Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS6830372 B2
Publication typeGrant
Application numberUS 10/330,345
Publication dateDec 14, 2004
Filing dateDec 30, 2002
Priority dateOct 23, 2002
Fee statusLapsed
Also published asUS20040081222
Publication number10330345, 330345, US 6830372 B2, US 6830372B2, US-B2-6830372, US6830372 B2, US6830372B2
InventorsTai-Sheng Liu, Chi-An Wu
Original AssigneeQuanta Computer Inc.
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Thermal testing control system
US 6830372 B2
Abstract
A thermal testing control system for notebook computers, remotely controlled by a control means, is described. An enclosure can test notebook computers in its inner space under a predetermined temperature. A temperature sensor, mounted in the testing room is electrically connected to the control means. A blower is mounted in one opening, and electrically connected to the control means. If the temperature measured by the temperature sensor is higher than the predetermined temperature, the blower begins to operate.
Images(5)
Previous page
Next page
Claims(8)
What is claimed is:
1. A thermal testing control system for computers, comprising:
a plurality of heating sources for generating heat, said heating sources consisting of said computers, wherein the heat is generated by said computers themselves;
a control means for setting a predetermined temperature higher than a normal operation temperature of said computers;
a plurality of sidewalls, defining at least an enclosure, receiving the heat generated by said computers for thermal testing said computers themselves under said predetermined temperature;
a temperature sensor, electrically connected to said control means and installed in said enclosure; and
a heat dissipation device, installed in said sidewalls, electrically connected to and controlled by said control means, wherein said heat dissipation device starts to operate when a temperature measured by said temperature sensor is higher than said predetermined temperature, and said heat dissipation device stops operating when the temperature measured by said temperature sensor is equal to said predetermined temperature.
2. The testing control system of claim 1, wherein said heat dissipation device comprises a blower.
3. The testing control system of claim 2, wherein the temperature inside said enclosure is lowered by operating said blower.
4. The testing control system of claim 3, wherein said blower stops operating when the temperature inside said enclosure is less than said predetermined temperature.
5. The testing control system of claim 2, wherein said heat dissipation device further comprises an opening set in said sidewalls corresponding to the blower.
6. The testing control system of claim 1, wherein said sidewalls are made of PVC plastic.
7. The testing control system of claim 1, wherein said sidewalls are made of two layers of PVC plastic walls, and each space between two layers of said PVC plastic walls is filled with air.
8. A temperature maintaining enclosure with at least one sidewall, said temperature maintaining enclosure comprising:
a plurality of heating sources consisting of computers, said computers generating heat for thermal testing themselves;
a control means for setting a predetermined temperature higher than a normal operation temperature of said computers;
a temperature sensor, electrically connected to said control means and installed in said enclosure; and
a heat dissipation device, installed in said sidewall, and electrically connected to and controlled by said control means, wherein said heat dissipation device starts to operate when a temperature measured by said temperature sensor is higher than said predetermined temperature, and said heat dissipation device stops operating when the temperature measured by said temperature sensor is equal to said predetermined temperature.
Description
BACKGROUND OF THE INVENTION

1. Field of Invention

The present invention relates to a thermal testing control system. More particularly, the present invention relates to a thermal testing control system for a notebook computer.

2. Description of Related Art

A conventional thermal testing method for a notebook computer is conducted in a closed space in order to maintain and control the testing temperature. When this kind of thermal testing starts, several notebook computers are turned on simultaneously in a closed space at a predetermined temperature in the closed space. In most cases, the predetermined temperature is higher than room temperature and is adjusted according to testing criteria.

A heater is installed in the thermal testing partition because the temperature needs to be maintained at a predetermined degree. The drawbacks of the conventional testing method are that it occupies a lot of space and consumes a high thermal budget. Besides, since the space is closed, only one predetermined temperature can be executed at one time.

FIG. 1 illustrates a conventional thermal testing space for a notebook. When conventional thermal testing is conducted at the temperature of 40 C., nine sets of notebook computers 12 are put into closed space 10 and the heater 15 maintains the 40 C. temperature. The closed space 10 may be an office partition or a factory partition.

Yet another difficulty is presented by variations in temperature at different points of the office partition or factory partition. The operator conducting this thermal testing may feel uncomfortable at higher temperatures for a long period of time.

SUMMARY OF THE INVENTION

It is therefore an objective of the present invention to provide a thermal testing control system for notebook computers.

In accordance with the foregoing and other objectives of the present invention, a thermal testing control system remotely controlled by a control means is described. An enclosure, in which several computers are tested under a predetermined temperature, has two openings. A temperature sensor in the enclosure is electrically connected to the control means. A blower, installed in one of the two openings, is electrically connected to the control means. When the temperature measured by the sensor is higher than the predetermined temperature, the blower operates.

