements 14 are arranged in an ordered pattern of straight, parallel rows. Such fasteners 10 can be formed of thermoplastic materials, for example, in continuous processes as discussed below.

As shown in FIG. 2, the pattern of fastener elements is such that two identical fasteners 10 can be interlocked to form a releasable fastening, by engaging their respective arrays of fastener elements 14. Likewise, an extended length of fastener 10 can be folded so as to overlap two portions of its fastener element array, so as to engage itself. Preferably, the engaged fasteners, at rest, have a combined thickness “T” of less than about 2.0 millimeters, more preferably less than about 1.5 millimeters.

FIG. 3 illustrates a typical fastener element 14. In this illustrated example of a low profile fastener, molded stem 16 is of square cross-section with width WS of about 0.007 to 0.012 inch (0.18 to 0.3 millimeter) and rises integrally from a near surface 20 of base 12. Base 12 is generally planar and has a nominal thickness tb of about 0.008 to 0.022 inch (0.2 to 0.56 millimeter). Head 18 is typically formed of resin of molded stem 16 to overhang base 12, in a post-molding process, and is not itself of molded shape. However, a preferred head shape is one that overhangs the base on substantially all sides of stem 16 and has a thickness th of about 0.01 to 0.014 inch (0.25 to 0.36 millimeter). Produced by the forming methods outlined below and in U.S. Pat. No. 6,248,276 on a square stem, head 18 will generally be of circular or slightly oval footprint, with a major dimension Wh aligned in the direction of processing, of about 2.00 to 2.25 times stem thickness WS, or about 0.014 to 0.027 inch (0.56 to 0.76 millimeter) for preferred stem widths. In this example, head 18 is of circular cross-section and has a diameter Wh of about 0.0264 inch (0.671 millimeter). The overall thickness tf of the fastener, including the base thickness and the height of the fastener elements, is about 0.052 to 0.071 inch (1.3 to 1.8 millimeters). It should also be noted that in this embodiment, the upper surface of head 18 is generally flat over a central region “F” that covers the footprint of the underlying stem 16. Having such a relatively wide flat region can help an array of such fastener elements to readily slide across a mating array before engagement, such as to enable a user to position the fasteners after contact but prior to engagement. Flat upper surface regions also improve the feel of the array against skin by avoiding abrasiveness, and help to distribute normal loads against a mating surface during compression.

In a high profile example, square stem 16 width Ws is about 0.018 inch (0.46 millimeter), and major head dimension Wh is about 0.0378 inch (0.960 millimeters). In this high profile example, the overall thickness tf of the fastener is about 0.040 to 0.115 inch (1.0 to 2.9 millimeters), with a base thickness of 0.008 to 0.020 inch (0.2 to 0.5 millimeter).

Other stem configurations are also possible. For example, some stems are inserted through the fastener base as separate elements, rather than being integrally molded of the same material. Such assembly processes can be more expensive, however, than integral molding. The stems may also be of different cross-section than square or rectangular. For example, some stems of circular cross-section can be molded integrally with the base on a roll having plates with aligned, half-cylinder grooves machined or etched into their side surfaces, with the grooves of each abutting plate aligned with those of the next to form cylindrical stem molding cavities.

Referring next to FIG. 4, fastener elements 14 are arranged in repeating groups of three rows each. These rows are identified in the second row group from left as outer rows A and C and middle row B. The row spacing SR within each row group is constant, and about 0.028 inch (0.71 millimeter) in this example, with middle row B disposed equidistant from rows A and C, such that rows A and C are separated by about 0.056 inch (1.14 millimeters). The fastener elements spacing SF is constant along each row, and about 0.046 inch (1.17 millimeters) in this example. Each middle row B is longitudinally offset from its associated outer rows A and C, such that its fastener elements 14 are each disposed midway between adjacent fastener elements 14 in the outer rows. Each three row group is separated from the next three row group by a longitudinal track 22 clear of fastener elements. In this example, the pattern of row group and spacing has a repeat width WR of about 0.114 inch (2.90 millimeters), just slightly greater than the repeat width that would be obtained by taking a full staggered array of row spacing SR and removing every fourth row, and the heads 18 of the fastener elements are drawn at a nominal diameter of 0.0264 inch (0.671 millimeter), or an average of about 2.2 times the stem width.

