Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS6882363 B1
Publication typeGrant
Application numberUS 09/492,289
Publication dateApr 19, 2005
Filing dateJan 27, 2000
Priority dateJan 29, 1999
Fee statusPaid
Also published asCN1196022C, CN1264057A, EP1024660A2, EP1024660A3, EP1024660B1
Publication number09492289, 492289, US 6882363 B1, US 6882363B1, US-B1-6882363, US6882363 B1, US6882363B1
InventorsKazuo Oda, Masaki Kariya
Original AssigneeMatsushita Electric Industrial Co., Ltd.
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Video signal processing apparatus
US 6882363 B1
Abstract
An automatic gain controlling circuit controls a gain of a video signal from an imager having an electronic shutter function according to a gain control signal. An average detecting circuit detects an average level of a luminance signal of the video signal. An automatic exposure controlling circuit generates the gain control signal according to the luminance average level in response to a mode signal indicative of the cycles per second of the ac line and generates a timing signal corresponding to the ac line and a shutter speed control signal together with electronic shutter control signal generation circuit at a unit of the voltage variation cycle of the ac line according to the luminance average level such that a shutter interval of the imager is changed stepwise and each of the shutter intervals is an integer times the voltage variation cycle of the ac line. The automatic exposure controlling range is expanded by changing the shutter speed stepwise from {fraction (1/100)} sec, {fraction (2/100)} sec {fraction (3/100)} sec at 50-Hz-ac area, for example, to provide coarse exposure controlling and fine automatic gain controlling is provided every shutter interval to suppress flicker.
Images(6)
Previous page
Next page
Claims(2)
1. A video signal processing apparatus comprising:
automatic gain controlling means for controlling a gain of an AGC circuit which receives a video signal from an imager having an electronic shutter function in accordance with a gain control signal;
average detecting means for detecting an average luminance level of said video signal;
gain control signal generation means for generating said gain control signal in such a manner that said average luminance level becomes a prescribed constant value; and
shutter speed control signal generation means responsive to a mode signal indicative of cycles per second of an ac line for generating a shutter speed control signal at a unit of a voltage variation cycle of said ac line;
wherein:
a shutter interval of said imager decided by said shutter speed control signal generation means is selected, in accordance with an output from said average detecting means, from among one or more values of integer multiples of a time period of said voltage variation cycle within a storing cycle of said imager;
said gain control signal outputted from said gain control signal generation means is controlled stepwise, at said unit of said voltage variation cycle of said ac line, on the basis of said shutter intervals outputted from said shutter speed control signal generation means; and
said gain control signal outputted from said gain control signal generation means is made inversely proportional to a changing ratio of said shutter intervals outputted from said shutter speed control signal generation means.
2. A video signal processing apparatus as claimed in claim 1, wherein said shutter interval is controlled in accordance with said detected average luminance level and the shutter speed control signal.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention

This invention relates to a video signal processing apparatus. More specifically, this invention relates to a video signal processing apparatus for processing a video signal to reduce flicker.

2. Description of the Prior Art

A video signal processing apparatus for processing a video signal in which flicker due to illumination is suppressed with an automatic gain controlling circuit is known.

When image is taken by a video camera under illumination by fluorescent lamps, there is a problem of flicker. A luminance level of the fluorescent lamp periodically changes with a voltage of the ac line. FIGS. 3A and 3B are illustrations of prior art showing voltage change and luminance change of fluorescent lamps. If the cycle of the voltage of ac line is 50 Hz as shown in FIG. 3A, the luminance of a fluorescent lamp changes at 100 Hz as shown in FIG. 3B. If the cycle of the voltage of an ac line is 60 Hz, the luminance of the fluorescent lamp changes at 120 Hz as well known.

FIGS. 3C and 3D are illustrations showing operation of a prior art video camera. If a video camera or an electronic camera employing a MOS type of imager is used under illumination by fluorescent lamps at a shutter speed of {fraction (1/30)} sec, charge storing timings and the luminance level of the video signal are shown in FIGS. 3C and 3D.

The MOS type of imager outputs a first line from timing A1 to B1 and a second line from timings A2 to B2 which timings A2 and B2 are slightly shifted in time base from the timings A1 and B1. The last line (525th line) is detected at timings A525 and B525 within the one frame ({fraction (1/30)} sec). As shown in FIG. 3B, the luminance level changes, so that a luminance level of the image changes at a cycle of {fraction (1/100)} sec, which is sensed by a watcher as flicker. Particularly, in the case of the MOS type of imager, the reproduced image shows stripes over the to-be-reproduced image because the image storing timings are different every line. In the case of the CCD type of imager, because image storing timings are the same over all lines in the frame, flicker does not occur within the frame. However, the luminance signal level changes every frames in the CCD type of imager.

FIG. 4 is a block diagram of a prior art video signal processing apparatus which can suppress flicker. An output signal of an imager 11 is supplied to an automatic gain control circuit 12 which controls its gain in accordance with a gain control signal so as to keep the average level constant. An output signal of the automatic gain control circuit 12 is converted into a digital signal by an a/d converter 13. The digital signal from the a/d converter 13 is supplied to an average detecting circuit 14 which detects an average level of the digital signal. The average value is supplied to a gain controlling signal generation circuit 15 which generates the gain control signal such that the gain is controlled to keep the average level constant.

