US6784762B2 - Laminated LC filter where the pattern widths of the central portion air is greater than the end portions - Google Patents

Laminated LC filter where the pattern widths of the central portion air is greater than the end portions Download PDF

Info

Publication number
US6784762B2
US6784762B2 US10/186,609 US18660902A US6784762B2 US 6784762 B2 US6784762 B2 US 6784762B2 US 18660902 A US18660902 A US 18660902A US 6784762 B2 US6784762 B2 US 6784762B2
Authority
US
United States
Prior art keywords
patterns
inductor
capacitor
laminated
filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime, expires
Application number
US10/186,609
Other versions
US20030016098A1 (en
Inventor
Noboru Kato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to US10/186,609 priority Critical patent/US6784762B2/en
Publication of US20030016098A1 publication Critical patent/US20030016098A1/en
Application granted granted Critical
Publication of US6784762B2 publication Critical patent/US6784762B2/en
Adjusted expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • H03H7/17Structural details of sub-circuits of frequency selective networks
    • H03H7/1741Comprising typical LC combinations, irrespective of presence and location of additional resistors
    • H03H7/1775Parallel LC in shunt or branch path
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • H03H7/0115Frequency selective two-port networks comprising only inductors and capacitors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H1/00Constructional details of impedance networks whose electrical mode of operation is not specified or applicable to more than one type of network
    • H03H2001/0021Constructional details
    • H03H2001/0085Multilayer, e.g. LTCC, HTCC, green sheets