The grouping of fastener element rows into three row groupings, each with a middle staggered row B and spaced from adjacent groups, can be particularly advantageous for self-engagement performance as it provides a sufficient bulk locking ratio at a particularly low head density. Each row group defines a longitudinal row of inter-element receptacles 24, each bounded by four fastener elements 14 and sized to receive and hold a fastener element head of a mating array on at least three sides. One such receptacle 24 is illustrated between four highlighted fastener elements, with the dashed outline of a fastener element head 18′ engaging between the highlighted fastener elements. Given the above inter-row spacing, inter-element spacing and head diameters, the clearance C1 between adjacent heads along each row is about 0.02 inch (0.5 millimeter), or slightly less than the nominal head diameter, while the clearance C2 between transversely aligned fastener elements is about 0.03 inch (0.75 millimeter), or slightly greater than the nominal head diameter. Thus, a mating fastener element head 18′ need only laterally deflect one fastener element of middle row B during engagement.

FIG. 5 also shows the cross-sectional area of the square stem 16 of each fastener element 14, and shows in dashed outline the thickness of the molding and spacer plates of the mold roll employed to form the base and stems of the fastener. As can be seen in this view, the minimum corner separation SS between the stems 16 of adjacent fastener elements in middle and outer rows of each row grouping, is less than the nominal diameter of the fastener element heads, such that a trapped fastener element head 18′ (FIG. 4) is obstructed from moving laterally from its receptacle 24 in any direction, once engaged. Thus, each locked head is trapped in a cage formed by four adjacent fastener element stems 16. In this example, stem corner separation SS is about 0.0194 inch (0.49 millimeter), significantly less than the nominal head diameter of 0.0264 inch (0.671 millimeter).

Fastener elements having the above dimensions and arranged in the pattern of FIG. 4 provide an overall head density of 585 hooks per square inch (91 hooks per square centimeter), and a head density of about 29.2 percent. The bulk engagement, locking and overlap ratios were calculated to be 228 percent, 25.4 percent, and zero percent, respectively.

In a high profile example of the pattern of FIG. 4, the labeled dimensions are 0.069 inch (1.75 millimeters) for SF, 0.176 inch (4.47 millimeters) for WR, and 0.044 inch (1.1 millimeters) for SR, with a stem corner separation SS of about 0.0308 inch (0.78 millimeter).

Another pattern that provides reasonable head entrapment at a relatively low head density is shown in FIG. 6. In this case, each straight row of fastener elements 14 consists of closely spaced pairs of fastener elements aligned with a respective pair of an adjacent row, such that the resulting array of fastener elements consists of equally spaced groups 26 of four fastener elements each, with the fastener elements of each group disposed at the corners of an almost-square rectangle and defining a receptacle 24 for receiving a fastener element head of a mating array between them. Each fastener element 14 is of the same dimensions as the fastener elements of FIG. 4, except that the nominal head diameter Wh is illustrated at about 0.0252 inch (0.64 millimeter). Notably, the inter-stem clearance between adjacent stems within each group 26 is less than the nominal head diameter. In this example, longitudinal stem spacing SS1 is about 0.021 inch (0.53 millimeter), and transverse stem spacing SS2 is about 0.022 inch (0.56 millimeter), small enough that the four stems 16 of each group 26 form a four-bar cell to prevent exodus of a trapped fastener element head. Notably, the diagonal clearance C3 between fastener element heads 18 within each group 26 is about 0.022 inch (0.056 millimeter), or slightly smaller than the nominal head diameter. The spacing between groups 26 is such that the pattern repeats at an interval WR1 of about 0.067 inch (1.70 millimeters) along the rows, and a transverse interval WR2 of about 0.068 inch (1.73 millimeters).

