Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS6800970 B2
Publication typeGrant
Application numberUS 10/434,060
Publication dateOct 5, 2004
Filing dateMay 9, 2003
Priority dateJul 28, 2000
Fee statusPaid
Also published asUS6798093, US20020047313, US20030178911
Publication number10434060, 434060, US 6800970 B2, US 6800970B2, US-B2-6800970, US6800970 B2, US6800970B2
InventorsChikara Aoshima
Original AssigneeCanon Kabushiki Kaisha
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Motor and optical apparatus using the same
US 6800970 B2
Abstract
A motor includes a cylindrical magnet, first outer magnetic pole portions which are formed by gapping part of a cylinder from the distal end in the axial direction of the motor, and which oppose the outer circumferential surface of the magnet, second outer magnetic pole portions which are formed by gapping part of a cylinder from the distal end in the axial direction, and which oppose the outer circumferential surface of the magnet, first inner magnetic pole portions opposing the inner circumferential surface of the magnet, second inner magnetic pole portions opposing the inner circumferential surface of the magnet, a first coil which is located at a position between the first outer magnetic pole portions and the first inner magnetic pole portions in the axial direction of the magnet, and which excites the first outer magnetic pole portions, a second coil which is located between the second outer magnetic pole portions and the second inner magnetic pole portions on the side opposite the first coil in the axial direction of the magnet, and which excites the second outer magnetic pole portions, and an annular member which is in contact with the inner circumferential surface of the magnet, and which fits with at least the first inner magnetic pole portions or second inner magnetic pole portions.
Images(23)
Previous page
Next page
Claims(10)
What is claimed is:
1. An optical apparatus comprising:
a cylindrical magnet of which an outer circumferential surface is divided into portions in a circumferential direction, which portions are alternately magnetized to different poles;
first outer magnetic pole portions which are formed by gapping part of a cylinder from a distal end in an axial direction of said motor and oppose the outer circumferential surface of said magnet;
second outer magnetic pole portions which are formed by gapping part of a cylinder from a distal end in an axial direction of said motor and oppose the outer circumferential surface of said magnet;
first inner magnetic pole portions opposing an inner circumferential surface of said magnet;
second inner magnetic pole portions opposing the inner circumferential surface of said magnet;
a first coil which is located at a position between said first outer magnetic pole portions and said first inner magnetic pole portions in the axial direction of said magnet and excites said first outer magnetic pole portions;
a second coil which is located at a position between said second outer magnetic pole portions and said second inner magnetic pole portions on an opposite side to said first coil in the axial direction of said magnet and excites said second outer magnetic pole portions;
an annular member which is in contact with the inner circumferential surface of said magnet and fits with at least one of said first inner magnetic pole portions and said second inner magnetic pole portions; and
an aperture blade which is driven by said magnet to adjust an aperture amount.
2. An optical apparatus comprising:
a cylindrical magnet of which an outer circumferential surface is divided into portions in a circumferential direction, which portions are alternately magnetized to different poles;
first outer magnetic pole portions which are formed by gapping part of a cylinder from a distal end in an axial direction of said motor and oppose the outer circumferential surface of said magnet;
second outer magnetic pole portions which are formed by gapping part of a cylinder from a distal end in an axial direction of said motor and oppose the outer circumferential surface of said magnet;
first inner magnetic pole portions opposing an inner circumferential surface of said magnet;
second inner magnetic pole portions opposing the inner circumferential surface of said magnet;
a first coil which is located at a position between said first outer magnetic pole portions and said first inner magnetic pole portions in the axial direction of said magnet and excites said first outer magnetic pole portions;
a second coil which is located at a position between said second outer magnetic pole portions and said second inner magnetic pole portions on an opposite side to said first coil in the axial direction of said magnet and excites said second outer magnetic pole portions;
an annular member which is in contact with the inner circumferential surface of said magnet and fits with at least one of said first inner magnetic pole portions and said second inner magnetic pole portions; and
a lens driving member which is driven by said magnet to move in an optical axis direction.
3. An optical apparatus comprising:
a cylindrical magnet of which an outer circumferential surface is divided into portions in a circumferential direction, which portions are alternately magnetized to different poles;
first outer magnetic pole portions which are formed by gapping part of a cylinder from a distal end in an axial direction of said motor and oppose the outer circumferential surface of said magnet;
second outer magnetic pole portions which are formed by gapping part of a cylinder from a distal end in an axial direction of said motor and oppose the outer circumferential surface of said magnet;
first inner magnetic pole portions opposing an inner circumferential surface of said magnet;
second inner magnetic pole portions opposing the inner circumferential surface of said magnet;
a first coil which is located at a position between said first outer magnetic pole portions and said first inner magnetic pole portions in the axial direction of said magnet and excites said first outer magnetic pole portions;
a second coil which is located at a position between said second outer magnetic pole portions and said second inner magnetic pole portions on an opposite side to said first coil in the axial direction of said magnet and excites said second outer magnetic pole portions;
an annular member which is in contact with the inner circumferential surface of said magnet and fits with at least one of said first outer magnetic pole portions and said second outer magnetic pole portions; and
an aperture blade which is driven by said magnet to adjust an aperture amount.
4. An optical apparatus comprising:
a cylindrical magnet of which an outer circumferential surface is divided into portions in a circumferential direction, which portions are alternately magnetized to different poles;
first outer magnetic pole portions which are formed by gapping part of a cylinder from a distal end in an axial direction of said motor and oppose the outer circumferential surface of said magnet;
second outer magnetic pole portions which are formed by gapping part of a cylinder from a distal end in an axial direction of said motor and oppose the outer circumferential surface of said magnet;
first inner magnetic pole portions opposing an inner circumferential surface of said magnet;
second inner magnetic pole portions opposing the inner circumferential surface of said magnet;
a first coil which is located at a position between said first outer magnetic pole portions and said first inner magnetic pole portions in the axial direction of said magnet and excites said first outer magnetic pole portions;
a second coil which is located at a position between said second outer magnetic pole portions and said second inner magnetic pole portions on an opposite side to said first coil in the axial direction of said magnet and excites said second outer magnetic pole portions;
an annular member which is in contact with the outer circumferential surface of said magnet and fits with at least one of said first outer magnetic pole portions and said second outer magnetic pole portions; and
a lens driving member which is driven by said magnet to move in an optical axis direction.
5. An optical apparatus comprising:
a cylindrical magnet of which an outer circumferential surface is divided into portions in a circumferential direction, which portions are alternately magnetized to different poles;
outer magnetic pole portions which are formed by gapping part of a cylinder from a distal end in an axial direction of said motor and oppose the outer circumferential surface of said magnet;
inner magnetic pole portions opposing an inner circumferential surface of said magnet;
a coil which is located at a position between said outer magnetic pole portions and said inner magnetic pole portions in the axial direction of said magnet and excites said outer magnetic pole portions;
an annular member which is in contact with the inner circumferential surface of said magnet and fits with said inner magnetic pole portions or said outer magnetic pole portions and has a hollow portion as an optical axis of a lens; and
an aperture blade which is driven by said magnet to adjust an aperture amount.
6. An optical apparatus comprising:
a cylindrical magnet of which an outer circumferential surface is divided into portions in a circumferential direction, which portions are alternately magnetized to different poles;
outer magnetic pole portions which are formed by gapping part of a cylinder from a distal end in an axial direction of said motor and oppose the outer circumferential surface of said magnet;
inner magnetic pole portions opposing an inner circumferential surface of said magnet;
a coil which is located at a position between said outer magnetic pole portions and said inner magnetic pole portions in the axial direction of said magnet and excites said outer magnetic pole portion;
an annular member which is in contact with the inner circumferential surface of said magnet and fits with said inner magnetic pole portions or said outer magnetic pole portions; and
a lens driving member which is driven by said magnet to move in an optical axis direction.
7. A blade driving apparatus comprising:
a cylindrical magnet of which an outer circumferential surface is divided into portions in a circumferential direction, which portions are alternately magnetized to different poles;
a stator which is made of magnetic material and has an outer cylinder and an inner cylinder;
a coil which is located at a position between said outer cylinder and said inner cylinder in the axial direction of said magnet and excites said outer cylinder and inner cylinder; and
a blade which is driven by said magnet to adjust an aperture amount of said inner cylinder,
wherein said outer cylinder has at least an outer magnetic pole portion which is formed by gapping part of said outer cylinder from a distal end in an axial direction of said magnet and opposes the outer surface of said magnet, and said inner cylinder opposes the inner surface of said magnet.
8. A blade driving apparatus according to claim 7, wherein said blade is a shutter blade.
9. A blade driving apparatus according to claim 7, wherein said blade is an aperture blade.
10. A lens driving apparatus comprising:
a cylinder magnet of which an outer circumferential surface is divided into portions in a circumferential direction, which portions are alternately magnetized to different poles;
a stator which is made of magnetic material and has an outer cylinder and an inner cylinder;
a coil which is located at a position between said outer cylinder and said inner cylinder in the axial direction of said magnet and excites said outer cylinder and said inner cylinder;
a lens which is located at an inner side of said inner cylinder; and
a lens holder which holds said lens and is driven by said magnet to move said lens in the optical axis direction of said lens,
wherein said outer cylinder has at least an outer magnetic pole portion which is formed by gapping part of said outer cylinder from a distal end in an axial direction of said magnet and opposes the outer surface of said magnet, and said inner cylinder opposes the inner surface of said magnet.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to an ultra-compact motor, and a light amount adjusting apparatus and a lens barrel each of which uses the motor.