Definitions

  • the present invention relates to an LC filter, and more particularly, to a laminated LC filter for use with high frequencies.
  • a band pass filter that allows a signal of a specific frequency band to pass through includes a plurality of LC resonators.
  • a configuration of one example of a conventional band pass filter is shown in FIG. 13 .
  • the band pass filter 1 includes the first and second stage LC resonators Q 1 and Q 2 within a laminate body constructed of layered ceramic sheets 3 .
  • the inductances of the LC resonators Q 1 and Q 2 are generated by the inductor patterns 4 a , 4 b , 5 a , and 5 b .
  • the capacitances of the LC resonators Q 1 and Q 2 are generated by the capacitor patterns 6 a to 6 c , 7 a to 7 c , and the inductor patterns 4 a , 4 b , 5 a , and 5 b are arranged on the surface of the ceramic sheets 3 such that the inductor patterns 4 a , 4 b , 5 a , and 5 b do not contact the capacitor patterns 6 a to 6 c , 7 a to 7 c .
  • the above-described LC resonators Q 1 and Q 2 are electro-magnetically coupled together.
  • a leading edge of the inductor pattern 4 a is connected to an input lead pattern 14 that is provided on a left side of the sheet 3 .
  • a leading edge of the inductor pattern 5 a is connected to an output lead pattern 15 that is provided on a right side of the sheet 3 .
  • the inductor patterns 4 a , 4 b , 5 a , and 5 b and the capacitor patterns 6 a to 6 c and 7 a to 7 c are arranged in a layered configuration with alternating layers.
  • the shielding patterns 12 a and 12 b are provided on either side of this layered configuration.
  • FIGS. 14 and 15 illustrate another example of a conventional laminated band pass filter.
  • This band pass filter 21 includes first and second stage LC resonators Q 1 and Q 2 within a laminate body 41 constructed of layered ceramic sheets 23 .
  • the inductances of the LC resonators Q 1 and Q 2 are generated by the inductor patterns 24 and 25 .
  • the capacitances of the LC resonators Q 1 , Q 2 are generated by the capacitor patterns 26 and 27 , and the leading edges 24 a and 25 a of the inductor patterns 24 and 25 are arranged on the surface of the ceramic sheets 23 such that the inductor patterns 24 and 25 do not contact the capacitor patterns 26 and 27 .
  • the above-described LC resonators Q 1 and Q 2 are electrically coupled by a coupling capacitor that is provided by these inductor patterns 24 and 25 and the coupling capacitor pattern 28 that is located opposite to these inductor patterns 24 and 25 .
  • These LC resonators Q 1 and Q 2 are capacitive-coupled to an input lead pattern 29 and an output lead pattern 30 , respectively.
  • the shielding patterns 32 a and 32 b are provided on either side of the layered patterns 24 to 30 .
  • an input terminal electrode 42 In the laminated body 41 , an input terminal electrode 42 , an output terminal electrode 43 and shielding terminal electrodes 44 and 45 are provided as shown in FIG. 15 .
  • An input lead pattern 29 is connected to the input terminal electrode 42
  • an output lead pattern 30 is connected to the output terminal electrode 43 .
  • the lead portions of the inductor patterns 24 and 25 and the end portions of the shielding pattern 32 a and 32 b are connected to the shielding terminal electrode 44 .
  • the lead portions of the capacitor patterns 26 and 27 and the other end portions of the shielding pattern 32 a and 32 b are connected to the shielding terminal electrode 45 .
  • the band pass filter 1 as shown in FIG. 13 is laminated such that the inductor patterns 4 a to 5 b are sandwiched by the capacitor patterns 6 a to 6 c , 7 a to 7 c , so that electric currents flow into each of the inductor patterns 4 a , 4 b , 5 a , and 5 b from two capacitor patterns arranged on both sides. Accordingly, the amount of electric current (a current density) flowing through the inductor patterns 4 a to 5 b increases. As a result, relatively poor Q characteristics of the LC resonators Q 1 are Q 2 are produced.
  • the magnetic field H generated in the vicinity of the inductor patterns 24 and 25 does not effectively utilize the area S enclosed by a dotted line in FIG. 16 as a magnetic path.
  • the inductances of the LC resonators Q 1 and Q 2 are small.
  • the magnetic field H is concentrated at the edges of the inductor patterns 24 and 25 , substantial eddy current loss arises, and thus, poor Q characteristics are produced.
  • the magnetic field H generated in the vicinity of the inductor patterns 24 and 25 is blocked by the coupling capacitor pattern 28 and the input/output lead patterns 29 , 30 . Accordingly, the inductances of the LC resonators Q 1 , Q 2 are also reduced.
  • preferred embodiments of the present invention provide a laminated LC filter having a greatly increased inductance and an excellent Q characteristic.
  • a laminated LC filter includes a laminated body including a plurality of insulation layers stacked on each other, a plurality of inductor patterns, and a plurality of capacitor patterns.
  • the laminated LC filter further includes a plurality of LC resonators having a plurality of inductors constructed of inductor patterns, and a plurality of capacitors in which capacitor patterns are arranged such that the capacitor patterns do not contact the inductor patterns, at an inside of the laminated body.
  • the inductor of each LC resonator has a multiplex structure defined by laminating two or more of the inductor patterns having approximately the same shapes via the insulation layers, and coupling capacitor patterns for capacitive-coupling between the LC resonators are laminated between the inductor patterns of the inductors.
  • capacitor patterns for an input/output are laminated between the inductor patterns of the inductors.
  • three or more stages of filters are provided by connecting at least three of the LC resonators.
  • the pattern widths of the inductor patterns defining the LC resonators at locations other than both ends thereof are wider than the pattern widths of the inductor patterns defining the LC resonators at both end locations. Further, the pattern widths of the inductor patterns defining the LC resonators are reduced at the ends thereof.
  • a preferred embodiment of the present invention further includes patterns for pole adjustment which are laminated between the inductor patterns of the inductors.
  • the inductor by constructing the inductor to have a multiplex structure, the magnetic field generated in the vicinity of the inductor is alleviated from being concentrated at the edge of the inductor patterns. Further, the inductor patterns in the respective LC resonators correspond to the capacitor patterns at least one-to-one. As a result, the amount of electric current flowing into the respective inductor patterns from the capacitor patterns is much less than in the conventional LC filter. Accordingly, the current density flowing through the inductor patterns is reduced, and the Q characteristic of the respective LC resonators is greatly improved.
  • the laminated LC filter according to a preferred embodiment of the present invention includes three or more stages of filters which are constructed by connecting at least three of the LC resonators, and the pattern widths of the inductor patterns defining the LC resonators at locations other than both ends thereof are wider than the pattern widths of the inductor patterns defining the LC resonators at both end locations. Further, the pattern widths of the inductor patterns defining the LC resonators are reduced at the ends thereof. Usually, for the inductor patterns that constitute the LC resonator, the magnetic field concentration at the edges of the inductor patterns in the vicinity of the ends thereof is less than the magnetic field concentration at the edges of the inductor patterns in the remainder of the inductor pattern.
  • the magnetic field concentration at the edges of the inductor patterns defining the LC resonators at locations other than both ends thereof is larger than the magnetic field concentration at the edges of the inductor patterns defining the LC resonators at both end locations.
  • the pole position of the filter is set easily, without blocking the magnetic field generated in the vicinity of the inductors.
  • FIG. 1 is an exploded perspective view of a laminated LC filter according to a first preferred embodiment of the present invention
  • FIG. 2 is a perspective view of the laminated LC filter shown in FIG. 1;
  • FIG. 3 is a schematic diagram showing a state of a magnetic field as seen from the section along lines III—III in FIG. 2;
  • FIG. 4 is an electrical equivalent circuit diagram of the laminated LC filter shown in FIG. 2;
  • FIG. 5 is an exploded perspective view showing a laminated LC filter according to a second preferred embodiment of the present invention.
  • FIG. 6 is an appearance perspective view of the laminated LC filter shown in FIG. 5;
  • FIG. 7 is a schematic diagram showing a state of a magnetic field as seen from the cross-section along line VII—VII in FIG. 6;
  • FIG. 8 is an exploded perspective view showing a laminated LC filter according to a third preferred embodiment of the present invention.
  • FIG. 9 is an appearance perspective view of the laminated LC filter shown in FIG. 8;
  • FIG. 10 is a schematic diagram showing a state of a magnetic field as seen in cross-section along line X—X in FIG. 9;
  • FIG. 11 is an electrical equivalent circuit diagram of the laminated LC filter shown in FIG. 9;
  • FIG. 12 is a graph showing an attenuation characteristic of the laminated LC filter shown in FIG. 9 .
  • FIG. 13 is an exploded perspective view of a conventional laminated LC filter
  • FIG. 14 is an exploded perspective view of another conventional laminated LC filter
  • FIG. 15 is an appearance perspective view of the laminated LC filter shown in FIG. 14;
  • FIG. 16 is a schematic diagram showing a state of a magnetic field as seen in cross-section along line XVI—XVI in FIG. 15;
  • FIG. 17 is a schematic diagram showing a state of a magnetic field as seen in cross-section along line XVII—XVII in FIG. 15 .
  • a laminated LC band pass filter 51 is shown in FIG. 1, and an appearance perspective view and an electrical equivalent circuit diagram of the LC filter 51 are shown in FIGS. 2 and 4, respectively.
  • the LC filter 51 is preferably a double-stage LC band pass filter, and the LC resonator Q 1 at the first stage and the LC resonator Q 2 at the second stage are capacitive-coupled by the coupling capacitor Cs 1 .
  • the LC filter 51 includes a ceramic sheet 52 in which the inductor patterns 54 a , 54 b , 55 a , and 55 b are provided respectively on the surface thereof, a ceramic sheet 52 in which the capacitor patterns 58 a , 58 b , 59 a , and 59 b are provided respectively on the surface thereof, a ceramic sheet 52 in which the shielding patterns 60 a and 60 b are provided on the surface thereof, and a ceramic sheet 52 in which the coupling capacitor pattern 62 is provided on the surface thereof.
  • the ceramic sheets 52 are preferably substantially square-shaped sheets made of a ceramic dielectric material such as a barium titanate, or other suitable material.
  • the inductor patterns 54 a and 54 b preferably have a similar shape, and are laminated via the sheets 52 , and include an inductor L 1 having a duplex structure.
  • the inductor patterns 54 a and 54 b located at left-side locations of the sheet 52 are such that ends thereof are exposed at a front edge of the sheet 52 .
  • the other ends 56 a and 56 b of the inductor patterns 54 a and 54 b define increased width portions, and these increased width portions 56 a and 56 b also define the capacitor patterns.
  • the input lead patterns 64 a and 64 b that extend from the approximately central portions of the inductor patterns 54 a and 54 b are exposed on a left edge of the sheet 52 .
  • the inductor patterns 55 a and 55 b are similarly shaped, and are laminated through the sheets 52 . These inductor patterns 55 a and 55 b constitute an inductor L 2 having a duplex structure.
  • the inductor patterns 55 a and 55 b provided at the right-side portions of the sheet 52 are such that ends thereof are exposed at a front edge portion of the sheet 52 .
  • the other ends 57 a and 57 b of the inductor patterns 55 a and 55 b define increased width portions, and these increased width portions 57 a and 57 b also define the capacitor patterns.
  • the output lead patterns 65 a and 65 b which extend from the approximately central portions of the inductor patterns 55 a and 55 b are exposed on a right edge of the sheet 52 .
  • the capacitor patterns 58 a and 58 b are provided at the left-side portions of the sheet 52 , and ends thereof are exposed at a rear edge of the sheet 52 .
  • the inductor L 1 having the duplex structure is arranged between the capacitor patterns 58 a and 58 b .
  • These capacitor patterns 58 a and 58 b are arranged so as not to contact the increased width portions 56 a , 56 b of the inductor patterns 54 a , 54 b , and define the capacitor C 1 .
  • An LC parallel resonance circuit is defined by the capacitor C 1 and the inductor L 1 of the duplex structure, and constitutes the LC resonator Q 1 at the first stage.
  • the capacitor patterns 59 a and 59 b are provided at the right-side portions of the sheet 52 , and one edge thereof is exposed at a rear edge of the sheet 52 .
  • the inductor L 2 having the duplex structure that includes the inductor patterns 55 a , 55 b is arranged between the capacitor patterns 59 a , 59 b .
  • These capacitor patterns 59 a , 59 b are opposite to the increased width portions 57 a , 57 b of the inductor patterns 55 a , 55 b , and define the capacitor C 2 .
  • an LC parallel resonance circuit is defined by the capacitor C 2 and the inductor L 2 having the duplex structure, and constitutes the LC resonator Q 2 at the second stage.
  • the coupling capacitor pattern 62 is provided in the approximately central portion at a rear side of the sheet 52 , and in the stacking direction of the sheets 52 , it is located between the inductor patterns 54 a , 55 a and the inductor patterns 54 b , 55 b .
  • This coupling capacitor pattern 62 is opposite to the increased width portions 56 a , 56 b , 57 a , 57 b , and defines the coupling capacitor Cs 1 .
  • the shielding patterns 60 a , 60 b of the wide areas are such that first ends thereof are exposed on a side at a front side, and the other ends thereof are exposed on a side at a rear side.
  • Each sheet 52 configured as described above is stacked in sequence as shown in FIG. 1, and is fired so as to provide the laminated body 70 as shown in FIG. 2 .
  • the input terminal electrode 66 and the output terminal electrode 67 are disposed at the left and right ends of the laminated body 70 , respectively, and the shielding electrodes 68 , 69 are disposed at the sides of the front and rear, respectively.
  • the input lead patterns 64 a , 64 b are connected to the input terminal electrode 66
  • the output lead patterns 65 a , 65 b are connected to the output terminal electrode 67 .