The arrangement of FIG. 6 provides an overall head density of 676 hooks per square inch (105 hooks per square centimeter), and a head density of about 28.7 percent. The bulk engagement, locking and overlap ratios were calculated to be 213 percent, 25.0 percent, and zero percent, respectively.

In a high profile example of a product with an array patterned after FIG. 6 and with 0.018 inch (0.46 millimeter) square stems, the labeled dimensions are 0.129 inch (3.28 millimeters) for WR1, 0.130 inch (3.30 millimeters) for WR2, 0.0378 inch (0.96 millimeter) for Wh, and 0.036 inch (0.91 millimeter) for both SS1 and SS2.

Another fastener element pattern is shown in FIG. 7. This pattern includes the same three row grouping and fastener element dimensions of the pattern of FIG. 4, but with the addition of two single rows to the repeating row pattern. The distance W1 from each three row group to an adjacent single row is equal to the distance between the single rows, and about 0.058 inch (1.47 millimeter) in this example, such that the repeat pattern width WR is about 0.23 inch (5.8 millimeters). This arrangement provides an overall head density of 501 hooks per square inch (78 hooks per square centimeter), and a head density of about 25.0 percent. The bulk engagement, locking and overlap ratios were calculated to be 181 percent, 13.7 percent, and zero percent, respectively.

The pattern of FIG. 8 is similar to the one of FIG. 7, but with only one single row between adjacent three row groups. Otherwise, the dimensions of the pattern are the same, such that the repeat pattern width WR is about 0.172 inch (4.37 millimeters). This arrangement provides an overall head density of 522 hooks per square inch (81 hooks per square centimeter), and a head density of about 26.0 percent. The bulk engagement, locking and overlap ratios were calculated to be 194 percent, 16.9 percent, and zero percent, respectively.

FIGS. 9 and 10 briefly illustrate a preferred method of forming the fastener elements of the above patterns in a continuous process. Molten resin is introduced to a mold roll 30, either in a nip between the mold roll and a counter-rotating pressure roll 32, as shown, or directly with a pressurized shoe (not shown). The resin is forced into an array of cavities and cooled on roll 30 to integrally form stems extending from a side of a sheet of resin that cools on the surface of roll 30 before being stripped from roll 30 and passed about roll 34. While on roll 34, immediately before encountering head-forming roll 36, the distal ends of the stems 16 are rapidly heated, either by a flame 38 as shown, or by a heated platen, keeping the remainder of the stems and base sheet relatively cool. The molten ends are then deformed by rotating roll 36, that is kept at a temperature lower than that of the incoming stem ends, as shown in FIG. 10. Stems molded with a height of 0.076 inch (1.9 millimeters), for example, are deformed in one embodiment to a final height of about 0.050 inch (1.3 millimeters), with relatively flat upper head surfaces. More details of this process can be found in U.S. Pat. No. 6,248,276.

Bulk locking, engagement and overlap characteristics at zero degree engagement angles are determined in accordance with the following procedures, which can be performed readily with current computer-aided-drafting (CAD) techniques.