2. Related Background Art

FIG. 20 shows a conventional compact cylindrical stepping motor. A stator coil 205 is concentrically wound around a bobbin 201. The bobbin 201 is clamped and fixed between two stator yokes 206 in the axial direction. On the stator yokes 206, stator teeth 206 a and 206 b are arranged on the inner surface of the bobbin 201 alternately in its circumferential direction. The stator yoke 206, integrally formed with the stator teeth 206 a, 206 b, is fixed to a case 203 to form a stator 202.

A flange 215 and bearing 208 are fixed to one of two cases 203, and the other bearing 208 is fixed to the other case 203. A rotor 209 is formed by a rotor magnet 211 fixed to a rotor shaft 210. The rotor magnet 211 and the stator yoke 206 of the stator 202 form a radial gap portion therebetween. The rotor shaft 210 is rotatably supported between the two bearings 208.

In the conventional compact stepping motor shown in FIG. 20, however, the cases 203, bobbins 201, stator coils 205, and stator yokes 206 are concentrically arranged around the rotor, and hence the outer dimensions of the motor become large. As shown in FIG. 21, the magnetic flux generated upon energization of the stator coil 205 mainly runs through end faces 206 a 1 and 206 b 1 of the stator teeth 206 a and 206 b. For this reason, the magnetic flux does not effectively act on the rotor magnet 211. Consequently, the output level of the motor does not rise remarkably.

The present applicant has proposed a motor that solves such a problem in U.S. Pat. No. 5,831,356. FIG. 22 shows this motor. In this motor, a rotor 311 formed by a magnet alternately magnetized to different poles at equal intervals in the circumferential direction is formed into a cylindrical shape. A first coil 312, the rotor 311, and a second coil 313 are sequentially arranged in the axial direction of the rotor. First outer magnetic poles 314 a and 314 b and first inner magnetic poles 314 c and 314 d, which are excited by the first coil 312, are opposed to the outer and inner circumferential surfaces of the rotor 311, respectively. Second outer magnetic poles 315 a and 315 b and second inner magnetic poles 315 c and 315 d, which are excited by the second coil 313, are opposed to the outer and inner circumferential surfaces of the rotor 311, respectively. A rotating shaft 317 serving as a rotor shaft is joined to the magnet of the cylindrical rotor 311.

A motor having such an arrangement can be reduced in outer dimensions, and the output level can be raised. In addition, if the magnet of the rotor 311 is formed thin, the distance between the first outer magnetic poles 314 a and 314 b and the first inner magnetic poles 314 c and 314 d and the distance between the second outer magnetic poles 315 a and 315 b and the second inner magnetic poles 315 c and 315 d can be reduced. That is, the reluctance of a magnetic circuit which acts on the magnet can be reduced. Therefore, a large amount of magnetic flux can be generated even by supplying small currents to the first and second coils 312 and 313.

A motor of the type disclosed in U.S. Pat. No. 5,831,356 is designed such that the magnet of the rotor 311 is held via an output shaft 317 and a bearing portion 314 e (315 e) of a stator 314 (315) that forms magnetic poles with certain gaps therebetween being ensured with respect to the outer magnetic poles 314 a and 314 b (315 a and 315 b) and inner magnetic poles 314 c and 314 d (315 c and 315 d) of the stator 314 (315). For this reason, when considering distortion of the output shaft, e.g., distortion due to a change in temperature, and the like, the gaps between the magnet and the outer and inner magnetic poles of the stator must be maintained with high precision. There is room for improvement in this point.

SUMMARY OF THE INVENTION

One aspect of this invention is to provide a compact motor including a cylindrical rotor formed by a magnet divided into equal portions in the circumferential direction, which are alternately magnetized with different polarities first and second coils positioned on two sides of the rotor in the axial direction, first and second outer magnetic pole portions which oppose the outer circumferential surfaces of the coils and magnet and excited by the first and second coils, respectively, and first and second inner magnetic pole portions which oppose the inner circumferential surfaces of the coils and magnet, wherein the gaps between the magnet and the respective magnetic pole portions can be defined with high precision using an annular member fitted on an inner circumferential surface of the magnet and regulating the position of the magnet in the radial direction.

In addition, this motor may include an annular member which is fitted on the outer circumferential surface of the magnet, instead of the inner circumferential surface, and which regulates the position of the magnet in the radial direction.

Furthermore, since the magnet rotatably fits within the annular member, a hollow compact motor can be realized.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is an exploded perspective view of a motor according to the first embodiment;

FIG. 2 is a longitudinal sectional view of the motor in FIG. 1 in the axial direction after assembly;

FIGS. 3A, 3B, 3C and 3D are sectional views, each of which is taken along a line A-A in FIG. 2, and shows a rotated state of a rotor;

FIGS. 4A, 4B, 4C and 4D are sectional views, each of which is taken along a line B-B in FIG. 2, and shows a rotated state of the rotor;

FIG. 5 is a view showing a modification of the motor in FIG. 2;

FIG. 6 is a view showing another modification of the motor in FIG. 2;

FIG. 7 is a plan view showing the sizes of the motor in FIG. 1 and a lens barrel base plate or light amount adjusting apparatus;

FIG. 8 is an exploded perspective view of a motor according to the second embodiment;

FIG. 9 is a longitudinal sectional view of the motor in FIG. 8 in the axial direction after assembly,

FIGS. 10A, 10B, 10C and 10D are sectional views, each of which is taken along a line A-A in FIG. 9, and shows a rotated state of a rotor;

FIGS. 11A, 11B, 11C and 11D are sectional views, each of which is taken along a line B-B in FIG. 9, and shows a rotated state of the rotor;

FIG. 12 is an exploded perspective view of a motor according to the third embodiment;

FIG. 13 is a longitudinal sectional view of the motor in FIG. 12 in the axial direction after assembly;

FIGS. 14A and 14B are sectional views, which are respectively taken along lines A-A and B-B in FIG. 13, and show rotated states of a rotor;

FIG. 15 is a view showing a modification of the motor in FIG. 12;

FIG. 16 is an exploded perspective view of a motor according to the fourth embodiment;

FIG. 17 is a longitudinal sectional view of the motor in FIG. 16 in the axial direction after assembly;

FIGS. 18A and 18B are sectional views, which are respectively taken along lines A-A and B-B in FIG. 17, and show rotated states of a rotor;

FIG. 19 is a view showing a modification of the motor in FIG. 16;

FIG. 20 is a longitudinal sectional view of a conventional stepping motor the axial direction;

FIG. 21 is a partial sectional view schematically showing the state of a magnetic flux at the stator of the conventional stepping motor; and

FIG. 22 is a sectional view showing a conventional compact stepping motor in the axial direction.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

(First Embodiment)

FIGS. 1 to 4 are views showing a motor (stepping motor) according to the first embodiment of the present invention.

FIG. 1 is an exploded perspective view of the motor according to the first embodiment of the present invention. FIG. 2 is a longitudinal sectional view showing the motor in FIG. 1 in the axial direction after assembly. FIG. 3 is a sectional view, which is taken along a line A-A in FIG. 2, and shows a rotated state of a rotor. FIG. 4 is a sectional view, which is taken along a line B-B in FIG. 2, and shows a rotated state of the rotor. Referring to FIGS. 1 and 2, a cylindrical magnet 1 forms the rotor. The cylindrical circumferential surface of the magnet 1 is divided into n portions (10 portions in this embodiment) in the circumferential direction, which are alternately magnetized to S and N poles to form magnetized portions 1 a, 1 b, 1 c, 1 d, 1 e, 1 f, 1 g, 1 h, 1 i, and 1 j. That is, if the magnetized portions 1 a, 1 c, 1 e, 1 g, and 1 i are magnetized to the S pole, the magnetized portions 1 b,.1 d, 1 f, 1 h, and 1 j are magnetized to the N pole.

The magnet 1 is made of a plastic magnet material by injection molding. This makes it possible to greatly reduce the thickness of the cylindrical shape of the magnet 1 in the radial direction. A flange portion extends inward in the radial direction at the central portion of the inner surface of the magnet 1 in the axial direction. A through hole (fitting portion) 1 k through which a rotor shaft is inserted and fixed is formed in the central portion of this flange portion. An output shaft 10, serving as a rotor shaft, is fixed in the fitting portion 1 k of the magnet 1 by press fitting. The magnet 1 is a plastic magnet formed by injection molding. Even if, therefore, assembly is performed by press fitting, no crack is produced. In addition, this motor can be easily manufactured in spite of its complicated shape having the fitting portion 1 k with a small inner diameter formed in the axial central portion. The output shaft 10 and magnet 1 are assembled and fixed by press fitting, and hence can be easily manufactured at a low cost.

As a material for the magnet 1, for example, a plastic magnet formed by injecting a mixture of NdFeB rare-earth magnetic powder and a thermoplastic resin binder material such as polyamide is used. A conventional magnet formed by compression molding has a bending strength of about 500 Kgf/cm2. In contrast to this, when, for example, polyamide resin is used as a binder material, the magnet has a bending strength of about 800 Kgf/cm2 or more. Therefore, a thin structure that cannot be obtained by conventional compression molding can be obtained, and a thin, cylindrical magnet 1 can be formed. Forming the magnet 1 into a thin cylindrical structure effectively improves the performance of the motor (as will be described below). In addition, since a shape can be arbitrarily selected for the magnet 1, a shape for fixing the rotor shaft, which cannot be obtained by compression molding, can be integrally formed. With this structure, the rotor shaft can have sufficient strength. Furthermore, since the rotor shaft has high strength, it does not crack even if it is fixed by press fitting or the like.