  • First ends of the inductor patterns 54 a , 54 b , 55 a , 55 b and first ends of the shielding patterns 60 a , 60 b are connected to the shielding terminal electrode 68 .
  • First ends of the capacitor patterns 58 a , 58 b , 59 a , 59 b and the other ends of the shielding patterns 60 a , 60 b are connected to the shielding terminal electrode 69 .
  • the distribution of the magnetic field H generated in the respective surroundings of the inductors L 1 , L 2 is made to be excellent by adjusting the space between the inductor patterns 54 a and 54 b , and the space between the inductor patterns 55 a and 55 b , thereby reducing the magnetic field H concentrated at the edges of the inductor patterns 54 a to 55 b .
  • a significant reduction in the eddy current loss is achieved.
  • the inductor patterns 54 a to 55 b in the respective LC resonators Q 1 , Q 2 correspond to the capacitor patterns 58 a to 59 b , one-to-one, respectively, an amount of electric currents flowing into the inductor patterns 54 a to 55 b from the capacitor patterns 58 a to 59 b is much less than the conventional one. Accordingly, the present preferred embodiment of the present invention reduces the current density flowing through the inductor patterns 54 a to 55 b , thereby obtaining the LC filter 51 having an excellent Q characteristic.
  • the structure of the second preferred embodiment of the laminated LC filter according to the present invention is shown in FIGS. 5 and 6.
  • the LC filter 71 of the second preferred embodiment is the one in which the capacitor patterns 72 , 73 for an input and an output are provided, instead of the input/output lead patterns 64 a , 64 b , 65 a , 65 b , in the LC filter 51 of the first preferred embodiment.
  • the same reference numerals are used to designate similar elements in FIGS. 1 and 2, and the redundant descriptions thereof will be omitted.
  • the capacitor patterns 72 , 73 for an input and output are provided on the ceramic sheet 52 in which the coupling capacitor pattern 62 is provided.
  • the capacitor pattern 72 for the input is opposite to the inductor patterns 54 a , 54 b via the sheet 52 , and is capacitive-coupled to the LC resonator Q 1 .
  • One end of the capacitor pattern 72 for the input is electrically connected to the input terminal electrode 66 that is exposed at the left side of the sheet 52 .
  • the capacitor pattern 73 for the output is opposite to the inductor patterns 55 a , 55 b via the sheet 52 , and is capacitive-coupled to the LC resonator Q 2 .
  • One end of the capacitor pattern 73 for the output is electrically connected to the output terminal electrode 67 that is exposed at the right side of the sheet 52 .
  • the LC filter 71 configured as described above is, as shown in FIG. 7, the coupling capacitor pattern 62 and the capacitor patterns 72 , 73 for the input and output are arranged between the inductor patterns 54 a , 55 a and 54 b , 55 b , in the stacking direction of the sheet 52 . Accordingly, the coupling capacitor pattern 62 and the capacitor patterns 72 , 73 for the input and output rarely block the magnetic field H of the inductors L 1 , L 2 . As a result, a uniform magnetic field H is generated, thereby obtaining a large inductance.
  • FIG. 8 a structure of the laminated LC band pass filter 81 is shown, and in FIGS. 9 and 11, an appearance perspective view and an electrical equivalent circuit diagram are shown, respectively.
  • the LC filter 81 is a triple-stage LC band pass filter, and the LC resonator Q 1 at the first stage (the initial stage), the LC resonator Q 2 at the second stage and the LC resonator Q 3 at the third stage (the end stage) are cascade-connected (daisy-chained) via the coupling capacitors Cs 1 , Cs 2 .
  • the LC filter 81 preferably includes a ceramic sheet 82 of which the inductor patterns 83 a , 83 b , 84 a , 84 b , 85 a , 85 b are provided respectively on the surface, a ceramic sheet 82 of which the capacitor patterns 89 a , 89 b , 90 a , 90 b , 91 a , 91 b are provided respectively on the surface, a ceramic sheet 82 in which the shielding patterns 92 a , 92 b are provided respectively on the surface, a ceramic sheet 82 in which the coupling capacitor patterns 93 a , 93 b , 94 a , 94 b are provided respectively on the surface, and a ceramic sheet 82 to which a pattern 95 for adjusting a pole and similar process.
  • the inductor patterns 83 a , 83 b preferably have substantially the same shape, and are laminated through the sheets 82 , and constitute an inductor L 1 of a duplex structure.
  • the inductor patterns 83 a , 83 b that are located at the left-side locations of the sheet 82 are such that first ends thereof are exposed on a side at a front side of the sheet 82 .
  • the other ends 86 a , 86 b of the inductor patterns 83 a , 83 b are increased width portions, and these increased width portions 86 a , 86 b also function as the capacitor patterns.
  • the input lead patterns 96 a , 96 b that are extended respectively from the approximately central parts of the inductor patterns 83 a , 83 b are exposed on a left side of the sheet 82 .
  • the inductor patterns 84 a , 84 b preferably have the same shape, and are laminated through the sheets 82 , and constitute an inductor L 2 having a duplex structure.
  • the pattern widths of the inductor patterns 84 a , 84 b are preferably approximately 10% or more wider, relative to the pattern widths of the inductor patterns 83 a , 83 b , 85 a , 85 b .
  • the inductor patterns 84 a , 84 b that are located at the approximate central locations of the sheet 82 are such that first ends thereof are exposed on a side at a front side of the sheet 82 .
  • the other ends 87 a , 87 b of the inductor patterns 84 a , 84 b become broad-shoulder, and these increased width portions 87 a , 87 b also function as the capacitor patterns.
  • the inductor patterns 85 a , 85 b have substantially the same shape, and are laminated through the sheets 82 , and constitute an inductor L 3 having a duplex structure.
  • the inductor patterns 85 a , 85 b that are located at the right-side locations of the sheet 82 are such that first ends thereof are exposed on a side at a front side of the sheet 82 .
  • the other ends 88 a , 88 b of the inductor patterns 85 a , 85 b are increased width portions, and these increased width portions 88 a , 88 b also function as the capacitor patterns.
  • the output lead patterns 97 a , 97 b that extend respectively from the approximately central parts of the inductor patterns 85 a , 85 b are exposed on a right side of the sheet 82 .
  • the capacitor patterns 89 a , 89 b are located at the left-side locations of the sheet 82 , and first ends thereof are exposed on a side at a rear side of the sheet 82 .
  • an inductor L 1 having a duplex structure that is constituted of the inductor patterns 83 a , 83 b is arranged between the capacitor patterns 89 a , 89 b .
  • These capacitor patterns 89 a , 89 b are opposite to the broad-shoulder portions 86 a , 86 b of the inductor patterns 83 a , 83 b , and define the capacitor C 1 .
  • a LC parallel resonance circuit is defined by the capacitor C 1 and the inductor L 1 having the duplex structure, and constitute the LC resonator Q 1 at the first stage.
  • the capacitor patterns 90 a , 90 b are arranged in the approximate central locations of the sheet 82 , and first ends thereof are exposed on a side at a rear side of the sheet 82 .
  • An inductor L 2 of a duplex structure that includes the inductor patterns 84 a , 84 b is arranged between the capacitor patterns 90 a and 90 b .
  • These capacitor patterns 90 a , 90 b are opposite to the increased width portions 87 a , 87 b of the inductor patterns 84 a , 84 b , and define the capacitor C 2 .
  • a LC parallel resonance circuit is defined by the capacitor C 2 and the inductor L 2 having the duplex structure, and constitutes the LC resonator Q 2 at the second stage.
  • the capacitor patterns 91 a , 91 b are located at the right-side locations of the sheet 82 , and first ends thereof are exposed at a rear side of the sheet 82 .
  • An inductor L 3 having a duplex structure that includes the inductor patterns 85 a , 85 b is arranged between the capacitor patterns 91 a and 91 b .
  • These capacitor patterns 91 a , 91 b are opposite to the increased width portions 88 a , 88 b of the inductor patterns 85 a , 85 b , and define the capacitor C 3 .
  • An LC parallel resonance circuit is defined by the capacitor C 3 and the inductor L 3 of the duplex structure, and constitutes the LC resonator Q 3 at the third stage.
  • the coupling capacitor patterns 93 a , 93 b , 94 a , 94 b are provided at a rear side of the sheet 82 , and in the stacking direction of the sheets 82 , they are located between the inductor patterns 83 a , 84 a , 85 a and the inductor patterns 83 b , 84 b , 85 b .
  • These coupling capacitor patterns 93 a , 93 b are opposite to the inductor patterns 83 a , 83 b , 84 a , 84 b , and define the coupling capacitor Cs 1 .
  • the coupling capacitor patterns 94 a , 94 b are opposite to the inductor patterns 84 a , 84 b , 85 a , 85 b , and define the coupling capacitor Cs 2 .
  • a pattern 95 for adjusting a pole is arranged between the coupling capacitor patterns 93 a , 94 a and 93 b , 94 b .
  • This pattern 95 for adjusting the pole is opposite to the coupling capacitor patterns 93 a , 94 a , 93 b , 94 b and defines a capacitance.
  • the shielding patterns 92 a , 92 b with wide areas are such that first ends thereof are exposed at a front side, and the other ends thereof are exposed at a rear side, respectively.
  • Each sheet 82 configured as described above is piled up in sequence as shown in FIG. 8, and is laminated body 101 as shown in FIG. 9 by firing integrally.
  • the input terminal electrode 106 and the output terminal electrode 107 are located at the left and right ends of the laminated body 101 , respectively, and the shielding electrodes 108 , 109 are located at the sides of the front and rear, respectively.
  • the input lead patterns 96 a , 96 b are connected to the input terminal electrode 106
  • the output lead patterns 97 a , 97 b are connected to the output terminal electrode 107 .
  • One ends of the inductor patterns 83 a to 85 b and first ends of the shielding patterns 92 a , 92 b are connected to the shielding terminal electrode 108 .
  • First ends of the capacitor patterns 89 a to 91 b and the other ends of the shielding patterns 92 a , 92 b are connected to the shielding terminal electrode 109 .
  • This LC filter 81 achieves results and advantages that is similar to the LC filter 51 in the first preferred embodiment.
  • this LC filter 81 as shown in FIG. 10, no magnetic field is generated between the inductor patterns 83 a and 83 b , 84 a and 84 b , 85 a and 85 b that constitute each of the inductors L 1 to L 3 .
  • the coupling capacitor patterns 93 a to 94 b that are arranged between the inductor patterns 83 a , 84 a , 85 a and 83 b , 84 b 85 b and the pattern 95 for adjusting the pole rarely block the magnetic field H of the inductors L 1 to L 3 .
  • the uniform magnetic field H is achieved, thereby obtaining a very large inductance.
  • the pole distance of the LC filter 81 can be adjusted.
  • the capacitance that is generated between the pattern 95 for adjusting the pole and the coupling capacitor patterns 93 a to 94 b becomes large, and as shown with the solid line A in FIG. 12, it becomes an attenuation characteristic in which the pole distance is great.
  • the opposed areas are small, as shown with the dotted line B in FIG. 12, it becomes an attenuation characteristic in which the pole distance is small.
  • the inductor patterns 84 a , 84 b that constitute the LC resonator Q 2 at the second stage located at the approximate center of the filter 81 are widened such that the pattern widths thereof are about 10% or wider relative to the inductor patterns 83 a , 83 b , 85 a , 85 b that constitute the LC resonators Q 1 , Q 3 at the first and third stages which are located at both ends. Accordingly, the magnetic field H at the edges of the inductor patterns 84 a , 84 b can be reduced. As a result, it possible to achieve an LC filter 81 with an excellent Q characteristic.
  • the laminated LC filter according to the present invention is not limited to the preferred embodiments described above, but may be modified in various forms within the gist thereof.
  • the LC resonators included in the laminated LC filter may be four or more.
  • the first and second preferred embodiments described above are the examples in which the present invention is applied to the conventional laminated LC filter shown in FIG. 13, but it goes without saying that the present invention may be applied to the conventional laminated LC filter shown in FIG. 14 .
  • the preferred embodiments described above are formed by stacking the ceramic sheets on which the patterns are formed, respectively, and then firing the stacked sheets, but the present invention is not limited thereto.
  • the ceramic sheets may be fired in advance.
  • the LC filter may be produced by a manufacturing method as described below. After having formed a ceramic layer with a ceramic material in a paste form by a method of printing or other suitable method, an arbitrary pattern is formed by applying a conductive pattern material in a paste form on a surface of the ceramic layer. Then, the ceramic material is applied in the paste form on the conductive pattern so as to make the ceramic layer in which the pattern is provided therein. Similarly, by applying the ceramic material over in sequence, a LC filter with a laminated structure is produced.
  • each inductor has a multiplex structure including two or more inductor patterns having approximately the same shape, the magnetic field generated in the surrounding of the inductor and concentrated on the edges of the inductor patterns is minimized.
  • the inductor patterns in the respective LC resonators correspond to the capacitor patterns at least one-to-one, so that an amount of the electric current flowing into each of the inductor patterns from the capacitor patterns becomes much less than the conventional one. Accordingly, the current density flowing through the inductor patterns is reduced, thereby greatly improving the Q characteristics of the respective LC resonators.
  • Three or more stages of filters are constituted by connecting at least three of the LC resonators, and the pattern widths of the inductor patterns that constitute the LC resonators located at portions between both ends are wider than the pattern widths of the inductor patterns that constitute the LC resonators located at both ends.
  • the magnetic field at the edges of the inductor patterns of the LC resonators located at portions between the ends thereof is minimized, thereby providing an LC filter having very loss.
  • the pole position in the filter characteristic can be set freely, without blocking the magnetic field generated in the surroundings of the inductors. Accordingly, a LC filter with a high attenuation is obtained, thereby enabling to manufacture an excellent duplexer.