First, a model of the plan view of the pattern is created, containing only the lateral outline of each fastener element head and their associated stems, at proper spacing from other fastener element heads and stems. Then a copy of this pattern is created and trimmed to one inch (25.4 millimeters) square (the duplicate), such as in a different layer of the CAD model, and superimposed directly over the first pattern (the original). The duplicate is then moved transversely, in a direction perpendicular to the rows of fastener elements, a distance equal to one row spacing, and then moved longitudinally, in a direction parallel to the rows, only until the fastener elements of the duplicate are generally aligned between fastener elements of the original (typically, about one half of the intra-row fastener element spacing). FIG. 11A illustrates this first engageable position for the pattern of FIG. 4, with the fastener element heads of the original highlighted. In this position, the overlapping stem areas are counted (in this example, there are no overlapping stems in this position) and recorded. Next, the duplicate is moved transversely one row spacing and longitudinally shifted to a next engageable position (FIG. 11B illustrates such a position for the pattern of FIG. 4), and the overlapping stems across the one square inch (6.45 square centimeter) extent of the duplicate pattern are again counted. This is repeated until the extent of the repeating row pattern is reached, and the number of overlapping stems is averaged between the analyzed positions and then divided by the number of stems per square inch to obtain the bulk overlap ratio. FIG. 11C illustrates a third analysis position for the pattern of FIG. 4, which requires analysis at a total of four positions before the row sequence repeats.

The above procedure is similar to that for calculating the bulk engagement ratio, except that at each engageable position, the number of hook-hook engagements is counted rather than the number of overlapping stems. Note that any single hook head may be simultaneously engaged with multiple heads of the mating pattern, with each engagement counted separately. In each position, the duplicate should be shifted laterally from its initial placement to maximize engagement with fastener elements of the original, but no more than one-half of a row spacing in any direction. This simulates field use, in which perfect alignment rarely occurs and where some shear loading is almost always present.

Bulk locking ratio is calculated similarly, except that it is only analyzed for arrays in which the fastener element stems are spaced close enough to prevent a head trapped in a receptacle, defined between four adjacent stems in two or three adjacent rows, from moving laterally out of the receptacle. At each analysis position of the two overlapped patterns, what is counted is the number of fastener element heads of the duplicate that are within receptacles of the original. A head of the duplicate is said to be within a receptacle of the original if the entire extent of any flat portion of the head surface is within a polygon connecting the centers of all of the fastener elements defining the receptacle. Such fastener element heads are said to be “locked” against gross lateral movement, even though they may freely move within the receptacle. For example, most of the fastener elements of the far left row of the duplicate in FIG. 11B are locked between fastener elements of the original, while none of the fastener elements of the duplicate in FIG. 11C are locked.

Besides demonstrating a good zero engagement angle performance, many of the patterns described above also provide reasonable performance at other engagement angles, even with their high degree of order. FIGS. 12A and 12B, for example, illustrate engagement of two patterns of FIG. 4 at engagement angles of 45 and 90 degrees, respectively. One way to rate the engagement and strength performance of patterns at various angles is to compare the levels of force required for engagement with those at a zero degree engagement angle. These values can be measured by mounting duplicate fasteners to rigid blocks, with the area of overlap known, bringing the blocks together gently at the desired engagement angle and laterally adjusting the relative position of the fasteners to promote engagement, then slowly increasing engagement load until the fasteners engage. The maximum force for engagement is recorded and then divided by the engagement load at a zero degree engagement angle, to generate an engagement resistance ratio. An ideal, omni-directional fastener would have, therefore, an engagement resistance ratio of 1.0 as there would be no performance variation with engagement angle.

Besides providing good performance at a zero degree engagement angle, many of the above patterns also provide an improved degree of omni-directionality as compared with some other highly ordered patterns. The embodiment shown in FIG. 4, for example, was molded from high density polyethylene (HDPE) and demonstrated an engagement resistance ratio of about 1.65 at 90 degrees, and about 2.0 at 45 degrees. The embodiment of FIG. 6, on the other hand, as formed of HDPE, demonstrated an engagement resistance ratio of about 1.71 at 45 degrees, and only about 0.8 at 90 degrees. This similarity of engagement resistance at zero and 90 degrees would be expected, given the symmetry of the pattern of FIG. 6.

The above products can be produced from various thermoplastics and other resins. A high density polyethylene, such as Exxon Mobil #6908, can be useful for some applications. Other suitable materials include low density polyethylene (LDPE), polypropylene and nylon.

The entire contents of U.S. Pat. Nos. 6,248,276 and 4,794,028 are hereby incorporated by reference herein, as if completely set forth.