In one preferred embodiment of the present invention, the enclosure is defined by two layers of PVC plastic wall. The space between the two layers of PVC plastic wall is filled with air in order to isolate thermal propagation among different enclosures.

The sensor in the enclosure measures the temperature and passes the same to the control means. When the temperature measured by the sensor is higher than the predetermined temperature, the blower operates and introduces cooler air to lower the temperature in the enclosure. When the temperature measured by the sensor is equal to or less than the predetermined temperature, the blower stops operating. The mechanism mentioned above is to maintain the predetermined temperature until the thermal testing for notebook is finished.

The method used to lower the enclosure temperature is to mix the cooler air outside the enclosure with the air in the enclosure. The cooler air is introduced into the enclosure by operating the blower installed in an opening.

As embodied and broadly described herein, the invention provides a thermal testing control system to save more space, and allow different tests at different temperatures in different enclosures to take place at the same time. Further, a heater is not essential to raise the temperature in the a enclosure.

It is to be understood that both the foregoing general description and the following detailed description are by examples, and are intended to provide further explanation of the invention as claimed.

BRIEF DESCRIPTION OF THE DRAWINGS

These and other features, aspects, and advantages of the present invention will become better understood with regard to the following description, appended claims, and accompanying drawings where:

FIG. 1 illustrates a conventional thermal testing partition for notebook computers;

FIG. 2A illustrates a schematic side view for a thermal testing control system according to one preferred embodiment of this invention;

FIG. 2B illustrates a perspective view for a thermal testing control system according to one preferred embodiment of this invention; and

FIG. 3 illustrates a perspective view of a sidewall's structure according to one preferred embodiment of this invention.

DESCRIPTION OF THE PREFERRED EMBODIMENTS

Reference will now be made in detail to the present preferred embodiments of the invention, examples of which are illustrated in the accompanying drawings. Wherever possible, the same reference numbers are used in the drawings and the description to refer to the same or like parts.

In the preferred embodiments of the present invention, a control means electrically connected to several enclosures maintains the enclosures at different predetermined temperatures to conduct thermal testing for notebook.

FIGS. 2A, 2B respectively illustrate a thermal testing control system's side view and perspective view according to one preferred embodiment of this invention. The thermal testing control system comprises a control means 20, an interface card 22, a temperature sensor 26, a blower 28, a plurality of enclosures 30, a structure frame 34, and sidewalls 36.

The structure frame 34 consists of steel structure and sidewalls 36 (such as PVC plastic wall) which covers all sides of the steel structure to define the enclosures 30. Referring to FIG. 3, two layers of PVC plastic wall 39 are preferably used and the space between the two layers is filled with air 39. The predetermined temperature in different enclosures 30 can be different. Two layers of PVC plastic walls 39 filled with air 37 are good to maintain temperature by isolating heat convection between different enclosures 30.

In addition to PVC plastic walls 36, the enclosure 30 further comprises a heat dissipation device (consists of a blower 28 and an opening 24) and a temperature sensor 26. The blower 28 and the temperature sensor 26 are electrically connected to an interface card 22, respectively. The temperature sensor 26 measures temperatures in each enclosure 30 and passes temperature signals to the control means 20 via the interface card 22. The blower 28 (cooperating with the opening 24) is used to lower temperatures in each enclosure 30. The blower 28 is installed on one side of the PVC plastic walls 36 and the opening 24 is set on the corresponding side of the PVC plastic walls 36 for air convection. When the blower 28 starts operation, the opening 24 (cooperating with the blower 28) is used for air convection.

Both the control means 20 and the interface card 22 control temperatures in each enclosure 30 so that the temperatures can be controlled at different degrees in different enclosures 30. The control means 20 includes desktop computer, notebook computer, or other control means. The interface card 22 is also electrically connected to the control means 20. Alternatively, the control means 20 may comprise the interface card 22 can be integrated in the control means 20.

The function of the blower 28 and the opening 24 is to lower the temperature in enclosure 30 by way of mixing the cooler air outside the enclosure with the air in the enclosure. When the blower 28 starts to operate, cooler air from outside the enclosure can be introduced into the enclosure 30 via the opening 24 (or the blower 28), and hot air can be extracting from the enclosure via the blower 28 (or the opening 24).