At the same time, since the rotor shaft fixing portion is integrally formed, the coaxial precision of the magnet portion with respect to the rotor shaft portion improves, and run-out or fluctuation can be reduced. In addition, the gap distance between the magnet and the stator portion can be reduced. The compression magnet has a maximum energy product of 8 MGOe or more, whereas the injection-molded magnet has a maximum energy product of about 5 to 7 MGOe. However, a sufficient output torque for the motor can be obtained. Since a thin resin film is formed on the surface of the injection-molded magnet, the formation of rust can be greatly suppressed as compared with the compression magnet. Therefore, an anti-corrosion process, such as a coating, can be omitted. Furthermore, the injection-molded motor is free from problems posed in the compression magnet. That is, no magnetic powder adheres to the magnet and the surface of the motor does not bulge, which tends to occur when an anti-corrosion coating is formed. This makes it possible to attain an improvement in quality.

Referring to FIGS. 1 and 2, this motor includes a first bobbin 2, a second bobbin 3, a cylindrical first coil 4 wound around the first bobbin 2, and a cylindrical second coil 5 wound around the second bobbin 3. The first and second coils 4 and 5 are concentric with respect to the magnet 1 and located so as to sandwich the magnet 1 in the axial direction. The outer diameters of the first and second coils 4 and 5 are almost equal to that of the magnet 1. First and second stators 18 and 19 are made of a soft magnetic material. The first and second stators 18 and 19 are arranged with a phase shift of 180/n. Since n=10 in this embodiment, they are arranged with a phase shift of 18. The first and second stators 18 and 19 are composed of outer and inner cylinders. The distal end portion of the outer cylinder (the stator 18) is formed into outer magnetic pole portions 18 a, 18 b, 18 c, 18 d, and 18 e. As shown in FIG. 1, the first outer magnetic pole portions are formed into the shape of teeth by partly gapping the distal end of the outer cylinder in the axial direction. Thus, the first outer magnetic pole portions are formed into the shape of comb teeth arranged in the circumferential direction without any reduction in inner diameter. As is obvious from FIG. 1 and 2, only gaps exist between the adjacent teeth. In addition, the first outer magnetic pole portions 18 a, 18 b, 18 c, 18 d, and 18 e of the first stator 18 are formed at angular intervals of 360/(n/2), i.e., 72 to be in phase with the magnetization of the magnet 1.

A first auxiliary stator 21 has an inner surface 21 f fixed in an inner cylinder 18 f of the first stator 18 by fitting. First inner magnetic pole portions 21 a, 21 b, 21 c, 21 d, and 21 e are also formed at angular intervals of 360/(n/2), i.e., 72, to be in phase with the magnetization of the magnet 1. The first inner magnetic pole portions 21 a, 21 b, 21 c, 21 d, and 21 e are formed on the outer surface of the first auxiliary stator 21 so as to face the first outer magnetic pole portions 18 a, 18 b, 18 c, 18 d, and 18 e. The first outer magnetic poles and first inner magnetic poles extend from the first coil 4 toward the magnet in the same direction. Therefore, one end of the magnet is inserted between the outer and inner magnetic poles at which the air gap becomes minimum. Consequently, the magnetic flux generated upon energization of the first coil 4 runs through the magnet 1 to effectively act on it.

The second stator and second auxiliary stator have the same arrangements as those of the first stator and first auxiliary stator, respectively. The distal end portion of the second stator 19 is formed into second outer magnetic pole portions 19 a, 19 b, 19 c, 19 d, and 19 e. The second outer magnetic pole portions are formed by partly gapping the distal end of the outer cylinder in the axial direction. With this process, the second outer magnetic poles are formed into the shape of comb teeth without any reduction in inner diameter. A second auxiliary stator 22 has an inner surface 22 f fixed in an inner cylinder 19 f of the second stator 19 by fitting. The second inner magnetic pole portions 22 a, 22 b, 22 c, 22 d, and 22 e are formed at angular intervals of 360/(n/2), i.e., 72, to be in phase with the magnetization of the magnet 1. The second outer magnetic pole portions 19 a, 19 b, 19 c, 19 d, and 19 e of the second stator 19 are also formed at angular intervals of 360/(n/2), i.e., 72, to be in phase with the magnetization of the magnet 1. The second inner magnetic pole portions 22 a, 22 b, 22 c, 22 d, and 22 e are formed on the outer surface of the second auxiliary stator 22 so as to face the second outer magnetic pole portions 19 a, 19 b, 19 c, 19 d, and 19 e of the second stator. The second outer magnetic poles and second inner magnetic poles extend from the second coil 5 toward the magnet in the same direction. Therefore, one end of the magnet is inserted between the outer and inner magnetic poles at which the air gap becomes minimum. Consequently, the magnetic flux generated upon energization of the second coil 5 runs through the magnet 1 to effectively act on it.

The first outer magnetic pole portions 18 a, 18 b, 18 c, 18 d, and 18 e and second outer magnetic pole portions 19 a, 19 b, 19 c, 19 d, and 19 e are formed by gapped holes and teeth extending parallel to the motor axis. This arrangement allows the formation of magnetic poles that limit the diameter of the motor to a small value. If outer magnetic pole portions are formed by recesses/projections extending in the radial direction, the diameter of the motor increases accordingly for the following reason. In order to make the recesses/projections effectively serve as magnetic poles, the influence of a magnetic flux from the recesses must be reduced, and the influence of a magnetic flux from the projections must be increased. For this purpose, the difference between the recesses and the projections must be increased, resulting in an increase in diameter. In this embodiment, since the outer magnetic pole portions are formed by gapped holes and teeth extending parallel to the motor axis, the diameter of the motor can be limited to a small value. The first outer magnetic pole portions 18 a, 18 b, 18 c, 18 d, and 18 e and first inner magnetic pole portions 21 a, 21 b, 21 c, 21 d, and 21 e are formed to sandwich one end side of the magnet 1 so as to face the outer and inner circumferential surfaces of one end side of the magnet 1. The second outer magnetic pole portions 19 a, 19 b, 19 c, 19 d, and 19 e and second inner magnetic pole portions 22 a, 22 b, 22 c, 22 d, and 22 e are formed to sandwich the other side of the magnet 1 so as to face the outer and inner circumferential surfaces of the magnet 1. With this arrangement, the magnet on which the first outer magnetic poles and first inner magnetic poles act and the magnet on which the second outer magnetic poles and second inner magnetic poles act can be integrated as one magnet. With this arrangement, the phases corresponding to the magnets of the first and second outer magnetic poles easily can be set at correct positions.

A first intermediate member 6 has a hollow cylindrical shape. The inner surface of the first intermediate member 6 rotatably fits on the outer surfaces 21 a, 21 b, 21 c, 21 d, and 21 e of the first auxiliary stator 21, which serve as the first inner magnetic pole portions. The outer circumferential surface of the first intermediate member 6 rotatably fits in an inner circumferential surface 1 m of the magnet 1. A second intermediate member 7 has a hollow cylindrical shape. The inner surface of the second intermediate member 7 rotatably fits on the outer surfaces 22 a, 22 b, 22 c, 22 d, and 22 e of the second auxiliary stator 22, which serve as the second inner magnetic portions. The outer circumferential surface of the second intermediate member 7 rotatably fits in an inner circumferential surface 1 n of the magnet 1. The magnet 1 is rotatably held by the first and second intermediate members 6 and 7. The gap between the inner circumferential surface (inner surface) of the magnet 1 and the first or second inner magnet pole portions is defined by only the thicknesses of the first and second intermediate members 6 and 7. This makes it possible to maintain the gap with high precision and stabilize the output characteristics of motors in mass production.

As described above, the magnet 1 is made of a plastic magnet material by injection molding. This makes it possible to greatly reduce the thickness of the magnet in the radial direction of the cylindrical shape. This can greatly reduce the distance between the first outer magnetic pole portions 18 a, 18 b, 18 c, 18 d, and 18 e of the first stator 18 and the first inner magnetic pole portions 21 a, 21 b, 21 c, 21 d, and 21 e, thus reducing the reluctance of the magnetic circuit formed by the first coil 4 and first stator 18. Obviously, the same applies to the second stator 19. This makes it possible to generate a magnetic flux with a small amount of current and attain an increase in the output level of the motor, a reduction in power consumption, and a reduction in the size of each coil.

Referring to FIGS. 1 and 2, a coupling ring 20 is formed by a substantially cylindrical member having a slit 20 b. This coupling ring 20 is made of a nonmagnetic material having spring characteristics, e.g., spring stainless steel or spring phosphor bronze. An inner surface 20 a of the coupling ring 20 has a diameter smaller than the outer diameter of the outer magnetic pole portions of the first and second stators 18 and 19. When the outer magnetic pole portions of the first and second stators 18 and 19 are inserted in the inner surface 20 a, the coupling ring 20 elastically deforms due to the slit 20 b to elastically hold the first and second stators 18 and 19.

The first and second stators 18 and 19 are fixed with a phase shift of 180/n(18 in this embodiment) such that their distal ends are spaced apart by a predetermined distance. That is, the distal ends of the first outer magnetic pole portions 18 a, 18 b, 18 c, 18 d, and 18 e and the distal ends of the second outer magnetic pole portions 19 a, 19 b, 19 c, 19 d, and 19 e are spaced apart by a predetermined distance in a direction parallel to the motor axis and face each other with a phase shift of 180/n(18 in this embodiment). Since the first and second outer magnetic poles face each other, a magnetic flux runs smoothly between the magnetic poles. However, since the coupling ring 20 is made of a nonmagnetic material, the first and second stators 18 and 19 can be magnetically isolated from each other, thereby preventing the respective stators from magnetically influencing each other. This stabilizes the performance of the motor.