A number of embodiments of the invention have been described. Nevertheless, it will be understood that various modifications may be made without departing from the spirit and scope of the invention. Accordingly, other embodiments are within the scope of the following claims.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US3076244Aug 11, 1959Feb 5, 1963Velcro Sa SoulieDevice for connecting two flexible parts
US3101517Nov 28, 1960Aug 27, 1963Marvin FoxFastener
US3191255Aug 13, 1962Jun 29, 1965Nealis Raymond NPlastic zipper
US3266113Dec 14, 1964Aug 16, 1966Minnesota Mining & MfgInterreacting articles
US3312583Oct 2, 1963Apr 4, 1967James J RochlisApertured and staggered molded pile product
US3320649Mar 21, 1966May 23, 1967Naimer JackMethods of making separable fastening fabrics
US3405430Jul 29, 1966Oct 15, 1968Goodman & Sons Inc HClosures
US3408705Jul 7, 1966Nov 5, 1968Minnesota Mining & MfgFastener articles
US3522637Mar 6, 1968Aug 4, 1970George C BrumlikSelf-gripping fastening filament
US3526867Jul 17, 1967Sep 1, 1970Keeler Brass CoInterlocking electrical connector
US3557413Sep 23, 1968Jan 26, 1971William H EngleNonmechanical closure
US3629930May 7, 1969Dec 28, 1971George C BrumlikMethod of making a self-gripping fastening device
US3686718Dec 8, 1969Aug 29, 1972Brumlik George CSelf-gripping fastening device
US3710425Sep 11, 1969Jan 16, 1973Brumlik GGripping fastening surface
US3808646Mar 18, 1971May 7, 1974G BrumlikMulti-element self-gripping channel
US3808648Dec 1, 1971May 7, 1974Velcro FranceSeparable fastening sheet
US3833972Aug 14, 1972Sep 10, 1974Brumlik GSelf-adhering fastening filament
US3840945Dec 1, 1972Oct 15, 1974Brumlik GGripping fastening surface
US3869764Feb 28, 1974Mar 11, 1975Int Fastener EtsPress-on and split-off type fastener and manufacturing device therefor
US3879835Sep 26, 1973Apr 29, 1975George C BrumlikMethod of making multi element self-gripping device having cooperating gripping elements
US3889322Jul 12, 1973Jun 17, 1975Ingrip FastenersMulti-element self-gripping device
US3899803Dec 10, 1973Aug 19, 1975Ingrip FastenersSelf-gripping device with preformed gripping elements
US3913183Jun 28, 1973Oct 21, 1975Brumlik George CMulti-element gripping device
US3921259Nov 21, 1974Nov 25, 1975Ingrip FastenersSelf-gripping device with composite gripping elements
US3981051Apr 26, 1973Sep 21, 1976Brumlik George CBristle-like gripping device
US4001366Sep 26, 1973Jan 4, 1977Ingrip Fasteners Inc.Method for making self-gripping devices having integral trains of gripping elements
US4180890May 4, 1977Jan 1, 1980Ingrip Fasteners, Inc.Linear element with grafted nibs and method therefor
US4198734Jan 31, 1978Apr 22, 1980Brumlik George CSelf-gripping devices with flexible self-gripping means and method
US4216257Apr 20, 1979Aug 5, 1980Minnesota Mining And Manufacturing CompanyPressure sensitive adhesive, low density closed-cell foam, u-shaped headed monofilaments
US4290174Jan 13, 1978Sep 22, 1981Minnesota Mining And Manufacturing CompanySeparable fastener and article for making same
US4290832Sep 2, 1977Sep 22, 1981Minnesota Mining And Manufacturing CompanyMethod for making fasteners
US4322875Mar 31, 1980Apr 6, 1982Minnesota Mining And Manfacturing CompanyTwo strip materials used for forming fasteners
US4819309Aug 27, 1987Apr 11, 1989Minnesota Mining And Manufacturing CompanyFastener with parts having projecting engaging portions