Abstract

A laminated LC filter having very large inductance and an excellent Q characteristic, includes insulation layers, inductor patterns having substantially the same shapes and capacitor patterns. The inductor patterns are laminated through the insulation layers, and constitute the inductor of the duplex structure. Similarly, the inductor patterns also constitute the inductor of the duplex structure. The capacitor patterns are opposite to the increased width portions of the inductor patterns, and define the capacitor. Similarly, the capacitor patterns are opposite to the increased width portions of the inductor patterns, and define the capacitor. The coupling capacitor pattern is located between the inductor patterns.

Description

This application is a Divisional of U.S. patent application Ser. No. 09/566,323 filed May 8, 2000, now U.S. Pat. No. 6,437,665.
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to an LC filter, and more particularly, to a laminated LC filter for use with high frequencies.
2. Description of the Related Art
In general, a band pass filter that allows a signal of a specific frequency band to pass through includes a plurality of LC resonators. A configuration of one example of a conventional band pass filter is shown in FIG. 13. As shown in FIG. 13, the band pass filter 1 includes the first and second stage LC resonators Q1 and Q2 within a laminate body constructed of layered ceramic sheets 3.
The inductances of the LC resonators Q1 and Q2 are generated by the inductor patterns 4 a, 4 b, 5 a, and 5 b. The capacitances of the LC resonators Q1 and Q2 are generated by the capacitor patterns 6 a to 6 c, 7 a to 7 c, and the inductor patterns 4 a, 4 b, 5 a, and 5 b are arranged on the surface of the ceramic sheets 3 such that the inductor patterns 4 a, 4 b, 5 a, and 5 b do not contact the capacitor patterns 6 a to 6 c, 7 a to 7 c. The above-described LC resonators Q1 and Q2 are electro-magnetically coupled together.
A leading edge of the inductor pattern 4 a is connected to an input lead pattern 14 that is provided on a left side of the sheet 3. A leading edge of the inductor pattern 5 a is connected to an output lead pattern 15 that is provided on a right side of the sheet 3. The inductor patterns 4 a, 4 b, 5 a, and 5 b and the capacitor patterns 6 a to 6 c and 7 a to 7 c are arranged in a layered configuration with alternating layers. The shielding patterns 12 a and 12 b are provided on either side of this layered configuration.
FIGS. 14 and 15 illustrate another example of a conventional laminated band pass filter. This band pass filter 21 includes first and second stage LC resonators Q1 and Q2 within a laminate body 41 constructed of layered ceramic sheets 23.
The inductances of the LC resonators Q1 and Q2 are generated by the inductor patterns 24 and 25. The capacitances of the LC resonators Q1, Q2 are generated by the capacitor patterns 26 and 27, and the leading edges 24 a and 25 a of the inductor patterns 24 and 25 are arranged on the surface of the ceramic sheets 23 such that the inductor patterns 24 and 25 do not contact the capacitor patterns 26 and 27. The above-described LC resonators Q1 and Q2 are electrically coupled by a coupling capacitor that is provided by these inductor patterns 24 and 25 and the coupling capacitor pattern 28 that is located opposite to these inductor patterns 24 and 25. These LC resonators Q1 and Q2 are capacitive-coupled to an input lead pattern 29 and an output lead pattern 30, respectively. The shielding patterns 32 a and 32 b are provided on either side of the layered patterns 24 to 30.
In the laminated body 41, an input terminal electrode 42, an output terminal electrode 43 and shielding terminal electrodes 44 and 45 are provided as shown in FIG. 15. An input lead pattern 29 is connected to the input terminal electrode 42, and an output lead pattern 30 is connected to the output terminal electrode 43. The lead portions of the inductor patterns 24 and 25 and the end portions of the shielding pattern 32 a and 32 b are connected to the shielding terminal electrode 44. The lead portions of the capacitor patterns 26 and 27 and the other end portions of the shielding pattern 32 a and 32 b are connected to the shielding terminal electrode 45.
The band pass filter 1 as shown in FIG. 13 is laminated such that the inductor patterns 4 a to 5 b are sandwiched by the capacitor patterns 6 a to 6 c, 7 a to 7 c, so that electric currents flow into each of the inductor patterns 4 a, 4 b, 5 a, and 5 b from two capacitor patterns arranged on both sides. Accordingly, the amount of electric current (a current density) flowing through the inductor patterns 4 a to 5 b increases. As a result, relatively poor Q characteristics of the LC resonators Q1 are Q2 are produced.
Further, in the band pass filter 21 as shown in FIGS. 14 and 15, the magnetic field H generated in the vicinity of the inductor patterns 24 and 25 does not effectively utilize the area S enclosed by a dotted line in FIG. 16 as a magnetic path. As a result, the inductances of the LC resonators Q1 and Q2 are small. Additionally, because the magnetic field H is concentrated at the edges of the inductor patterns 24 and 25, substantial eddy current loss arises, and thus, poor Q characteristics are produced.
Moreover, as shown in FIG. 17, the magnetic field H generated in the vicinity of the inductor patterns 24 and 25 is blocked by the coupling capacitor pattern 28 and the input/ output lead patterns 29, 30. Accordingly, the inductances of the LC resonators Q1, Q2 are also reduced.
SUMMARY OF THE INVENTION
In order to overcome the problems described above, preferred embodiments of the present invention provide a laminated LC filter having a greatly increased inductance and an excellent Q characteristic.
According to one preferred embodiment of the present invention, a laminated LC filter includes a laminated body including a plurality of insulation layers stacked on each other, a plurality of inductor patterns, and a plurality of capacitor patterns. The laminated LC filter further includes a plurality of LC resonators having a plurality of inductors constructed of inductor patterns, and a plurality of capacitors in which capacitor patterns are arranged such that the capacitor patterns do not contact the inductor patterns, at an inside of the laminated body. The inductor of each LC resonator has a multiplex structure defined by laminating two or more of the inductor patterns having approximately the same shapes via the insulation layers, and coupling capacitor patterns for capacitive-coupling between the LC resonators are laminated between the inductor patterns of the inductors.
In one preferred embodiment of the present invention, capacitor patterns for an input/output are laminated between the inductor patterns of the inductors.
Preferably, three or more stages of filters are provided by connecting at least three of the LC resonators. The pattern widths of the inductor patterns defining the LC resonators at locations other than both ends thereof are wider than the pattern widths of the inductor patterns defining the LC resonators at both end locations. Further, the pattern widths of the inductor patterns defining the LC resonators are reduced at the ends thereof.
A preferred embodiment of the present invention further includes patterns for pole adjustment which are laminated between the inductor patterns of the inductors.
With the above-described configuration, no magnetic field is generated between two or more of the inductor patterns having approximately identical shapes which constitute the respective inductors. Further coupling capacitor patterns and/or capacitor patterns for an input/output that are arranged between the inductor patterns do not block the magnetic field of the inductors.
Moreover, by constructing the inductor to have a multiplex structure, the magnetic field generated in the vicinity of the inductor is alleviated from being concentrated at the edge of the inductor patterns. Further, the inductor patterns in the respective LC resonators correspond to the capacitor patterns at least one-to-one. As a result, the amount of electric current flowing into the respective inductor patterns from the capacitor patterns is much less than in the conventional LC filter. Accordingly, the current density flowing through the inductor patterns is reduced, and the Q characteristic of the respective LC resonators is greatly improved.
Further, the laminated LC filter according to a preferred embodiment of the present invention includes three or more stages of filters which are constructed by connecting at least three of the LC resonators, and the pattern widths of the inductor patterns defining the LC resonators at locations other than both ends thereof are wider than the pattern widths of the inductor patterns defining the LC resonators at both end locations. Further, the pattern widths of the inductor patterns defining the LC resonators are reduced at the ends thereof. Usually, for the inductor patterns that constitute the LC resonator, the magnetic field concentration at the edges of the inductor patterns in the vicinity of the ends thereof is less than the magnetic field concentration at the edges of the inductor patterns in the remainder of the inductor pattern. Further, The magnetic field concentration at the edges of the inductor patterns defining the LC resonators at locations other than both ends thereof is larger than the magnetic field concentration at the edges of the inductor patterns defining the LC resonators at both end locations. By configuring the patterns widths of the inductor patterns of the LC resonators at locations other than both ends to be wider, the magnetic field concentration at the edges of the inductor patterns of the LC resonators at locations other than both ends thereof is reduced.
Therefore, by reducing the width of the inductor pattern at the ends thereof, the magnetic field at the edges of the inductor patterns is reduced.
Moreover, by laminating the patterns for a pole adjustment between the inductor patterns of the inductors, the pole position of the filter is set easily, without blocking the magnetic field generated in the vicinity of the inductors.
Other features, elements, characteristics and advantages of the present invention will become apparent from the detailed description of preferred embodiments thereof with reference to the drawings attached hereto.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is an exploded perspective view of a laminated LC filter according to a first preferred embodiment of the present invention;
FIG. 2 is a perspective view of the laminated LC filter shown in FIG. 1;
FIG. 3 is a schematic diagram showing a state of a magnetic field as seen from the section along lines III—III in FIG. 2;
FIG. 4 is an electrical equivalent circuit diagram of the laminated LC filter shown in FIG. 2;
FIG. 5 is an exploded perspective view showing a laminated LC filter according to a second preferred embodiment of the present invention;
FIG. 6 is an appearance perspective view of the laminated LC filter shown in FIG. 5;
FIG. 7 is a schematic diagram showing a state of a magnetic field as seen from the cross-section along line VII—VII in FIG. 6;
FIG. 8 is an exploded perspective view showing a laminated LC filter according to a third preferred embodiment of the present invention;
FIG. 9 is an appearance perspective view of the laminated LC filter shown in FIG. 8;
FIG. 10 is a schematic diagram showing a state of a magnetic field as seen in cross-section along line X—X in FIG. 9;