FIGS. 3A to 3D are sectional views, each of which is taken along a line A-A in FIG. 2, and shows a rotated state of the rotor. FIGS. 4A to 4D are sectional views, each of which is taken along a line B-B in FIG. 2, and shows a rotated state of the rotor. FIGS. 3A and 4A show states at the same point in time, and so do FIGS. 3B and 4B, FIGS. 3C and 4C, and FIGS. 3D and 4D, respectively. An illustration of the intermediate members 6 and 7 and coupling ring 20 is omitted from FIGS. 3A to 3D and FIGS. 4A to 4D.

Referring to FIGS. 3A to 3D and FIGS. 4A to 4D, the coils 4 and 5 are energized in the states shown in FIGS. 3A and 4A to magnetize the first outer magnetic pole portions 18 a, 18 b, 18 c, 18 d, and 18 e to the S pole; the first inner magnetic pole portions 21 a, 21 b, 21 c, 21 d, and 21 e to the N pole; the second outer magnetic pole portions 19 a, 19 b, 19 c, 19 d, and 19 e to the N pole; and the second inner magnetic pole portions 22 a, 22 b, 22 c, 22 d, and 22 e to the S pole. As a consequence, the magnet 1 serving as a rotor rotates counterclockwise by 18 to reach the states shown in FIGS. 3B and 4B.

The direction of the current supplied to the second coil 5 is then reversed to magnetize the first outer magnetic pole portions 18 a, 18 b, 18 c, 18 d, and 18 e to the S pole; the first inner magnetic pole portions 21 a, 21 b, 21 c, 21 d, and 21 e to the N pole; second outer magnetic pole portions 19 a, 19 b, 19 c, 19 d, and 19 e to the S pole; and the second inner magnetic pole portions 22 a, 22 b, 22 c, 22 d, and 22 e to the N pole. As a consequence, the magnet 1 serving as the rotor further rotates counterclockwise by 18 to reach the states shown in FIGS. 3C and 4C.

The direction of the current supplied to the first coil 4 is then reversed to magnetize the first outer magnetic pole portions 18 a, 18 b, 18 c, 18 d, and 18 e to the N pole; the first inner magnetic pole portions 21 a, 21 b, 21 c, 21 d, and 21 e to the S pole; the second outer magnetic pole portions 19 a, 19 b,19 c, 19 d, and 19 e to the S pole; and the second inner magnetic pole portions 22 a, 22 b, 22 c, 22 d, and 22 e to the N pole. As a consequence, the magnet 1 serving as the rotor further rotates counterclockwise by 18 to reach the states shown in FIGS. 3D and 4D. Subsequently, the energizing directions of the first and second coils 4 and 5 are sequentially switched in this manner to rotate the magnet 1 serving as the rotor to positions corresponding to energization phases.

A stepping motor having an arrangement like that described above is optimal for the realization of an ultra-compact motor. This will be described below. The basic arrangement of the stepping motor will be described first. First, the magnet has a hollow cylindrical shape. Second, the outer circumferential surface of the magnet is divided into n portions in the circumferential direction, and the n portions are alternately magnetized to different polarities. Third, the first and second coils are sequentially arranged in the axial direction of the magnet. Fourth, the outer and inner magnetic pole portions of the first and second stators excited by the first and second coils are opposed to the outer and inner circumferential surfaces of the magnet. Fifth, the outer magnetic pole portions are constituted by gaps and teeth extending in a direction parallel to the motor axis.

The outer diameter of this stepping motor may be large enough to make the magnetic poles of the stator face the outer surface of the magnet. The length of the stepping motor may be equal to the sum of the length of the magnet and the lengths of the first and second coils. For this reason, the size of the stepping motor is determined by the diameter and length of the magnet and each coil. If, therefore, the diameter and length of the magnet and each coil are greatly reduced, an ultra-compact stepping motor can be realized.

To greatly reduce the diameter and length of the magnet and each coil will make it difficult to maintain high precision for the stepping motor. However, by inserting an intermediate member having a hollow cylindrical shape between the inner circumferential surface of the magnet and the inner magnetic poles, the positional precision of the magnet in the radial direction can be ensured. In this case, if the inner circumferential surface of the magnet is divided in the circumferential direction and magnetized as well as the outer circumferential surface of the magnet, the output level of the motor can be further raised.

FIG. 5 is a modification of the motor in FIG. 2. Referring to FIG. 2, first and second intermediate members 6 and 7 are used. However, only one of the first intermediate member 6 and the second intermediate member 7 may be used. Referring to FIG. 5, only the second intermediate member 7 is used; the first intermediate member 6 (FIG. 2) is not used. Instead of the first intermediate member 6, a bearing portion 18 f is formed on the first stator 18. A portion 10 a of the output shaft 10 which is located closer to the left end portion rotatably fits and is supported in the bearing portion 18 f. A pinion gear 23 is fixed to the left end portion of the output shaft 10. The modification shown in FIG. 5 differs from the first embodiment shown in FIGS. 1, 2, 3A to 3D, and 4A to 4D in the above points, but is substantially the same as the first embodiment in other arrangements. Note that the same reference numerals as in the first embodiment denote the same parts in this modification.

If the rotational output of the motor is to be transferred to another mechanism through the pinion gear 23 and the like, as in FIG. 5, the positional precision of the pinion gear 23 is important. If one end of the output shaft to which the pinion gear 23 and the like are attached is axially supported by the bearing portion 18 f, and the other end is axially supported by the intermediate portion 7, at least the positional precision of the outer and inner magnetic pole portions of the second stator 19 can be ensured in the radial direction of the magnet. As in the first embodiment shown in FIGS. 1, 2, 3A to 3D, and 4A to 4D, therefore, motor characteristics in this modification can be stabilized in mass production.

FIG. 6 shows another modification of the motor in FIG. 2. Referring to FIG. 6, the outer circumferential surface (outer surface) of the magnet 1 (the rotor) is rotatably held by a third intermediate member 24 having a hollow cylindrical shape. As shown in FIG. 6, the third intermediate member 24 having a hollow cylindrical shape rotatably fits in the inner surfaces of the first outer magnetic pole portions 18 a, 18 b, 18 c, 18 d, and 18 e and second outer magnetic pole portions 19 a, 19 b, 19 c, 19 d, and 19 e. The inner surface (inner circumferential surface) of the third intermediate member 24 rotatably fits on the outer surface (outer circumferential surface) of the magnet 1. The magnet 1 is rotatably held by the third intermediate member 24. Note that an illustration of members corresponding to the first and second intermediate members 6 and 7 in FIGS. 2 and 5 is omitted from FIG. 6.

The motor shown in FIG. 6 differs from the motor shown in FIGS. 2 and 5 in the above points, but is substantially the same in other respects. The same reference numerals as in FIGS. 2 and 5 denote the same parts in FIG. 6, and a detailed description thereof is omitted here. According to this motor, the gap between the outer circumferential surface of the magnet 1 and the first outer magnetic pole portions 18 a, 18 b, 18 c, 18 d, and 18 e or the second outer magnetic pole portions 19 a, 19 b, 19 c, 19 d, and 19 e is defined by only the thickness of the third cylindrical intermediate member 24. Therefore, the positional precision in the radial direction of the magnet can be maintained high, and the motor characteristics can be stabilized in mass production.

According to the arrangement shown in FIG. 6, the third intermediate member 24 rotatably fits in the inner surfaces of the first outer magnetic pole portions 18 a, 18 b, 18 c, 18 d, and 18 e and the inner surfaces of the second outer magnetic pole portions 19 a, 19 b, 19 c, 19 d, and 19 e of both stators (18, 19). However, the third intermediate member 24 may be rotatably fitted on the inner surfaces of the outer magnetic pole portions of only one of the first and second stators 18 and 19. With this arrangement as well, the same effect as that described above can be obtained.

A motor of the above type has a shaft in its center. For this reason, when this motor is used in the lens barrel of a camera, the motor must be positioned to be parallel to the optical axis. If the motor is to be used to drive aperture blades, a shutter, a lens, or the like, the radial size of the lens barrel is equal to the sum of the radius of the lens or the radial size of the stop aperture and the diameter of the motor.

FIG. 7 shows this state. Letting D1 be the diameter of a motor M, D2 be the diameter of an aperture portion 101, and D3 be the diameter of a lens barrel base plate or light amount adjusting apparatus 100, the diameter D3 of the lens barrel base plate 100 becomes at least (2D1+D2). For such an application purpose, a doughnut-shaped motor with a small size in the radial direction is required. In addition, it is also required that a lens barrel unit or light amount adjusting apparatus be reduced in size. When, therefore, this motor is to be used for the lens barrel of a camera, there is room for improvement in optimizing the motor for this usage form.

For example, Japanese Patent Application Laid-Open Nos. 53-37745 and 57-166847 disclose mechanisms for driving aperture blades using hollow doughnut-shaped motors. Since each of these motors is formed by winding a coil around a hollow magnet, the overall thickness of the coil, the thickness of the magnet, and the thickness of the stator add up in the radial direction. Therefore, the thickness of such a doughnut-shaped motor in the radial direction cannot be sufficiently reduced. In addition, a mechanism for driving a lens is disclosed in Japanese Utility Model Application Laid-Open No. 56-172827 or the like. According to this mechanism, since the central axis of a coil is positioned in a direction so as to extend toward the optical axis center of a lens barrel, the coil shape and assembly become complicated, resulting in an increase in the number of parts. This makes it impossible to realize a compact apparatus.