US4875259Mar 24, 1988Oct 24, 1989Minnesota Mining And Manufacturing CompanyIntermeshable article
US4887339Jul 18, 1988Dec 19, 1989Minnesota Mining And Manufacturing CompanyStrip material with tab-like parts for forming fasteners
US4944072Jun 20, 1989Jul 31, 1990Robson Peter MProfiled fasteners
US5040275Jun 1, 1990Aug 20, 1991Minnesota Mining And Manufacturing CompanyStrip material used for forming fasteners
US5067210Oct 3, 1990Nov 26, 1991Yoshida Kogyo K.K.Surface-type fastener
US5077870Sep 21, 1990Jan 7, 1992Minnesota Mining And Manufacturing CompanyMushroom-type hook strip for a mechanical fastener
US5196266Aug 29, 1990Mar 23, 1993Minnesota Mining And Manufacturing CompanyReclosable mechanical fastener based on a composite article
US5212853Mar 10, 1992May 25, 1993Nifco Inc.Separable plastic fastener and method and apparatus for manufacturing thereof
US5212855Aug 5, 1991May 25, 1993Mcganty Leo FMultiple button closure-fastener
US5235731Mar 26, 1992Aug 17, 1993Kuraray Co., Ltd.Molded-resin separable fastener and fastening system utilizing the same
US5242646May 7, 1992Sep 7, 1993Minnesota Mining And Manufacturing CompanyMethod of making an interengaging fastener member
US5396687Nov 12, 1993Mar 14, 1995Osterman; Eric F.Mechanical fastener
US5457855Feb 28, 1994Oct 17, 1995Velcro Industries, B.V.Woven self-engaging fastener
US5473800Mar 29, 1994Dec 12, 1995Magictape Co., Ltd.Separable fastening component
US5490808Jan 30, 1995Feb 13, 1996Minnesota Mining And Manufacturing CompanyAbrasive attachment system for rotative abrading applications
US5579562Aug 3, 1994Dec 3, 1996Minnesota Mining And Manufacturing CompanyInterengaging fastener having locating feature
US5596794 *Oct 12, 1994Jan 28, 1997Nifco Inc.Plastic surface fastener
US5607635Nov 8, 1991Mar 4, 1997Minnesota Mining And Manufacturing CompanyMushroom-type hook strip for a mechanical fastener
US5611122Jul 19, 1994Mar 18, 1997Minnesota Mining And ManufacturingInterengaging fastener having reduced noise generation
US5614232Feb 28, 1996Mar 25, 1997Minnesota Mining And ManufacturingMethod of making an interengaging fastener member
US5625929Aug 4, 1994May 6, 1997Minnesota Mining And ManufacturingInterengaging fastener member
US5634245Jul 14, 1995Jun 3, 1997Minnesota Mining And Manufacturing CompanyStructured surface fastener
US5639327Jan 21, 1992Jun 17, 1997Minnesota Mining And Manufacturing CompanyDisposable diaper with thermoplastic material anchored hook fastener portion
US5657516Oct 12, 1995Aug 19, 1997Minnesota Mining And Manufacturing CompanyDual structured fastener elements
US5671511Aug 25, 1994Sep 30, 1997Minnesota Mining And Manufacturing CompanyInterengaging fastener member having fabric layer
US5671512Jan 19, 1996Sep 30, 1997Minnesota Mining And Manufacturing CompanyInterengaging fastner having reduced engagement force
US5679302Apr 16, 1993Oct 21, 1997Minnesota Mining And Manufacturing CompanyMethod for making a mushroom-type hook strip for a mechanical fastener
US5691021Feb 28, 1996Nov 25, 1997Minnesota Mining And Manufacturing CompanyFlame retardant fastener and method for making the same
US5713111Jan 23, 1997Feb 3, 1998Minnesota Mining And Manufacturing CompanyMethod for making an interengaging fastener having reduced engagement force