FIG. 11 is an electrical equivalent circuit diagram of the laminated LC filter shown in FIG. 9;
FIG. 12 is a graph showing an attenuation characteristic of the laminated LC filter shown in FIG. 9.
FIG. 13 is an exploded perspective view of a conventional laminated LC filter;
FIG. 14 is an exploded perspective view of another conventional laminated LC filter;
FIG. 15 is an appearance perspective view of the laminated LC filter shown in FIG. 14;
FIG. 16 is a schematic diagram showing a state of a magnetic field as seen in cross-section along line XVI—XVI in FIG. 15; and
FIG. 17 is a schematic diagram showing a state of a magnetic field as seen in cross-section along line XVII—XVII in FIG. 15.
DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS
In the following, preferred embodiments of the laminated LC filter according to the present invention will be described with reference to the accompanying drawings. Each preferred embodiment is described below with reference to a band pass filter as an example of a suitable LC filter. However, preferred embodiments of the present invention may also be band eliminating filters and other suitable filters.
According to a first preferred embodiment of the present invention, a laminated LC band pass filter 51 is shown in FIG. 1, and an appearance perspective view and an electrical equivalent circuit diagram of the LC filter 51 are shown in FIGS. 2 and 4, respectively. As shown in FIG. 4, the LC filter 51 is preferably a double-stage LC band pass filter, and the LC resonator Q1 at the first stage and the LC resonator Q2 at the second stage are capacitive-coupled by the coupling capacitor Cs1.
As shown in FIG. 1, the LC filter 51 includes a ceramic sheet 52 in which the inductor patterns 54 a, 54 b, 55 a, and 55 b are provided respectively on the surface thereof, a ceramic sheet 52 in which the capacitor patterns 58 a, 58 b, 59 a, and 59 b are provided respectively on the surface thereof, a ceramic sheet 52 in which the shielding patterns 60 a and 60 b are provided on the surface thereof, and a ceramic sheet 52 in which the coupling capacitor pattern 62 is provided on the surface thereof. The ceramic sheets 52 are preferably substantially square-shaped sheets made of a ceramic dielectric material such as a barium titanate, or other suitable material.
The inductor patterns 54 a and 54 b preferably have a similar shape, and are laminated via the sheets 52, and include an inductor L1 having a duplex structure. The inductor patterns 54 a and 54 b located at left-side locations of the sheet 52 are such that ends thereof are exposed at a front edge of the sheet 52. The other ends 56 a and 56 b of the inductor patterns 54 a and 54 b define increased width portions, and these increased width portions 56 a and 56 b also define the capacitor patterns. The input lead patterns 64 a and 64 b that extend from the approximately central portions of the inductor patterns 54 a and 54 b are exposed on a left edge of the sheet 52.
The inductor patterns 55 a and 55 b are similarly shaped, and are laminated through the sheets 52. These inductor patterns 55 a and 55 b constitute an inductor L2 having a duplex structure. The inductor patterns 55 a and 55 b provided at the right-side portions of the sheet 52 are such that ends thereof are exposed at a front edge portion of the sheet 52. The other ends 57 a and 57 b of the inductor patterns 55 a and 55 b define increased width portions, and these increased width portions 57 a and 57 b also define the capacitor patterns. The output lead patterns 65 a and 65 b which extend from the approximately central portions of the inductor patterns 55 a and 55 b are exposed on a right edge of the sheet 52.
The capacitor patterns 58 a and 58 b are provided at the left-side portions of the sheet 52, and ends thereof are exposed at a rear edge of the sheet 52. In the stacking direction of the sheets 52, the inductor L1 having the duplex structure is arranged between the capacitor patterns 58 a and 58 b. These capacitor patterns 58 a and 58 b are arranged so as not to contact the increased width portions 56 a, 56 b of the inductor patterns 54 a, 54 b, and define the capacitor C1. An LC parallel resonance circuit is defined by the capacitor C1 and the inductor L1 of the duplex structure, and constitutes the LC resonator Q1 at the first stage.
The capacitor patterns 59 a and 59 b are provided at the right-side portions of the sheet 52, and one edge thereof is exposed at a rear edge of the sheet 52. In the stacking direction of the sheets 52, the inductor L2 having the duplex structure that includes the inductor patterns 55 a, 55 b is arranged between the capacitor patterns 59 a, 59 b. These capacitor patterns 59 a, 59 b are opposite to the increased width portions 57 a, 57 b of the inductor patterns 55 a, 55 b, and define the capacitor C2. Then, an LC parallel resonance circuit is defined by the capacitor C2 and the inductor L2 having the duplex structure, and constitutes the LC resonator Q2 at the second stage.
The coupling capacitor pattern 62 is provided in the approximately central portion at a rear side of the sheet 52, and in the stacking direction of the sheets 52, it is located between the inductor patterns 54 a, 55 a and the inductor patterns 54 b, 55 b. This coupling capacitor pattern 62 is opposite to the increased width portions 56 a, 56 b, 57 a, 57 b, and defines the coupling capacitor Cs1. The shielding patterns 60 a, 60 b of the wide areas are such that first ends thereof are exposed on a side at a front side, and the other ends thereof are exposed on a side at a rear side.
Each sheet 52 configured as described above is stacked in sequence as shown in FIG. 1, and is fired so as to provide the laminated body 70 as shown in FIG. 2. The input terminal electrode 66 and the output terminal electrode 67 are disposed at the left and right ends of the laminated body 70, respectively, and the shielding electrodes 68, 69 are disposed at the sides of the front and rear, respectively. The input lead patterns 64 a, 64 b are connected to the input terminal electrode 66, and the output lead patterns 65 a, 65 b are connected to the output terminal electrode 67. First ends of the inductor patterns 54 a, 54 b, 55 a, 55 b and first ends of the shielding patterns 60 a, 60 b are connected to the shielding terminal electrode 68. First ends of the capacitor patterns 58 a, 58 b, 59 a, 59 b and the other ends of the shielding patterns 60 a, 60 b are connected to the shielding terminal electrode 69.
In this LC filter 51, as shown in FIG. 3, no magnetic field is generated between the inductor patterns 54 a and 54 b as well as between the inductor pattern 55 a and 55 b, that constitute each of the inductors L1, L2. Accordingly, the coupling capacitor pattern 62 that is arranged between the inductor patterns 54 a, 55 a and 54 b, 55 b rarely blocks the magnetic field H. As a result, the uniform magnetic field H is generated in the surrounding areas of the inductor patterns 54 a, 54 b and in the surrounding areas of the inductor patterns 55 a, 55 b, respectively, thereby achieving a large inductance.
Furthermore, since the inductors L1, L2 have the duplex structures, the distribution of the magnetic field H generated in the respective surroundings of the inductors L1, L2 is made to be excellent by adjusting the space between the inductor patterns 54 a and 54 b, and the space between the inductor patterns 55 a and 55 b, thereby reducing the magnetic field H concentrated at the edges of the inductor patterns 54 a to 55 b. As a result, a significant reduction in the eddy current loss is achieved.
Moreover, since the inductor patterns 54 a to 55 b in the respective LC resonators Q1, Q2 correspond to the capacitor patterns 58 a to 59 b, one-to-one, respectively, an amount of electric currents flowing into the inductor patterns 54 a to 55 b from the capacitor patterns 58 a to 59 b is much less than the conventional one. Accordingly, the present preferred embodiment of the present invention reduces the current density flowing through the inductor patterns 54 a to 55 b, thereby obtaining the LC filter 51 having an excellent Q characteristic.
The structure of the second preferred embodiment of the laminated LC filter according to the present invention is shown in FIGS. 5 and 6. The LC filter 71 of the second preferred embodiment is the one in which the capacitor patterns 72, 73 for an input and an output are provided, instead of the input/ output lead patterns 64 a, 64 b, 65 a, 65 b, in the LC filter 51 of the first preferred embodiment. Further, in FIGS. 5 and 6, the same reference numerals are used to designate similar elements in FIGS. 1 and 2, and the redundant descriptions thereof will be omitted.
The capacitor patterns 72, 73 for an input and output are provided on the ceramic sheet 52 in which the coupling capacitor pattern 62 is provided. The capacitor pattern 72 for the input is opposite to the inductor patterns 54 a, 54 b via the sheet 52, and is capacitive-coupled to the LC resonator Q1. One end of the capacitor pattern 72 for the input is electrically connected to the input terminal electrode 66 that is exposed at the left side of the sheet 52. The capacitor pattern 73 for the output is opposite to the inductor patterns 55 a, 55 b via the sheet 52, and is capacitive-coupled to the LC resonator Q2. One end of the capacitor pattern 73 for the output is electrically connected to the output terminal electrode 67 that is exposed at the right side of the sheet 52.
The LC filter 71 configured as described above is, as shown in FIG. 7, the coupling capacitor pattern 62 and the capacitor patterns 72, 73 for the input and output are arranged between the inductor patterns 54 a, 55 a and 54 b, 55 b, in the stacking direction of the sheet 52. Accordingly, the coupling capacitor pattern 62 and the capacitor patterns 72, 73 for the input and output rarely block the magnetic field H of the inductors L1, L2. As a result, a uniform magnetic field H is generated, thereby obtaining a large inductance.
In FIG. 8, a structure of the laminated LC band pass filter 81 is shown, and in FIGS. 9 and 11, an appearance perspective view and an electrical equivalent circuit diagram are shown, respectively. As shown in FIG. 11, the LC filter 81 is a triple-stage LC band pass filter, and the LC resonator Q1 at the first stage (the initial stage), the LC resonator Q2 at the second stage and the LC resonator Q3 at the third stage (the end stage) are cascade-connected (daisy-chained) via the coupling capacitors Cs1, Cs2.
As shown in FIG. 8, the LC filter 81 preferably includes a ceramic sheet 82 of which the inductor patterns 83 a, 83 b, 84 a, 84 b, 85 a, 85 b are provided respectively on the surface, a ceramic sheet 82 of which the capacitor patterns 89 a, 89 b, 90 a, 90 b, 91 a, 91 b are provided respectively on the surface, a ceramic sheet 82 in which the shielding patterns 92 a, 92 b are provided respectively on the surface, a ceramic sheet 82 in which the coupling capacitor patterns 93 a, 93 b, 94 a, 94 b are provided respectively on the surface, and a ceramic sheet 82 to which a pattern 95 for adjusting a pole and similar process.