A motor that ensures position precision in the radial direction of a magnet and has a doughnut shape will be described below. The shape of this motor is very suitable as a driving source for driving a lens.

(Second Embodiment)

FIG. 8 is an exploded perspective view schematically showing the structure of the second embodiment. FIG. 9 is a longitudinal sectional view of the central portion of a motor in FIG. 8. FIGS. 10A to 10D are schematic sectional views taken along a line A-A in FIG. 9. FIGS. 11A to 11D are schematic sectional views taken along a line B-B in FIG. 9. The second embodiment shown in FIGS. 8, 9, 10A to 10D and 11A through 11D is a motor forming an actuator and having a hollow cylindrical shape (doughnut shape). This motor does not have a member equivalent to the output shaft 10 in the first embodiment.

Referring to FIGS. 8, 9, 10A to 10D and 11A through 11D, a cylindrical magnet 31 has a rotor. The outer circumferential surface of this magnet 31 is divided into n portions (16 portions in this embodiment) in the circumferential direction, which are alternately magnetized to the S and N poles to form magnetized portions 31 a, 31 b, 31 c, 31 d, 31 e, 31 f, 31 g, 31 h, 31 i, 31 j, 31 k, 31 m, 31 n, 31 p, 31 q, and 31 r. If, therefore, the magnetized portions 31 a, 31 c, 31 e, 31 g, 31 i, 31 k, 31 n, and 31 q are magnetized to the S pole, the magnetized portions 31 b, 31 d, 31 f, 31 h, 31 j, 31 m, 31 p, and 31 r are magnetized to the N pole.

The magnet 31 is made of a plastic magnet material by injection molding. As in the first embodiment, the thickness of this magnet in the radial direction of the cylindrical shape can be greatly reduced. The inner circumferential surface of the magnet 31 has a weak magnetization distribution as compared with the outer circumferential surface or is not magnetized at all. Alternatively, the inner circumferential surface is magnetized to the opposite polarity as the outer circumferential surface. That is, if a given portion of the outer circumferential surface is magnetized to the S pole, the corresponding portion of the inner circumferential surface is magnetized to the N pole. A rib portion (an annular rib portion extending from the inner surface toward the center) 31 s having a small inner diameter is formed at the central portion of the magnet 31 in the axial direction. This motor also has a first coil 32 and second coil 34. The first and second coils 32 and 34 are concentric with respect to the magnet 31, and are positioned to sandwich the magnet 31 in the axial direction. The outer diameter of the first and second coils 32 and 34 is almost equal to that of the magnet 31.

Referring to FIGS. 8, 9, 10A to 10D and 11A through 11D, a first stator 38 is made of a soft magnetic material. This first stator 38 has an outer cylinder and an inner cylinder having a hollow columnar shape. In this embodiment, the outer and inner magnetic poles are gapped from the distal ends of the cylindrical portions in the axial direction to form a plurality of teeth. With this process, a plurality of magnetic pole portions in the shape of comb teeth are formed in the circumferential direction. In the first embodiment, only the outer magnetic pole is formed into the shape of comb teeth. In this embodiment, the inner magnetic pole also has the same arrangement. The distal end portion of the outer cylinder of the first stator 38 is formed into (n/2), i.e., eight, first outer magnetic pole portions 38 a, 38 b, 38 c, 38 d, 38 e, 38 f, 38 g, and 38 h which face the outer circumferential surface of the magnet 31. The distal end portion of the inner cylinder of the first stator 38 is formed into (n/2), i.e., eight, first inner magnetic pole portions 38 i, 38 j, 38 k, 38 m, 38 n, 38 p, 38 q, and 38 r which face the inner circumferential surface of the magnet 31. The first outer magnetic pole portions 38 a, 38 b, 38 c, 38 d, 38 e, 38 f, 38 g, and 38 h and first inner magnetic pole portions 38 i, 38 j, 38 k, 38 m, 38 n, 38 p, 38 q, and 38 r are formed in phase with each other on two sides of the magnet 31. Each magnetic pole portion is formed with a shift of an integer multiple of 360/(n/2), i.e., an integer multiple of 45, so as to be in phase with the magnetization phase of a corresponding portion of the magnet 31.

A second stator 39 has an arrangement similar to that of the first stator. The second stator 39 is made of a soft magnetic material. This second stator 39 has an outer cylinder and an inner cylinder having a hollow columnar shape. The distal end portion of the outer cylinder of the second stator 39 is formed into (n/2), i.e., eight, second outer magnetic pole portions 39 a, 39 b, 39 c, 39 d, 39 e, 39 f, 39 g, and 39 h which face the outer circumferential surface of the magnet 31. The distal end portion of the inner cylinder of the second stator 39 is formed into (n/2), i.e., eight, second inner magnetic pole portions 39 i, 39 j, 39 k, 39 m, 39 n, 39 p, 39 q, and 39 r which face the inner circumferential surface of the magnet 31. The second outer magnetic pole portions 39 a, 39 b, 39 c, 39 d, 39 e, 39 f, 39 g, and 39 h and second inner magnetic pole portions 39 i, 39 j, 39 k, 39 m, 39 n, 39 p, 39 q, and 39 r are formed on two sides of the magnet 31 to be in phase with each other. Each magnetic pole portion is formed with a shift of an integer multiple of 360/(n/2), i.e., an integer multiple of 45, so as to be in phase with the magnetization phase of a corresponding portion of the magnet 31.

The first outer magnetic pole portions 38 a, 38 b, 38 c, 38 d, 38 e, 38 f, 38 g, and 38 h and second outer magnetic pole portions 39 a, 39 b, 39 c, 39 d, 39 e, 39 f, 39 g, and 39 h are constituted by gaps and teeth extending in a direction parallel to the motor axis. With this arrangement, magnetic poles can be formed while the diameter (outer size) of the motor is minimized. If outer magnetic pole portions are formed by radial recesses/projections, the diameter of the motor increases accordingly. However, since the outer magnetic pole portions are constituted by the gaps and teeth extending in a direction parallel to the motor axis, the diameter of the motor can be limited to a small value.

The first outer magnetic pole portions 38 a, 38 b, 38 c, 38 d, 38 e, 38 f, 38 g, and 38 h and second outer magnetic pole portions 39 a, 39 b, 39 c, 39 d, 39 e, 39 f, 39 g, and 39 h oppose each other and the phases (the angular positions of the magnetic pole portions in the circumferential direction) are shifted from each other by 180/n, i.e., 11.25. In addition, the first inner magnetic pole portions 38 i, 38 j, 38 k, 38 m, 38 n, 38 p, 38 q, and 38 r and second inner magnetic pole portions 39 i, 39 j, 39 k, 39 m, 39 n, 39 p, 39 q, and 39 r sandwich the rib portion 31 s of the magnet.

The first outer magnetic pole portions 38 a, 38 b, 38 c, 38 d, 38 e, 38 f, 38 g, and 38 h and first inner magnetic pole portions 38 i, 38 j, 38 k, 38 m, 38 n, 38 p, 38 q, and 38 r are formed (arranged) to face the outer and inner circumferential surfaces of one end of the magnet 31 and sandwich one end of the magnet 31. The second outer magnetic pole portions 39 a, 39 b, 39 c, 39 d, 39 e, 39 f, 39 g, and 39 h and second inner magnetic pole portions 39 i, 39 j, 39 k, 39 m, 39 n, 39 p, 39 q, and 39 r are formed (arranged) to face the outer and inner circumferential surfaces of the other end of the magnet 31 and sandwich the other end of the magnet 31.

The first coil 32 is wound between the outer and inner cylinders of the first stator 38. The second coil 34 is wound between the outer and inner cylinders of the second stator 39. When the first coil 32 is energized, the first outer magnetic pole portions and first inner magnetic pole portions are excited. When the second coil 34 is magnetized, the second outer magnetic pole portions and second inner magnetic pole portions are excited.

As in the first embodiment, therefore, the magnetic flux generated at the magnetic pole portions effectively acts on the magnet 31, serving as a rotor, to raise the output level of the motor. In addition, this makes it possible to attain a reduction in power consumption (savings) and a reduction in coil size.

A coupling ring 20 is formed by a cylindrical member. This coupling ring 20 is made of a nonmagnetic material, e.g., a plastic material, spring stainless steel, or spring phosphor bronze. The coupling ring 20 is used to hold and fix the first and second stators 38 and 39 while their phases are shifted from each other by 180/n, i.e., 11.25, and the distal ends of the respective stators are spaced apart from each other by a given distance. Since the coupling ring 20 is made of a nonmagnetic material, the first and second stators 38 and 39 can be magnetically isolated from each other, thereby preventing the respective stators from magnetically influencing each other. This stabilizes the performance of the motor.

The rib portion 31 s formed on the inner circumferential surface of the magnet 31 is regulated by the distal end portions of the inner magnetic pole portions 38 i, 38 j, 38 k, 38 m, 38 n, 38 p, 38 q, and 38 r of the first stator 38 and the distal end portions of the inner magnetic pole portions 39 i, 39 j, 39 k, 39 m, 39 n, 39 p, 39 q, and 39 r of the second stator 39.

Referring to FIGS. 8, 9, 10A to 10D and 11A through 11D, the outer circumferential surface (outer surface) of the magnet 31, serving as the rotor, is rotatably held by a fourth intermediate member 35 having a hollow cylindrical shape. The outer circumferential surface of the fourth intermediate member 35 having the hollow cylindrical shape rotatably fits in the inner surfaces of the first outer magnetic pole portions 38 a, 38 b, 38 c, 38 d, 38 e, 38 f, 38 g, and 38 h of the first stator 38 and the inner surfaces of the second outer magnetic pole portions 39 a, 39 b, 39 c, 39 d, 39 e, 39 f, 39 g, and 39 h of the second stator 39. The inner circumferential surface of the fourth intermediate member 35 rotatably fits on the outer circumferential surface of the magnet 31. The magnet 31 is rotatably held (axially supported) by the fourth intermediate member 35.