US5761775Oct 17, 1996Jun 9, 1998Legome; Mark J.Mushroom and loop material closure system for high shear strength and low peel strength applications
US5797170Feb 28, 1997Aug 25, 1998Ykk CorporationSynthetic resin molded surface fastener
US5799378Jan 24, 1997Sep 1, 1998Gershenson; BruceFastening system
US5845375May 30, 1997Dec 8, 1998Minnesota Mining And Manufacturing CompanyMushroom-type hook strip for a mechanical fastener
US5852855Dec 2, 1996Dec 29, 1998Minnesota Mining And Manufacturing CompanyDisposable diaper with fastener
US5868987Jun 19, 1997Feb 9, 1999Minnesotamining And ManufacturingSuperimposed embossing of capped stem mechanical fastener structures
US5879604Oct 25, 1996Mar 9, 1999Minnesota Mining And Manufacturing CompanyMethod of making a mushroom-type hook strip for a mechanical fastener
US5980230Apr 11, 1997Nov 9, 1999Velcro Industries B.V.Forming fastener products
US5983467Dec 29, 1997Nov 16, 1999Duffy; Leonard A.Interlocking device
US6000106Mar 17, 1998Dec 14, 19993M Innovative Properties CompanySuperimposed embossing of capped stem mechanical fastener structures
US6039911Jan 9, 1997Mar 21, 20003M Innovative Properties CompanyMethod for capping stem fasteners
US6076238Apr 13, 1999Jun 20, 20003M Innovative Properties CompanyMechanical fastener
US6124015Apr 9, 1997Sep 26, 2000Jwi Ltd.Multi-ply industrial fabric having integral jointing structures
US6133173Dec 1, 1997Oct 17, 20003M Innovative Properties CompanyNonwoven cohesive wrap
US6159596Dec 23, 1997Dec 12, 20003M Innovative Properties CompanySelf mating adhesive fastener element articles including a self mating adhesive fastener element and methods for producing and using
US6179625Mar 25, 1999Jan 30, 2001International Business Machines CorporationRemovable interlockable first and second connectors having engaging flexible members and process of making same
US6248276Jan 15, 1999Jun 19, 2001Velcro Industries B.V.Heating to the softening point the ends of preformed stems protruding in an array from a common base, contacting the ends with a flattening surface to deform the ends into a disk or mushroom shaped head
US6276032Jan 25, 2000Aug 21, 2001Kimberly-Clark Worldwide, Inc.Mechanical fastening system having a plurality of engagement members which include stalk members
US6280670Aug 22, 1997Aug 28, 2001Velcro Industries B.V.Post- forming heads on fastener elements
US6287665Oct 1, 1997Sep 11, 2001Gottlieb Binder Gmbh & Co.Method and device for producing a hook-and-pile type closure part from thermoplastic plastics
US6303062Apr 13, 1999Oct 16, 20013M Innovative Properties CompanyMechanical fastener and method for making the same
EP0138724A2Sep 28, 1984Apr 24, 1985V. LOUISON et CIE, société anonymeHook-type fastening element for the manufacture of bodies or frames moulded or injected in an elastic or rigid material, particularly for car seats, and bodies or frames utilising said element
EP0418951A2Sep 7, 1990Mar 27, 1991THE PROCTER & GAMBLE COMPANYPressure-sensitive adhesive fastener and method of making same
EP0549705A1Aug 19, 1991Jul 7, 1993Minnesota Mining & MfgMushroom-type hook strip for a mechanical fastener.
EP0565750A1Apr 14, 1992Oct 20, 1993GOTTLIEB BINDER GMBH & Co.Mechanical fastening element and connection realized by this element
EP0619085A1Mar 17, 1994Oct 12, 1994Magictape Co., LtdSeparable fastening component
EP0852918A2Oct 21, 1997Jul 15, 1998GOTTLIEB BINDER GMBH & Co.Method to produce a gelatin separable fastener