The inductor patterns 83 a, 83 b preferably have substantially the same shape, and are laminated through the sheets 82, and constitute an inductor L1 of a duplex structure. The inductor patterns 83 a, 83 b that are located at the left-side locations of the sheet 82 are such that first ends thereof are exposed on a side at a front side of the sheet 82. The other ends 86 a, 86 b of the inductor patterns 83 a, 83 b are increased width portions, and these increased width portions 86 a, 86 b also function as the capacitor patterns. The input lead patterns 96 a, 96 b that are extended respectively from the approximately central parts of the inductor patterns 83 a, 83 b are exposed on a left side of the sheet 82.
The inductor patterns 84 a, 84 b preferably have the same shape, and are laminated through the sheets 82, and constitute an inductor L2 having a duplex structure. The pattern widths of the inductor patterns 84 a, 84 b are preferably approximately 10% or more wider, relative to the pattern widths of the inductor patterns 83 a, 83 b, 85 a, 85 b. The inductor patterns 84 a, 84 b that are located at the approximate central locations of the sheet 82 are such that first ends thereof are exposed on a side at a front side of the sheet 82. The other ends 87 a, 87 b of the inductor patterns 84 a, 84 b become broad-shoulder, and these increased width portions 87 a, 87 b also function as the capacitor patterns.
The inductor patterns 85 a, 85 b have substantially the same shape, and are laminated through the sheets 82, and constitute an inductor L3 having a duplex structure. The inductor patterns 85 a, 85 b that are located at the right-side locations of the sheet 82 are such that first ends thereof are exposed on a side at a front side of the sheet 82. The other ends 88 a, 88 b of the inductor patterns 85 a, 85 b are increased width portions, and these increased width portions 88 a, 88 b also function as the capacitor patterns. The output lead patterns 97 a, 97 b that extend respectively from the approximately central parts of the inductor patterns 85 a, 85 b are exposed on a right side of the sheet 82.
The capacitor patterns 89 a, 89 b are located at the left-side locations of the sheet 82, and first ends thereof are exposed on a side at a rear side of the sheet 82. In the stacking direction of the sheets 82, an inductor L1 having a duplex structure that is constituted of the inductor patterns 83 a, 83 b is arranged between the capacitor patterns 89 a, 89 b. These capacitor patterns 89 a, 89 b are opposite to the broad-shoulder portions 86 a, 86 b of the inductor patterns 83 a, 83 b, and define the capacitor C1. Then, a LC parallel resonance circuit is defined by the capacitor C1 and the inductor L1 having the duplex structure, and constitute the LC resonator Q1 at the first stage.
The capacitor patterns 90 a, 90 b are arranged in the approximate central locations of the sheet 82, and first ends thereof are exposed on a side at a rear side of the sheet 82. An inductor L2 of a duplex structure that includes the inductor patterns 84 a, 84 b is arranged between the capacitor patterns 90 a and 90 b. These capacitor patterns 90 a, 90 b are opposite to the increased width portions 87 a, 87 b of the inductor patterns 84 a, 84 b, and define the capacitor C2. Then, a LC parallel resonance circuit is defined by the capacitor C2 and the inductor L2 having the duplex structure, and constitutes the LC resonator Q2 at the second stage.
The capacitor patterns 91 a, 91 b are located at the right-side locations of the sheet 82, and first ends thereof are exposed at a rear side of the sheet 82. An inductor L3 having a duplex structure that includes the inductor patterns 85 a, 85 b is arranged between the capacitor patterns 91 a and 91 b. These capacitor patterns 91 a, 91 b are opposite to the increased width portions 88 a, 88 b of the inductor patterns 85 a, 85 b, and define the capacitor C3. An LC parallel resonance circuit is defined by the capacitor C3 and the inductor L3 of the duplex structure, and constitutes the LC resonator Q3 at the third stage.
The coupling capacitor patterns 93 a, 93 b, 94 a, 94 b are provided at a rear side of the sheet 82, and in the stacking direction of the sheets 82, they are located between the inductor patterns 83 a, 84 a, 85 a and the inductor patterns 83 b, 84 b, 85 b. These coupling capacitor patterns 93 a, 93 b are opposite to the inductor patterns 83 a, 83 b, 84 a, 84 b, and define the coupling capacitor Cs1. The coupling capacitor patterns 94 a, 94 b are opposite to the inductor patterns 84 a, 84 b, 85 a, 85 b, and define the coupling capacitor Cs2.
A pattern 95 for adjusting a pole is arranged between the coupling capacitor patterns 93 a, 94 a and 93 b, 94 b. This pattern 95 for adjusting the pole is opposite to the coupling capacitor patterns 93 a, 94 a, 93 b, 94 b and defines a capacitance. The shielding patterns 92 a, 92 b with wide areas are such that first ends thereof are exposed at a front side, and the other ends thereof are exposed at a rear side, respectively.
Each sheet 82 configured as described above is piled up in sequence as shown in FIG. 8, and is laminated body 101 as shown in FIG. 9 by firing integrally. The input terminal electrode 106 and the output terminal electrode 107 are located at the left and right ends of the laminated body 101, respectively, and the shielding electrodes 108, 109 are located at the sides of the front and rear, respectively. The input lead patterns 96 a, 96 b are connected to the input terminal electrode 106, and the output lead patterns 97 a, 97 b are connected to the output terminal electrode 107. One ends of the inductor patterns 83 a to 85 b and first ends of the shielding patterns 92 a, 92 b are connected to the shielding terminal electrode 108. First ends of the capacitor patterns 89 a to 91 b and the other ends of the shielding patterns 92 a, 92 b are connected to the shielding terminal electrode 109.
This LC filter 81 achieves results and advantages that is similar to the LC filter 51 in the first preferred embodiment. In this LC filter 81, as shown in FIG. 10, no magnetic field is generated between the inductor patterns 83 a and 83 b, 84 a and 84 b, 85 a and 85 b that constitute each of the inductors L1 to L3. Accordingly, the coupling capacitor patterns 93 a to 94 b that are arranged between the inductor patterns 83 a, 84 a, 85 a and 83 b, 84 b 85 b and the pattern 95 for adjusting the pole rarely block the magnetic field H of the inductors L1 to L3. As a result, the uniform magnetic field H is achieved, thereby obtaining a very large inductance.
Further, by changing the opposed areas of the pattern 95 for adjusting the pole and the coupling capacitor patterns 93 a to 94 b, the pole distance of the LC filter 81 can be adjusted. For example, when the opposed areas are large, the capacitance that is generated between the pattern 95 for adjusting the pole and the coupling capacitor patterns 93 a to 94 b becomes large, and as shown with the solid line A in FIG. 12, it becomes an attenuation characteristic in which the pole distance is great. On the contrary, when the opposed areas are small, as shown with the dotted line B in FIG. 12, it becomes an attenuation characteristic in which the pole distance is small.
Moreover, the inductor patterns 84 a, 84 b that constitute the LC resonator Q2 at the second stage located at the approximate center of the filter 81 are widened such that the pattern widths thereof are about 10% or wider relative to the inductor patterns 83 a, 83 b, 85 a, 85 b that constitute the LC resonators Q1, Q3 at the first and third stages which are located at both ends. Accordingly, the magnetic field H at the edges of the inductor patterns 84 a, 84 b can be reduced. As a result, it possible to achieve an LC filter 81 with an excellent Q characteristic.
Incidentally, the laminated LC filter according to the present invention is not limited to the preferred embodiments described above, but may be modified in various forms within the gist thereof. For example, the LC resonators included in the laminated LC filter may be four or more. Further, the first and second preferred embodiments described above are the examples in which the present invention is applied to the conventional laminated LC filter shown in FIG. 13, but it goes without saying that the present invention may be applied to the conventional laminated LC filter shown in FIG. 14.
Further, the preferred embodiments described above are formed by stacking the ceramic sheets on which the patterns are formed, respectively, and then firing the stacked sheets, but the present invention is not limited thereto. The ceramic sheets may be fired in advance. Moreover, the LC filter may be produced by a manufacturing method as described below. After having formed a ceramic layer with a ceramic material in a paste form by a method of printing or other suitable method, an arbitrary pattern is formed by applying a conductive pattern material in a paste form on a surface of the ceramic layer. Then, the ceramic material is applied in the paste form on the conductive pattern so as to make the ceramic layer in which the pattern is provided therein. Similarly, by applying the ceramic material over in sequence, a LC filter with a laminated structure is produced.
As apparent from the above description, according to preferred embodiments of the present invention, since each inductor has a multiplex structure including two or more inductor patterns having approximately the same shape, the magnetic field generated in the surrounding of the inductor and concentrated on the edges of the inductor patterns is minimized. As a result, the inductor patterns in the respective LC resonators correspond to the capacitor patterns at least one-to-one, so that an amount of the electric current flowing into each of the inductor patterns from the capacitor patterns becomes much less than the conventional one. Accordingly, the current density flowing through the inductor patterns is reduced, thereby greatly improving the Q characteristics of the respective LC resonators.
Further, no magnetic field is generated between two or more the inductor patterns having approximately identical shapes that constitute each of the inductors, and the coupling capacitor patterns and the capacitor patterns for an input/output rarely block the magnetic field of the inductors. Accordingly, a uniform magnetic field is achieved, thereby enabling to obtain a very large inductance.
Three or more stages of filters are constituted by connecting at least three of the LC resonators, and the pattern widths of the inductor patterns that constitute the LC resonators located at portions between both ends are wider than the pattern widths of the inductor patterns that constitute the LC resonators located at both ends. As a result, the magnetic field at the edges of the inductor patterns of the LC resonators located at portions between the ends thereof is minimized, thereby providing an LC filter having very loss.
Further, by laminating the patterns for a pole adjustment between the inductor patterns of the inductors, the pole position in the filter characteristic can be set freely, without blocking the magnetic field generated in the surroundings of the inductors. Accordingly, a LC filter with a high attenuation is obtained, thereby enabling to manufacture an excellent duplexer.
The invention may be embodied in other specific forms without departing from the spirit or essential characteristics thereof. The preferred embodiments are therefore to be considered in all respects as illustrative and not restrictive, the scope of the invention being indicated by the appended claims rather than by foregoing description and all changes which come within the meaning and range of equivalency of the claims are therefore intended to be embraced therein.