The operation of this stepping motor will be described next with reference to FIGS. 10A to 10D and FIGS. 11A to 11D.

The first and second coils 32 and 34 are energized in the states shown in FIGS. 10A and 11A to magnetize the first outer magnetic pole portions 38 a, 38 b, 38 c, 38 d, 38 e, 38 f, 38 g, and 38 h to the N pole; the first inner magnetic pole portions 38 i, 38 j, 38 k, 38 m, 38 n, 38 p, 38 q, and 38 r to the S pole; the second outer magnetic pole portions 39 a, 39 b, 39 c, 39 d, 39 e, 39 f, 39 g, and 39 h to the N pole; and the second inner magnetic pole portions 39 i, 39 j, 39 k, 39 m, 39 n, 39 p, 39 q, and 39 r to the S pole. As a consequence, the magnet 31, serving as the rotor, rotates counterclockwise by 11.25 to reach the states shown in FIGS. 10B and 11B.

The first coil 32 is then energized in the reverse direction to magnetize the first outer magnetic pole portions 38 a, 38 b, 38 c, 38 d, 38 e, 38 f, 38 g, and 38 h to the S pole; the first inner magnetic pole portions 38 i, 38 j, 38 k, 38 m, 38 n, 38 p, 38 q, and 38 r to the N pole; the second outer magnetic pole portions 39 a, 39 b, 39 c, 39 d, 39 e, 39 f, 39 g, and 39 h to the N pole; and the second inner magnetic pole portions 39 i, 39 j, 39 k, 39 m, 39 n, 39 p, 39 q, and 39 r to the S pole. As a consequence, the magnet 31, serving as the rotor, rotates counterclockwise by 11.25 to reach the states shown in FIGS. 10C and 11C.

The second coil 34 is then energized in the reverse direction to magnetize the first outer magnetic pole portions 38 a, 38 b, 38 c, 38 d, 38 e, 38 f, 38 g, and 38 h to the S pole; the first inner magnetic pole portions 38 i, 38 j, 38 k, 38 m, 38 n, 38 p, 38 q, and 38 r to the N pole; the second outer magnetic pole portions 39 a, 39 b, 39 c, 39 d, 39 e, 39 f, 39 g, and 39 h to the S pole; and the second inner magnetic pole portions 39 i, 39 j, 39 k, 39 m, 39 n, 39 p, 39 q, and 39 r to the N pole. As a consequence, the magnet 31, serving as the rotor, rotates counterclockwise by 11.25 to reach the states shown in FIGS. 10D and 11D. Subsequently, the current directions to the coils 32 and 34 are sequentially switched in this manner so as to rotate the magnet 31, serving as the rotor, to positions corresponding to the current phases.

According to the second embodiment described with reference to FIGS. 8, 9, 10A to 10D and 11A through 11D, the gap between the outer circumferential surface of the magnet 31 and the first outer magnetic pole portions 38 a, 38 b, 38 c, 38 d, 38 e, 38 f, 38 g, and 38 h or second outer magnetic pole portions 39 a, 39 b, 39 c, 39 d, 39 e, 39 f, 39 g, and 39 h is defined by only the thickness of the fourth intermediate member 35. Therefore, this gap can be maintained with high precision, and the characteristics and performance of a motor can be stabilized in mass production. That is, in the second embodiment as well, the same effect as that of the first embodiment can be obtained. In addition, according to this embodiment, since the magnet 31 can be rotatably held by the hollow structure, a hollow doughnut-shaped motor can be formed. This makes it possible to form an actuator having a small size in the radial direction. Consequently, a motor can be obtained, which has an optimal arrangement as an actuator that is mounted in the lens barrel of a camera and drives a shutter blade or aperture lens.

The fourth intermediate member 35 rotatably fits in the inner surfaces of the outer magnetic pole portions of both the first and second stators 38 and 39. However, the fourth intermediate member 35 may be rotatably fitted in the inner surfaces of the outer magnetic pole portions of only one of the stators. With this arrangement as well, the same effect as that described above can be obtained.

In addition, when the motor of this embodiment is used for a light amount adjusting apparatus, the hollow portion can be positioned as an optical path. Therefore, the size of the light amount adjusting apparatus can be as small as approximately (magnet thickness+inner magnetic poles+outer magnetic poles)2+D2.

(Third Embodiment)

FIGS. 12, 13, 14A, 14B and 15 are views showing the third embodiment.

FIG. 12 is an exploded perspective view of a light amount adjusting apparatus. FIG. 13 is a sectional view of the light amount adjusting apparatus. FIGS. 14A and 14B are schematic sectional views respectively taken along lines A-A and B-B in FIG. 13.

Referring to FIGS. 12, 13, 14A and 14B, a first stator 38, second stator 39, first coil 32, second coil 34, and coupling ring 20 have substantially the same arrangements as those of the second embodiment. The same reference numerals as the second embodiment denote the same parts in the third embodiment, and a detailed description thereof will be omitted here.

A magnet 31 in this embodiment is the same as that in the second embodiment in that a rib portion 31 s having a small diameter is formed on a central portion in the axial direction. In this embodiment, the rib portion 31 s has a pin 31 t.

This apparatus further includes a first hollow fitting member 41 fitted in the first inner magnetic pole portions and a second hollow fitting member 42 fitted in the second inner magnetic pole portions.

The first hollow fitting member 41 is fixed in the inner cylinder of the first stator 38. The first hollow fitting member 41 has a plurality of projections extending outwardly in the radial direction. These projections are formed in the same number as that of comb teeth serving as inner magnetic poles. The number of projections may be smaller than that of inner magnetic poles. However, these projections are preferably arranged at equal intervals in the circumferential direction. Projections 41 a, 41 b, 41 c, 41 d, 41 d, 41 e, 41 f, 41 g, and 41 h fit between inner magnetic poles 38 i, 38 j, 38 k, 38 m, 38 n, 38 p, 38 q, and 38 r . These projections are slidably fitted in an inner circumferential surface 31 u of the magnet 31. The first hollow fitting member 41 has a hollow structure.

The second hollow fitting member 42 is fixed in the inner cylinder of the second stator 39. The second hollow fitting member 42 has a plurality of projections extending outwardly in the radial direction. These projections are formed in the same number as that of comb teeth, serving as inner magnetic poles. The number of projections may be smaller than that of inner magnetic poles. However, these projections are preferably arranged at equal intervals in the circumferential direction. Projections 42 a, 42 b, 42 c, 42 d, 42 e, 42 f, 42 g, and 42 h fit between inner magnetic poles 39 i, 39 j, 39 k, 39 m, 39 n, 39 p, 39 q, and 39 r. These projections are slidably fitted in the inner circumferential surface 31 v of the magnet 31. The second hollow fitting member 42 also has a hollow structure.

The movement of the rib portion 31 s of the magnet 31 in the thrust direction is regulated by the first and second hollow fitting member 41 and 42. The magnet 1 is rotatably held by this structure.

Since the first and second hollow fitting members 41 and 42 slidably move on the inner circumferential surface of the magnet, the magnet can be rotated while its positional precision in the radial direction is maintained high. In addition, since the magnet is rotatably held by the first and second hollow fitting members 41 and 42, no output shaft for axially supporting the motor is required. This makes it possible to realize a doughnut-shaped hollow motor. Therefore, this motor is suitably used for a lens driving apparatus or the like having a hollow portion as an optical axis.

A case where this motor is mounted in a stop driving apparatus will be described below.

This apparatus includes a base plate 60 and an output ring 61 rotatably mounted on the base plate 60. The base plate 60 has an aperture portion 60D. A hole 61 a of the output ring 61 receives the pin 31 t of the magnet 31. The output ring 61 is therefore regulated in the rotating direction by the magnet and rotates together with the magnet 31.

Aperture blades 62 and 63 respectively have dowel pins 62A and 63A and hole portion 62B and 63B. The dowel pins 62A and 63A slidably fit in cam grooves 60A and 60B formed in the base plate 60, and the hole portion 62B and 63B rotatably receive dowel pins 61B and 61C of the output ring 61. As the output ring 61 rotates, the aperture blades 62 and 63 rotate about the optical axis and change the aperture amount. A blade press plate 64 is attached to the inner surface of the first stator 38. The blade press plate 64 and base plate 60 form a space in which the aperture blades 62 and 63 can move.

FIGS. 14A and 14B are schematic sectional views respectively taken along lines A-A and B-B in FIG. 13. An illustration of parts that are not necessary for the description of the operation of the motor, such as the aperture blades and output ring, is omitted from FIGS. 14A and 14B. The driving principle of the motor of this embodiment is the same as that of the second embodiment, and hence a description thereof will be omitted here.

As described above, the hole 61 a of the output ring 61 receives the pin 31 t of the magnet 31 so that the output ring 61 rotates together with the magnet 31. The magnet 31 is sequentially rotated by sequentially switching the energizing directions of the first and second coils 32 and 34.

FIG. 15 shows a modification of the third embodiment. The above motor is used as a driving source for a lens barrel instead of an aperture driving apparatus. A helicoid base plate 70 is fixed to the first stator 38. A lens holder 71 has a male helicoid portion 71 a. The male helicoid portion 71 a slidably fits in a female helicoid portion 70 a of the helicoid base plate 70. With this structure, the lens holder 71 moves in the axial direction as it rotates.