EP0894448A1Jul 31, 1997Feb 3, 1999Minnesota Mining And Manufacturing CompanyMechanical fastening element
GB2279106A Title not available
JP2000094109A Title not available
JPH0994109A Title not available
JPH05199911A Title not available
JPH07143905A Title not available
JPH07184708A Title not available
JPH09252811A Title not available
WO1997013981A1Oct 4, 1996Apr 17, 1997Minnesota Mining & MfgDual structured fastener elements
WO1997031549A1Jun 25, 1996Sep 4, 1997Minnesota Mining & MfgFlame retardant fastener and method for making the same
WO1998025495A1Oct 18, 1997Jun 18, 1998Binder Gottlieb Gmbh & CoRapid-fastening strip and method of producing the same
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US7007351 *Feb 25, 2004Mar 7, 20063M Innovative Properties CompanyHeat treated high density structures
US7067185 *Jun 11, 2003Jun 27, 20063M Innovative Properties Companyfastener comprising thermoplastic resin film backings having surfaces with spaced separated projections arranged in rows to form hangers; tear strength
US7225569 *Aug 16, 2005Jun 5, 2007Agripa Holdings LimitedFlexible frame and mutually engageable fastening means
US7254874Mar 9, 2005Aug 14, 2007Leonard Arnold DuffyMolded surface fasteners and attachment methods
US7670522Mar 6, 2006Mar 2, 20103M Innovative Properties CompanyReinforced hook web
US7862549Mar 29, 2004Jan 4, 2011The Procter & Gamble CompanyVariable stretch composites and methods of making the composite
US7950114Aug 10, 2007May 31, 2011Leonard Arnold DuffySelf-adhering device and method
US8142262Sep 6, 2007Mar 27, 2012Robert Bosch GmbhSanding device with detachably mounted sanding element
US8225467Jul 3, 2008Jul 24, 2012Velcro Industries B.V.Arrays of fastener elements
US8245326 *Feb 21, 2008Aug 21, 2012Anthony TolveHelmet adjunct for retention of portable audio device
US8256068Oct 31, 2008Sep 4, 2012Panduit Corp.Microhook fastener apparatus
US8375529Jul 27, 2009Feb 19, 2013Leonard Arnold DuffyTouch engageable fastener
US8440257May 14, 2012May 14, 20133M Innovative Properties CompanyMethods for making fasteners
US8448305Jun 26, 2012May 28, 2013Valero Industries B.V.Arrays of fastener elements
US8523834Oct 22, 2010Sep 3, 2013The Procter & Gamble CompanyVariable stretch composites and methods of making the composite
US20120260401 *Mar 13, 2012Oct 18, 2012Darryl MoskowitzReleasable securement device
US20130091667 *Oct 4, 2012Apr 18, 2013Paul Anthony ZerfasMechanical And Adhesive Based Reclosable Fasteners
Classifications
U.S. Classification24/452, 24/442
International ClassificationA44B18/00
Cooperative ClassificationA44B18/0065, A44B18/0053
European ClassificationA44B18/00F8B, A44B18/00F4
Legal Events
DateCodeEventDescription
Aug 10, 2011FPAYFee payment
Year of fee payment: 8
Aug 10, 2007FPAYFee payment
Year of fee payment: 4
Jun 22, 2004CCCertificate of correction
Mar 29, 2002ASAssignment
Owner name: VELCRO INDUSRIES B.V., NETHERLANDS ANTILLES
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CLARNER, MARK A.;ENNIS, MICHELLE M.;CARBONNEAU, MICHAEL J.;REEL/FRAME:012806/0001;SIGNING DATES FROM 20020305 TO 20020306
Owner name: VELCRO INDUSRIES B.V. CASTORWEG 22-24CURACAO, (1)
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CLARNER, MARK A. /AR;REEL/FRAME:012806/0001;SIGNING DATES FROM 20020305 TO 20020306