The heat for raising the temperature in the enclosure 30 is generated (provided) by notebooks 38 themselves. For example, when a notebook computer 38 runs, there is about 40 percent of the computer power transformed into heat consumption. That is, when a 50W notebook computer 38 runs, about 20W of the 50W power consumption into heat. In a case where five sets of notebook computers 38 placed in the enclosure 30, 100W of heat are provided. The heat provided by the notebook computers can be used to maintain temperatures inside the enclosure 30. Thus, a heater is not needed for thermal testing control system of present invention. The temperature sensor 26, installed in the enclosure 30, measures the temperatures and returns temperature signals back to the control means 20. When the temperature measured by the temperature sensor 26 is higher than a predetermined temperature, the control means 20 controls the blower 28 to turn on and cooler air from outside the enclosure 30 can be introduced into the enclosure 30 to lower the temperature. When the temperature in the enclosure 30 is less than or equal to the predetermined temperature, the control means 20 controls the blower 28 to stop and the notebook computers 38 keep on generating heat. By means of the extra heat provided by notebook computers, the enclosure 30 is maintained at a predetermined temperature until the thermal testing is finished.

In conclusion, an office partition can be divided into several enclosures and offer different temperature testing simultaneously. Additionally, a heater is not essential for raising temperatures. Therefore, a smaller office partition and a lower thermal budget are needed.