A lens 72 is fixed to the lens holder 71. The position of the lens holder 71 changes in the optical axis direction as it rotates. The lens holder 71 has a groove 70 b. This groove 70 b receives the pin 31 t of the magnet 31. Therefore, the lens holder 71 rotates together with the magnet 31 and moves in the axial direction as it rotates. That is, the position of the lens 72 changes in the optical axis direction as the magnet 31 rotates. Since the optical axis and optical path of the lens 72 are positioned in the hollow portion of the hollow motor, a compact lens barrel unit can be realized as a whole.

According to the third embodiment described with reference to FIGS. 12, 13, 14A and 14B and the modification described with reference to FIG. 15, the gaps between the magnet 31 and the first and second stators are defined by only the thicknesses of the first and second hollow fitting members. Therefore, the gaps can be maintained with high precision, and the output characteristics and performance of motors can be stabilized in mass production. With the third embodiment as well, the same effects as those of the first and second embodiments can be obtained. In addition, since the magnet 31 can be rotatably held by the hollow structure, a hollow doughnut-shaped motor can be realized. This makes it possible to form an actuator having a small size in the radial direction. Consequently, a motor can be obtained which has an optimal arrangement as an actuator that is mounted in the lens barrel of a camera and drives a shutter blade or aperture lens.

(Fourth Embodiment)

FIGS. 16, 17, 18A and 18B are views showing the fourth embodiment.

FIG. 16 is an exploded perspective view of a light amount adjusting apparatus. FIG. 17 is a sectional view of the light amount adjusting apparatus. FIGS. 18A and 18B are schematic sectional views respectively taken along lines A-A and B-B in FIG. 17.

Referring to FIGS. 16, 17, 18A and 18B, a magnet 31, first stator 38, second stator 39, first coil 32, second coil 34, and constituent members 60 to 64 of a stop driving apparatus have substantially the same arrangements as those in the third embodiment. The same reference numerals as in the third embodiment denote the same parts in the fourth embodiment, and a detailed description thereof will be omitted here.

Unlike the third embodiment, this embodiment does not have a coupling ring (20), first hollow fitting member (41), and second hollow fitting member (42), but has instead a fitting coupling member 50.

The fitting coupling member 50 is made of a nonmagnetic material, e.g., a plastic material, and has a thin hollow cylindrical shape. The fitting coupling member 50 is fixed on the outer cylinders of the first and second stators 38, 39. This fitting coupling member 50 has a plurality of projections in the radial direction. These projections include first projections 50 a, 50 b, 50 c, 50 d, 50 e, 50 f, 50 g, and 50 h formed in the same number as that of the teeth of the first outer magnetic pole portions, and second projections 50 i, 50 j, 50 k, 50 m, 50 n, 50 p, 50 q, and 50 r formed in the same number as that of the teeth of the second outer magnetic pole portions. The first and second projections are formed on end portions of the motor in the axial direction. The numbers of these projections may be smaller than those of the first and second outer magnetic pole portions. However, the projections are preferably arranged at equal intervals in the circumferential direction. The first projections fit between first outer magnetic pole portions 38 a, 38 b, 38 c, 38 d, 38 e, 38 f, 38 g, and 38 h . The second projections fit between second outer magnetic pole portions 39 a, 39 b, 39 c, 39 d, 39 e, 39 f, 39 g, and 39 h. These projections slidably move on the outer circumferential surface of the magnet 31.

The projections of the fitting coupling member 50 come into contact with the portions between the outer magnetic pole portions of each stator to regulate the position of the stator in the thrust direction, i.e., the axial direction. Therefore, the fitting coupling member 50 can fix the first and second stators 38 and 39 at a predetermined distance from each other.

In addition, the first and second projections are arranged with a phase shift of 180/n (11.25 in this embodiment). Therefore, when the first and second stators are fitted, the first and second stators are fixed with a phase shift of 180/n.

Since the fitting coupling member 50 is made of a nonmagnetic material, the first and second stators 38 and 39 can be magnetically isolated from each other, thereby preventing the respective stators from magnetically influencing each other. This stabilizes the performance of the motor.

As shown in FIG. 19, projections 50 s and 50 t forming a regulating portion for regulating the movement of the magnet 31 in the thrust direction are formed on the inner circumferential surface of the fitting coupling member 50. The projections 50 s and 50 t are formed to clamp the magnet 31 from two (opposing) sides in the axial direction. That is, the position of the magnet 31 in the thrust direction is regulated by the projections 50 s and 50 t of the fitting coupling member 50.

Note that the distal end portions of the projections 50 s and 50 t are located closer to the inner circumferential side than the outer circumferential surface of the magnet 31. For this reason, when the magnet 31 and fitting coupling member 50 are to be assembled, one of the projections 50 s and 50 t is elastically deformed.

Since the inner circumferential surface of the fitting coupling member 50 slidably moves on the outer circumferential surface of the magnet, the magnet can be rotated while its position in the radial direction is maintained with high precision. In addition, since the magnet is rotatably held by the projections 50 s and 50 t, an output shaft for axially supporting the motor is not required. This makes it possible to realize a doughnut-shaped hollow motor. Therefore, this motor is suitably used for a lens driving apparatus or the like having a hollow portion as an optical axis.

FIGS. 18A and 18B are schematic sectional views respectively taken along the lines A-A and B-B in FIG. 17. An illustration of parts that are not necessary for the description of the operation of the motor, such as the aperture blades and output ring, is omitted from FIGS. 18A and 18B. The driving principle of the motor of this embodiment is the same as that of the second embodiment.

As in the third embodiment, a hole 61 a of the output ring 61 receives a pin 31 t of the magnet 31 so that the output ring 61 rotates together with the magnet 31. By sequentially switching the energizing directions of the first and second coils 32 and 34, the magnet 31 is sequentially rotated.

FIG. 19 shows a modification of the fourth embodiment. The above motor is used as a driving source for a lens barrel instead of an aperture driving apparatus. A helicoid base plate 70 is fixed to the first stator 38. A lens holder 71 has a male helicoid portion 71 a. The male helicoid portion 71 a sidably fits in a female helicoid portion 70 a of the helicoid base plate 70. With this structure, the lens holder 71 moves in the axial direction as it rotates.

A lens 72 is fixed to the lens holder 71. The position of the lens holder 71 changes in the optical axis direction as it rotates. The lens holder 71 has a groove 70 b. The groove 70 b receives the pin 31 t of the magnet 31. With this structure, the lens holder 71 rotates together with the magnet 31, and moves in the axial direction as it rotates. That is, when the magnet 31 rotates, the position of the lens 72 in the optical axis direction changes. Since the optical axis and optical path of the lens 72 are positioned in the hollow portion of the hollow motor, a compact lens barrel unit can be realized as a whole.

According to the fourth embodiment described with reference to FIGS. 16, 17, 18A and 18B and the modification described with reference to FIG. 19, the gaps between the magnet 31 and the first and second stators are defined by only the thickness of the fitting coupling member 50. In addition, the relative positions of the magnet 31 and first and second outer magnetic pole portions in the thrust direction are regulated by the fitting coupling member 50 near the outer magnetic pole portions. Therefore, the gaps between the magnet 31 and the respective magnetic pole portions can be regulated with high precision, and the output characteristics and performance of motors can be stabilized in mass production.