Claims (6)

What is claimed is:
1. A laminated LC filter, comprising:
a laminated body including a stacked arrangement of a plurality of insulation layers, a plurality of inductor patterns, and a plurality of capacitor patterns; and
a plurality of LC resonators including a plurality of inductors defined by said inductor patterns, and a plurality of capacitors defined by said capacitor patterns, said capacitor patterns being arranged opposite to said inductor patterns at an inner portion of said laminated body; wherein
said inductor of each of the plurality of LC resonators has a multiplex structure including a laminated body having at least two of said inductor patterns and said insulation layers, and coupling capacitor patterns arranged between the inductor patterns of said inductors to capacitive-couple said LC resonators; and
the pattern widths in a central portion of the laminated body are greater than the pattern widths at the end portions thereof.
2. A laminated LC filter according to claim 1, wherein at least three stages of filters are provided by connecting at least three of the LC resonators.
3. A laminated LC filter according to claim 1, wherein a pattern arranged to achieve pole adjustment laminated between the inductor patterns of said inductors.
4. A laminated LC filter, comprising:
a laminated body including a stacked arrangement of a plurality of stacked insulation layers, a plurality of inductor patterns, and a plurality of capacitor patterns;
a plurality of LC resonators including a plurality of inductors provided by said inductor patterns, and a plurality of capacitors, such that said capacitor patterns are opposite to said inductor patterns, at an inside of said laminated body; and
capacitor patterns for input/output laminated between the inductor patterns of said inductors; wherein
the pattern widths in a central portion of the laminated body are greater than the pattern widths at the end portions thereof.
5. A laminated LC filter according to claim 4, wherein at least three stages of filters are provided by connecting at least three of the LC resonators.
6. A laminated LC filter according to claim 4, wherein patterns arranged to achieve a pole adjustment are laminated between the inductor patterns of said inductors.
US10/186,609 1999-05-07 2002-07-02 Laminated LC filter where the pattern widths of the central portion air is greater than the end portions Expired - Lifetime US6784762B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/186,609 US6784762B2 (en) 1999-05-07 2002-07-02 Laminated LC filter where the pattern widths of the central portion air is greater than the end portions

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP11127818A JP2000323901A (en) 1999-05-07 1999-05-07 Stacked lc filter
JP11-127818 1999-05-07
US09/566,323 US6437665B1 (en) 1999-05-07 2000-05-08 Laminated LC filter with coplanar input/output capacitor patterns and coupling capacitor patterns
US10/186,609 US6784762B2 (en) 1999-05-07 2002-07-02 Laminated LC filter where the pattern widths of the central portion air is greater than the end portions

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/566,323 Division US6437665B1 (en) 1999-05-07 2000-05-08 Laminated LC filter with coplanar input/output capacitor patterns and coupling capacitor patterns

Publications (2)

Publication Number Publication Date
US20030016098A1 US20030016098A1 (en) 2003-01-23
US6784762B2 true US6784762B2 (en) 2004-08-31

Family

ID=14969432

Family Applications (2)

Application Number Title Priority Date Filing Date
US09/566,323 Expired - Lifetime US6437665B1 (en) 1999-05-07 2000-05-08 Laminated LC filter with coplanar input/output capacitor patterns and coupling capacitor patterns
US10/186,609 Expired - Lifetime US6784762B2 (en) 1999-05-07 2002-07-02 Laminated LC filter where the pattern widths of the central portion air is greater than the end portions

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09/566,323 Expired - Lifetime US6437665B1 (en) 1999-05-07 2000-05-08 Laminated LC filter with coplanar input/output capacitor patterns and coupling capacitor patterns

Country Status (3)

Country Link
US (2) US6437665B1 (en)
EP (1) EP1050960A3 (en)
JP (1) JP2000323901A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040212456A1 (en) * 2003-04-28 2004-10-28 Alps Electric Co., Ltd. Chebyshev high-pass filter having steep falling edge
US20050068126A1 (en) * 2003-09-30 2005-03-31 Akira Muto Resonator and dielectric filter
US20060158824A1 (en) * 2003-03-31 2006-07-20 Keiji Kawajiri Composite electronic component
US20070176727A1 (en) * 2006-01-31 2007-08-02 Chen Qiang R Miniature thin-film bandpass filter
US20080079517A1 (en) * 2006-09-29 2008-04-03 Tdk Corporation Stacked filter
US20100164669A1 (en) * 2008-12-28 2010-07-01 Soendker Erich H Passive electrical components with inorganic dielectric coating layer
TWI488430B (en) * 2012-09-14 2015-06-11 Murata Manufacturing Co High-frequency filter
US9876513B2 (en) 2016-03-31 2018-01-23 Qualcomm Incorporated LC filter layer stacking by layer transfer to make 3D multiplexer structures