It will be apparent to those skilled in the art that various modifications and variations can be made to the structure of the present invention without departing from the scope or spirit of the invention. In view of the foregoing, it is intended that the present invention cover modifications and variations of this invention provided they fall within the scope of the following claims and their equivalents.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2510952 *Jun 30, 1944Jun 13, 1950Brewster Leslie ATemperature testing chamber
US4426619 *Jun 3, 1981Jan 17, 1984Temptronic CorporationElectrical testing system including plastic window test chamber and method of using same
US4967155 *Apr 8, 1988Oct 30, 1990Micropolis CorporationEnvironmentally controlled media defect detection system for Winchester disk drives
US5646358 *Jan 31, 1996Jul 8, 1997Atlas Electric Devices Co.High accuracy weathering test machine
US5859409 *Sep 16, 1997Jan 12, 1999Samsung Electronics Co., Ltd.Oven for testing peripheral storage devices
US6097001 *Jun 30, 1997Aug 1, 2000AlcatelPortable heating tent and method for testing telecommunications equipment
US6169413 *May 12, 1997Jan 2, 2001Samsung Electronics Co., Ltd.System for testing hard disk drives
US6227701 *Aug 5, 1999May 8, 2001Inventec CorporationApparatus for thermally testing an electronic device
US6526841 *Aug 1, 2000Mar 4, 2003Pemstar, Inc.Environmental test chamber and a carrier for use therein
US6628520 *Feb 6, 2002Sep 30, 2003Hewlett-Packard Development Company, L.P.Method, apparatus, and system for cooling electronic components
US20030112025 *Dec 13, 2001Jun 19, 2003Harold E. HamiltonTemperature control system for burn-in boards
USH229 *Jul 20, 1984Mar 3, 1987 Environmental test chamber
JPS61201138A * Title not available
SU834951A1 * Title not available
SU1714413A1 * Title not available
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US7275019May 17, 2005Sep 25, 2007Dell Products L.P.System and method for information handling system thermal diagnostics
US7505870Aug 17, 2007Mar 17, 2009Dell Products L.P.System and method for information handling system thermal diagnostics
US7778031Mar 19, 2010Aug 17, 2010Teradyne, Inc.Test slot cooling system for a storage device testing system
US7848106Apr 17, 2008Dec 7, 2010Teradyne, Inc.Temperature control within disk drive testing systems
US7890207Mar 18, 2010Feb 15, 2011Teradyne, Inc.Transferring storage devices within storage device testing systems
US7904211Mar 18, 2010Mar 8, 2011Teradyne, Inc.Dependent temperature control within disk drive testing systems
US7908029Mar 19, 2010Mar 15, 2011Teradyne, Inc.Processing storage devices
US7911778Apr 26, 2010Mar 22, 2011Teradyne, Inc.Vibration isolation within disk drive testing systems
US7920380Jul 15, 2009Apr 5, 2011Teradyne, Inc.Test slot cooling system for a storage device testing system
US7929303May 7, 2010Apr 19, 2011Teradyne, Inc.Storage device testing system cooling
US7932734Apr 14, 2010Apr 26, 2011Teradyne, Inc.Individually heating storage devices in a testing system
US7940529Apr 14, 2010May 10, 2011Teradyne, Inc.Storage device temperature sensing
US7945424Apr 17, 2008May 17, 2011Teradyne, Inc.Disk drive emulator and method of use thereof
US7987018Mar 18, 2010Jul 26, 2011Teradyne, Inc.Transferring disk drives within disk drive testing systems
US7995349Jul 15, 2009Aug 9, 2011Teradyne, Inc.Storage device temperature sensing
US7996174Dec 18, 2007Aug 9, 2011Teradyne, Inc.Disk drive testing
US8041449Apr 17, 2008Oct 18, 2011Teradyne, Inc.Bulk feeding disk drives to disk drive testing systems
US8086343May 29, 2009Dec 27, 2011Teradyne, Inc.Processing storage devices
US8095234Apr 17, 2008Jan 10, 2012Teradyne, Inc.Transferring disk drives within disk drive testing systems
US8102173Apr 17, 2008Jan 24, 2012Teradyne, Inc.Thermal control system for test slot of test rack for disk drive testing system with thermoelectric device and a cooling conduit
US8116079Jun 14, 2010Feb 14, 2012Teradyne, Inc.Storage device testing system cooling
US8117480Apr 17, 2008Feb 14, 2012Teradyne, Inc.Dependent temperature control within disk drive testing systems
US8140182Mar 18, 2010Mar 20, 2012Teradyne, Inc.Bulk feeding disk drives to disk drive testing systems
US8160739Apr 16, 2009Apr 17, 2012Teradyne, Inc.Transferring storage devices within storage device testing systems
US8201993 *Feb 12, 2007Jun 19, 2012Robert Bosch GmbhMethod for operating a gas sensor
US8238099Apr 17, 2008Aug 7, 2012Teradyne, Inc.Enclosed operating area for disk drive testing systems
US8279603Mar 11, 2011Oct 2, 2012Teradyne, Inc.Test slot cooling system for a storage device testing system
US8305751Apr 17, 2008Nov 6, 2012Teradyne, Inc.Vibration isolation within disk drive testing systems
US8405971Apr 26, 2010Mar 26, 2013Teradyne, Inc.Disk drive transport, clamping and testing
US8451608Apr 16, 2009May 28, 2013Teradyne, Inc.Temperature control within storage device testing systems
US8466699Jul 15, 2009Jun 18, 2013Teradyne, Inc.Heating storage devices in a testing system
US8467180Apr 23, 2010Jun 18, 2013Teradyne, Inc.Disk drive transport, clamping and testing
US8482915Aug 13, 2010Jul 9, 2013Teradyne, Inc.Temperature control within disk drive testing systems
US8547123Jul 15, 2010Oct 1, 2013Teradyne, Inc.Storage device testing system with a conductive heating assembly
US8549912Dec 18, 2007Oct 8, 2013Teradyne, Inc.Disk drive transport, clamping and testing
US8628239Jul 15, 2010Jan 14, 2014Teradyne, Inc.Storage device temperature sensing
US8655482Apr 17, 2009Feb 18, 2014Teradyne, Inc.Enclosed operating area for storage device testing systems
US8687349Jul 21, 2010Apr 1, 2014Teradyne, Inc.Bulk transfer of storage devices using manual loading
US8687356Feb 2, 2010Apr 1, 2014Teradyne, Inc.Storage device testing system cooling
US8712580Apr 16, 2009Apr 29, 2014Teradyne, Inc.Transferring storage devices within storage device testing systems
US8717049 *Jul 29, 2011May 6, 2014Hong Fu Jin Precision Industry (Shenzhen) Co., Ltd.System and method for testing computer under varying environmental conditions
US8762098 *Mar 31, 2011Jun 24, 2014Hong Fu Jin Precision Industry (Shenzhen) Co., Ltd.Thermal testing system and method
US8964361Aug 23, 2012Feb 24, 2015Teradyne, Inc.Bulk transfer of storage devices using manual loading
US9001456Aug 31, 2010Apr 7, 2015Teradyne, Inc.Engaging test slots
US9459312Apr 10, 2013Oct 4, 2016Teradyne, Inc.Electronic assembly test system
US20060271335 *May 17, 2005Nov 30, 2006Drew SchulkeSystem and method for information handling system thermal diagnostics
US20090116534 *Feb 12, 2007May 7, 2009Robert Bosch GmbhMethod for operating a gas sensor
US20120053859 *Mar 31, 2011Mar 1, 2012Hon Hai Precision Industry Co., Ltd.Thermal testing system and method
US20120169364 *Jul 29, 2011Jul 5, 2012Hon Hai Precision Industry Co., Ltd.Computer testing system and method
Classifications
U.S. Classification374/57, 219/510, 219/209, 374/E03.002, 374/45, 73/865.6, 219/385
International ClassificationG01K3/00
Cooperative ClassificationG01K3/005
European ClassificationG01K3/00C
Legal Events
DateCodeEventDescription
Dec 30, 2002ASAssignment
Owner name: QUANTA COMPUTER INC., TAIWAN
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LIU, TAI-SHENG;WU, CHI-AN;REEL/FRAME:013626/0485
Effective date: 20021224
Jun 6, 2008FPAYFee payment
Year of fee payment: 4
May 30, 2012FPAYFee payment
Year of fee payment: 8
Jul 22, 2016REMIMaintenance fee reminder mailed
Dec 14, 2016LAPSLapse for failure to pay maintenance fees
Jan 31, 2017FPExpired due to failure to pay maintenance fee
Effective date: 20161214