In addition, in this embodiment as well, since the magnet is rotatably held by the fitting coupling member 50 for holding the first and second stators 38 and 39, a hollow doughnut-shaped motor can be realized with a simple arrangement. This makes it possible to form an actuator having a small size in the radial direction. Consequently, a motor can be obtained which has an optimal arrangement as an actuator that is mounted in the lens barrel of a camera and drives a shutter blade or aperture lens.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US3754824 *Dec 14, 1971Aug 28, 1973Berkey Photo IncLight color control apparatus
US3903529 *Dec 13, 1972Sep 2, 1975Canon KkExposure value controlling apparatus
US3914721 *Sep 3, 1970Oct 21, 1975Eastman Kodak CoCombination specular-diffuse projection device and method
US3966320 *Apr 7, 1975Jun 29, 1976Veb Pentacon DresdenMicrofilm camera
US4229098 *Oct 26, 1978Oct 21, 1980Fotomec S.P.A.Photographic enlarger for producing giant-size prints
US4240728 *Jun 26, 1978Dec 23, 1980Prontor-Werk Alfred Gauthier GmbhPhotographic camera shutter electromagnetic system for controlling photographic light admitted to camera
US4396272 *Nov 10, 1981Aug 2, 1983Asahi Kogaku Kogyo Kabushiki KaishaAperture control mechanism
US4497557 *Jun 25, 1982Feb 5, 1985Polaroid CorporationElectromagnetic shutter mechanism
US4558938 *Dec 28, 1983Dec 17, 1985Polaroid CorporationTwin rotatable electromagnetically driven blade mechanism
US4583845 *May 29, 1984Apr 22, 1986Lucht Engineering, Inc.Photographic printer
US4598989 *Dec 22, 1983Jul 8, 1986Konishiroku Photo Industry Co. Ltd.Camera
US4623233 *Mar 17, 1986Nov 18, 1986Konishiroku Photo Industry Co., Ltd.Electromagnetically driven shutter device
US4716432 *Apr 24, 1986Dec 29, 1987Eastman Kodak CompanyExposure control apparatus
US4739359 *Jan 23, 1986Apr 19, 1988Canon Kabushiki KaishaElectric motor operated camera
US4751543 *Nov 18, 1986Jun 14, 1988Canon Kabushiki KaishaControl signal generator for camera
US4786944 *Feb 10, 1987Nov 22, 1988Fuji Photo Film Co., Ltd.Composite image printing method and apparatus
US4796667 *Mar 13, 1987Jan 10, 1989Robert Bosch GmbhBrake pressure control valve
US4821079 *Oct 23, 1987Apr 11, 1989Yoder Darrel KTest Photographic image easel
US4839679 *Jun 18, 1987Jun 13, 1989General Electric Corp.Dual voice coil shutter
US4851870 *Apr 20, 1988Jul 25, 1989Minolta Camera Kabushiki KaishaShutter apparatus for camera
US4931826 *Dec 1, 1988Jun 5, 1990Castle Rock Manufacturing, Inc.Photographic printer-processor
US5091793 *Dec 27, 1990Feb 25, 1992Matsushita Electric Industrial Co., Ltd.Recording and reproducing information
US5099277 *Dec 1, 1989Mar 24, 1992Orren J. LuchtVacuum platen for use in a printer
US5150149 *Jul 25, 1991Sep 22, 1992Eastman Kodak CompanyMulti-aperture electromagnetic camera shutter
US5245372Mar 13, 1992Sep 14, 1993Canon Kabushiki KaishaCamera using a film with a magnetic memory portion with a two-speed film transporting feature
US5283604Dec 4, 1991Feb 1, 1994Canon Kabushiki KaishaCamera which reads information from a stabilized film cartridge
US5325142 *Dec 22, 1992Jun 28, 1994Eastman Kodak CompanyVariable close loop controlled aperture/shutter system
US5353078Jan 19, 1994Oct 4, 1994Canon Kabushiki KaishaCamera having a magnetic recording device
US5391866 *Mar 19, 1993Feb 21, 1995Sony CorporationPosition recovery apparatus for inner focus lens
US5432576 *Jan 5, 1994Jul 11, 1995Eastman Kodak CompanyAperture mechanism having a blade positionable in an open position by a hard stop
US5481323Apr 25, 1994Jan 2, 1996Canon Kabushiki KaishaCamera using film with magnetic storage section
US5517364 *Mar 27, 1995May 14, 1996Canon Kabushiki KaishaDrive device, lens barrel and camera
US5555060 *May 23, 1995Sep 10, 1996Eastman Kodak CompanySelf calibrating actuator position control system
US5563673Feb 14, 1995Oct 8, 1996Canon Kabushiki KaishaCamera
US5706120 *Apr 24, 1996Jan 6, 1998Eastman Kodak CompanyDevice for controlling an amount of light allowed to reach a photosensitive surface
US5825560 *Feb 26, 1996Oct 20, 1998Canon Kabushiki XaishaFor forming an object image on a solid-state image sensing element
US5831356Apr 2, 1997Nov 3, 1998Canon Kabushiki KaishaCompact cylindrical stepping motor and advancing device
US5847887 *Oct 24, 1997Dec 8, 1998Ohtsuka Patent OfficeOptical apparatus
US5899591Dec 7, 1993May 4, 1999Canon Kabushiki KaishaFilm transporting system for camera using three different transport speeds
US5925945Dec 19, 1997Jul 20, 1999Canon Kabushiki KaishaCompact motor with enhanced workability
US5945753Feb 20, 1998Aug 31, 1999Canon Kabushiki KaishaMotor
US5959669 *Nov 5, 1997Sep 28, 1999Canon Kabushiki KaishaImage pickup apparatus having standard-resolution and high-resolution photographing modes
US5969453Jan 28, 1998Oct 19, 1999Canon Kabushiki KaishaMotor
US5973425Feb 12, 1998Oct 26, 1999Canon Kabushiki KaishaMotor
US6046517Jul 8, 1998Apr 4, 2000Canon Kabushiki KaishaElectric motor
US6049677Dec 7, 1994Apr 11, 2000Canon Kabushiki KaishaCamera having magnetic signal reproducing circuit with adjustable gain amplifier
US6081053Jul 6, 1998Jun 27, 2000Canon Kabushiki KaishaMotor
US6157107Apr 6, 1999Dec 5, 2000Canon Kabushiki KaishaMotor with magnetic stator poles inside and outside the rotor magnet
US6172440Apr 13, 1999Jan 9, 2001Canon Kabushiki KaishaMotor
US6222287Nov 3, 1999Apr 24, 2001Canon Kabushiki KaishaMotor
US6255749Mar 28, 2000Jul 3, 2001Canon Kabushiki KaishaMotor
US6316851Dec 6, 1999Nov 13, 2001Canon Kabushiki KaishaMotor
US6411003Oct 5, 2000Jun 25, 2002Canon Kabushiki KaishaMotor
US6447175 *Apr 19, 2000Sep 10, 2002Nidec Copal CorporationPunching polyethylene terephthalate film; etching by dipping in sodium or potassium hydroxide aqueous solution; roughening, heat treatment; preventing reflection
US6465916Nov 30, 1999Oct 15, 2002Canon Kabushiki KaishaMotor
US6550987 *Jul 22, 2002Apr 22, 2003Nidec Copal CorporationFormed by punching a film material to form a major surface portion and a smooth edge face portion, and chemically etching the smooth edge face portion to roughen it by forming pores, suppressing reflection of light; camera shutter blades
US6559569 *Apr 17, 2001May 6, 2003Canon Kabushiki KaishaMotor device
US6605176 *Jul 13, 2001Aug 12, 2003Taiwan Semiconductor Manufacturing Co., Ltd.Aperture for linear control of vacuum chamber pressure
EP0892484A1Jul 9, 1998Jan 20, 1999Canon Kabushiki KaishaElectric motor
JP2000324788A Title not available
JPH04244774A Title not available
JPS57166847A Title not available
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US7154199Dec 7, 2005Dec 26, 2006Canon Kabushiki KaishaDriving apparatus for moving member to be moved
US7203011Sep 21, 2005Apr 10, 2007Fujifilm CorporationLens device, imaging device using the same and cell-phone with camera using the same
US7206145Sep 21, 2005Apr 17, 2007Fujifilm CorporationLens driving device and electronic camera using the same
US7274120Sep 21, 2005Sep 25, 2007Fujinon CorporationDrive unit and image pickup unit equipped with the drive unit
US7292396Sep 21, 2005Nov 6, 2007Fujifilm CorporationLens device, image pickup device and optical device
US7359631Sep 21, 2005Apr 15, 2008Fujifilm CorporationLens driving device, imaging device using the same, and small-sized electronics device using the same
US7411625 *Sep 29, 2004Aug 12, 2008Lite-On Technology CorporationAuto focus lens system
US7544003 *Jul 31, 2006Jun 9, 2009Tricore CorporationDriving assembly of camera shutter and diaphragm
US7573164Jul 27, 2006Aug 11, 2009Canon Kabushiki KaishaDriving apparatus
US7582995Sep 22, 2005Sep 1, 2009Fujinon CorporationStepping motor, lens device using the same, and imaging device using the same
US7592728 *May 7, 2007Sep 22, 2009Robert M. JonesElectric machine having segmented stator
US7670069 *Feb 4, 2009Mar 2, 2010Seiko Precision Inc.Shutter drive device for camera
US7731003 *Dec 12, 2006Jun 8, 2010Industrial Technology Research InstituteAxially actuating device having elastic joining portion
US7936526Dec 12, 2007May 3, 2011Lg Innotek Co., Ltd.Lens driving apparatus
US7994675 *Sep 29, 2009Aug 9, 2011Jones Robert MGeneric crimped rotor for an electric brushless direct current motor
US8035273 *Jun 1, 2007Oct 11, 2011A.O. Smith CorporationRotor assembly having two core portions each with a reduced back portion
US8084899Aug 10, 2009Dec 27, 2011Canon Kabushiki KaishaDriving apparatus
US8089703Mar 18, 2011Jan 3, 2012Lg Innotek Co., Ltd.Lens driving apparatus
US8222786 *May 3, 2010Jul 17, 2012Motor Excellence LlcTransverse and/or commutated flux systems having phase offset
US8253841 *Jun 16, 2009Aug 28, 2012Shenzhen Futaihong Precision Industry Co., Ltd.Portable electronic device
US8283827Apr 5, 2010Oct 9, 2012Robert M. JonesOver-molded liquid cooled three-stack motor
US8300330Nov 22, 2011Oct 30, 2012Lg Innotek Co., Ltd.Lens driving apparatus
US20100134678 *Jun 16, 2009Jun 3, 2010Shenzhen Futaihong Precision Industry Co., Ltd.Portable electronic device
US20120043845 *Aug 20, 2010Feb 23, 2012Alex HorngSensorless Three-Phased BLDC Motor and Stator thereof
CN1992483BDec 30, 2005Nov 2, 2011财团法人工业技术研究院Axial actuating device with elastic coupling part
CN101578755BDec 12, 2007May 8, 2013Lg伊诺特有限公司Lens driving apparatus
WO2008072892A1 *Dec 12, 2007Jun 19, 2008Lg Innotek Co LtdLens driving apparatus
Classifications
U.S. Classification310/49.32, 355/42, 310/40.00R, 310/156.02, 355/124, 355/101, 396/235, 310/46, 310/156.25, 396/463
International ClassificationH02K37/14
Cooperative ClassificationH02K37/14
European ClassificationH02K37/14
Legal Events
DateCodeEventDescription
Mar 7, 2012FPAYFee payment
Year of fee payment: 8
Mar 7, 2008FPAYFee payment
Year of fee payment: 4
Feb 1, 2005CCCertificate of correction