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3578673B2 (en) 1999-08-05 2004-10-20 松下電器産業株式会社 Dielectric laminated filter and manufacturing method thereof
US6597259B1 (en) * 2000-01-11 2003-07-22 James Michael Peters Selective laminated filter structures and antenna duplexer using same
JP2002252534A (en) * 2001-02-26 2002-09-06 Matsushita Electric Ind Co Ltd High frequency filter
US6965284B2 (en) * 2001-03-02 2005-11-15 Matsushita Electric Industrial Co., Ltd. Dielectric filter, antenna duplexer
CN1220328C (en) * 2001-06-21 2005-09-21 株式会社村田制作所 Noise filter
JP3948233B2 (en) 2001-10-01 2007-07-25 株式会社村田製作所 Multilayer electronic component and manufacturing method thereof
US6798317B2 (en) * 2002-06-25 2004-09-28 Motorola, Inc. Vertically-stacked filter employing a ground-aperture broadside-coupled resonator device
US7012484B2 (en) * 2004-04-26 2006-03-14 Integrated System Solution Corp. Filter using multilayer ceramic technology and structure thereof
KR100616674B1 (en) * 2005-02-16 2006-08-28 삼성전기주식회사 Laminated filter with improved stop band attenuation
US20070120627A1 (en) * 2005-11-28 2007-05-31 Kundu Arun C Bandpass filter with multiple attenuation poles
US7667557B2 (en) * 2005-12-06 2010-02-23 Tdk Corporation Thin-film bandpass filter using inductor-capacitor resonators
JP4640218B2 (en) * 2006-02-28 2011-03-02 Tdk株式会社 Multilayer dielectric resonator and bandpass filter
WO2007119356A1 (en) * 2006-04-14 2007-10-25 Murata Manufacturing Co., Ltd. Layered band pass filter
US20080017043A1 (en) * 2006-06-01 2008-01-24 The Coca-Cola Company Tea Stick Brewing Package and Method
US7532092B2 (en) * 2006-06-20 2009-05-12 Tdk Corporation Grounding strategy for filter on planar substrate
US7538653B2 (en) * 2007-03-30 2009-05-26 Intel Corporation Grounding of magnetic cores
US8330555B2 (en) * 2007-08-29 2012-12-11 Kyocera Corporation Bandpass filter, and wireless communication module and wireless communication apparatus which employ the bandpass filter
JP4650530B2 (en) * 2008-07-10 2011-03-16 株式会社村田製作所 LC composite parts
JP5609968B2 (en) * 2010-03-18 2014-10-22 株式会社村田製作所 High frequency multilayer component and multilayer high frequency filter
CN102064368A (en) * 2010-08-12 2011-05-18 华东交通大学 LTCC wide-stop band band-pass filter
KR20190116147A (en) * 2019-08-08 2019-10-14 삼성전기주식회사 Multi-layered ceramic capacitor
KR20190116171A (en) * 2019-09-17 2019-10-14 삼성전기주식회사 Mutilayered electronic component
WO2023090039A1 (en) * 2021-11-17 2023-05-25 株式会社村田製作所 Dielectric resonator and dielectric filter

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1141004A (en) 1997-07-18 1999-02-12 Taiyo Yuden Co Ltd Laminate type dielectric filter
JPH1155003A (en) 1997-07-30 1999-02-26 Kyocera Corp Laminated dielectric filter
US5892415A (en) * 1995-11-20 1999-04-06 Murata Manufacturing Co., Ltd. Laminated resonator and laminated band pass filter using same
US6191667B1 (en) * 1998-07-02 2001-02-20 Murata Mfg. Co., Ltd. Lamination type inductor array
US6294967B1 (en) * 1998-03-18 2001-09-25 Ngk Insulators, Ltd. Laminated type dielectric filter

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2682282B2 (en) * 1991-08-21 1997-11-26 株式会社村田製作所 Multilayer chip LC filter
US5404118A (en) * 1992-07-27 1995-04-04 Murata Manufacturing Co., Ltd. Band pass filter with resonator having spiral electrodes formed of coil electrodes on plurality of dielectric layers
JPH09214274A (en) * 1996-02-08 1997-08-15 Murata Mfg Co Ltd Lc composite component
WO1998005120A1 (en) * 1996-07-31 1998-02-05 Matsushita Electric Industrial Co., Ltd. Dual-band multilayer bandpass filter
JP3438859B2 (en) * 1996-11-21 2003-08-18 ティーディーケイ株式会社 Laminated electronic component and manufacturing method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5892415A (en) * 1995-11-20 1999-04-06 Murata Manufacturing Co., Ltd. Laminated resonator and laminated band pass filter using same
JPH1141004A (en) 1997-07-18 1999-02-12 Taiyo Yuden Co Ltd Laminate type dielectric filter
JPH1155003A (en) 1997-07-30 1999-02-26 Kyocera Corp Laminated dielectric filter
US6294967B1 (en) * 1998-03-18 2001-09-25 Ngk Insulators, Ltd. Laminated type dielectric filter
US6191667B1 (en) * 1998-07-02 2001-02-20 Murata Mfg. Co., Ltd. Lamination type inductor array

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060158824A1 (en) * 2003-03-31 2006-07-20 Keiji Kawajiri Composite electronic component
US20040212456A1 (en) * 2003-04-28 2004-10-28 Alps Electric Co., Ltd. Chebyshev high-pass filter having steep falling edge
US20050068126A1 (en) * 2003-09-30 2005-03-31 Akira Muto Resonator and dielectric filter
US7245194B2 (en) * 2003-09-30 2007-07-17 Sony Corporation Resonator and dielectric filter
US20070176727A1 (en) * 2006-01-31 2007-08-02 Chen Qiang R Miniature thin-film bandpass filter
US7321284B2 (en) 2006-01-31 2008-01-22 Tdk Corporation Miniature thin-film bandpass filter
US20080079517A1 (en) * 2006-09-29 2008-04-03 Tdk Corporation Stacked filter
US7525401B2 (en) * 2006-09-29 2009-04-28 Tdk Corporation Stacked filter
US20100164669A1 (en) * 2008-12-28 2010-07-01 Soendker Erich H Passive electrical components with inorganic dielectric coating layer
US7786839B2 (en) 2008-12-28 2010-08-31 Pratt & Whitney Rocketdyne, Inc. Passive electrical components with inorganic dielectric coating layer
US20100265026A1 (en) * 2008-12-28 2010-10-21 Soendker Erich H Passive electrical components with inorganic dielectric coating layer
TWI488430B (en) * 2012-09-14 2015-06-11 Murata Manufacturing Co High-frequency filter
US9876513B2 (en) 2016-03-31 2018-01-23 Qualcomm Incorporated LC filter layer stacking by layer transfer to make 3D multiplexer structures

Also Published As

Publication number Publication date
EP1050960A3 (en) 2002-07-17
EP1050960A2 (en) 2000-11-08
US6437665B1 (en) 2002-08-20
JP2000323901A (en) 2000-11-24
US20030016098A1 (en) 2003-01-23

Similar Documents

Publication Publication Date Title
US6784762B2 (en) Laminated LC filter where the pattern widths of the central portion air is greater than the end portions
US6542052B2 (en) Monolithic LC components
US6433653B1 (en) Monolithic LC resonator and filter with a capacitor electrode within a tubular inductor
KR101026712B1 (en) Stacked bandpass filter
US6414567B2 (en) Duplexer having laminated structure
US6529101B2 (en) Multilayered LC filter
US6133809A (en) LC filter with a parallel ground electrode
US20020093397A1 (en) Lamination type LC filter
JP3570361B2 (en) Laminated LC composite parts
US6417745B1 (en) LC filter with a coupling capacitor formed by shared first and second capacitor patterns
US6424236B1 (en) Stacked LC filter with a pole-adjusting electrode facing resonator coupling patterns
JP3417340B2 (en) Bandpass filter
US6437666B1 (en) Monolithic LC resonator and monolithic LC filter with tubular inductor
JP4257137B2 (en) Multilayer dielectric filter
US6424235B1 (en) Laminated LC filter
US6831530B2 (en) Monolithic LC filter with enhanced magnetic coupling between resonator inductors
WO2009096474A1 (en) Lc composite part
US6583686B2 (en) LC-included electronic component
JP2976696B2 (en) Low pass filter for high frequency
JPH08335803A (en) Filter
JP3191560B2 (en) Resonators and filters
JPH05299962A (en) High frequency low pass filter
JP2002100947A (en) Laminated lc noise filter
JPH11289234A (en) Laminated lc filter
JP2003087006A (en) Band-pass filter and manufacturing method therefor

Legal Events

Date Code Title Description
STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 8

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 12