On the other hand, an electronic shutter signal generation circuit 16 generates an electronic shutter signal of which shutter speed is fixed to {fraction (1/100)} sec at the 50-Hz-ac area and fixed to {fraction (1/30)} sec or {fraction (1/60)} sec at the 60-Hz-ac area. FIGS. 5A to 5D show prior art video signal processing operation at the 50-Hz-ac area. The frame interval is {fraction (1/30)} sec. On the other hand, the shutter speed is fixed to {fraction (1/100)} sec at that area so that the exposure interval ({fraction (1/100)} sec) agrees with the luminance variation period of fluorescent lamps. Accordingly, as shown in FIG. 5B, the luminance level of the video signal from the MOS type of imager is constant, wherein flicker is suppressed. In this prior art video signal processing circuit, the gain controlling is provided by only the automatic gain control circuit 12, so that the automatic exposure controlling is limited by the dynamic range of the automatic gain controlling circuit 12.

SUMMARY OF THE INVENTION

The aim of the present invention is to provide a superior video signal processing apparatus.

According to the present invention there is provided a video signal processing apparatus including: an automatic gain controlling circuit for controlling a gain of a video signal from an imager having an electronic shutter function in accordance with a gain control signal; an average detecting circuit for detecting an average luminance level of the video signal; a gain control signal generation circuit for generating the gain control signal in accordance with the average luminance level; and a shutter speed control signal generation circuit responsive to a mode signal indicative of a cycle per second of an ac line for generating a shutter speed control signal at a unit of the voltage variation cycle (period) of the ac line in accordance with the average luminance level such that a shutter interval of the imager is changed stepwise and each of the shutter intervals is an integer times the voltage variation cycle (period) of the ac line.

In the video signal processing apparatus, the gain control signal generation circuit generates the gain control signal such that the gain of the automatic gain controlling circuit is further controlled stepwise at the unit of the voltage variation cycle (period) of the ac line in accordance with the detected average.

In the video signal processing apparatus, the shutter interval is controlled in accordance with the detected average luminance level and the shutter interval.

BRIEF DESCRIPTION OF THE DRAWINGS

The object and features of the present invention will become more readily apparent from the following detailed description taken in connection with the accompanying drawings in which:

FIG. 1 is a block diagram of a video signal processing apparatus of an embodiment of the present invention, wherein an imager is also shown;

FIG. 2 is a graphical drawing of this embodiment showing variations of the shutter speed of the imager and a gain of the video signal from the imager;

FIGS. 3A and 3B are graphical drawings of prior art showing voltage variation and luminance variation of fluorescent lamps;

FIGS. 3C and 3D are illustrations showing operation of a prior art video camera;

FIG. 4 is a block diagram of a prior art video signal processing apparatus; and

FIGS. 5A to 5D are graphical drawings showing operation of the prior art video signal processing apparatus at a 50-Hz-ac area.

The same or corresponding elements or parts are designated with like references throughout the drawings.

DETAILED DESCRIPTION OF THE INVENTION

Hereinbelow will be described an embodiment of this invention.

FIG. 1 shows a video signal processing apparatus of this embodiment, wherein an imager is also shown. FIG. 2 shows variations of the shutter speed of the imager and a gain of the video signal from the imager.

The video signal processing apparatus of this embodiment includes: an automatic gain controlling circuit 2 for controlling a gain of a video signal from an imager 1 having an electronic shutter function in accordance with a gain control signal; an a/d converter 3 for converting a video signal from the automatic gain controlling circuit 2 into a digital video signal, an average detecting circuit 4 for detecting an average level of a luminance signal of the digital video signal (luminance average level of the digital video signal); an automatic exposure controlling circuit 5 responsive to a mode signal indicative of the cycle per second of the ac line at the area for generating the gain control signal in accordance with the luminance average level at a unit of the voltage variation cycle period) of the ac line; and an electronic shutter control signal generation circuit 6 for generating a shutter speed control signal at the unit of the voltage variation cycle (period) of the ac line. The shutter interval of the imager is changed stepwise and each of the shutter intervals is an integer times the voltage variation cycle (period) of the ac line (the unit of voltage variation cycle).

In this embodiment, the averaging interval (time constant) is {fraction (1/30)} sec, if it is assumed that the imager 1 is of the MOS type of which storing cycle is {fraction (1/30)} sec.

A MOS (metal oxide semiconductor) type of imager 1 having an electronic shutter function receives a projected image thereon and converts the optical information of the projected image into a video signal. The automatic gain controlling circuit 2 of the video signal processing circuit amplifies the video signal with the gain of the video signal from an imager 1 controlled in accordance with the gain control signal. The a/d converter 3 converts the video signal from the automatic gain controlling circuit 2 into the digital video signal. The average detecting circuit 4 detects the average level of the luminance signal of the video signal. The automatic exposure controlling circuit 5 generates the gain control signal such that the luminance average level is kept constant in accordance with the luminance average level. That is, a feedback loop including the automatic gain control circuit 2, the a/d converter 3, the average detecting circuit 4, and the automatic exposure controlling circuit 5 provides an automatic gain controlling. Moreover, the automatic exposure controlling circuit 5 includes a timing signal generation circuit 5 a responsive to the mode signal (50 Hz/60 Hz) to supply a timing signal indicative of the ac line voltage variation cycle (100 Hz, 120 Hz) and a setting value of the shutter interval (shutter setting value) in accordance with the luminance average level to the electronic shutter control signal generation circuit 6.

In response to the timing signal, the shutter speed control signal, the electronic shutter control signal generation circuit 6 generates the shutter speed control signal at a unit of the voltage variation cycle (period) of the ac line in accordance with the setting value of the shutter interval. The shutter interval of the imager is changed stepwise and each of the shutter intervals is an integer times the voltage variation cycle (period) of the ac line.

In FIG. 1, it is assumed that the imager 1 is of the MOS type of which storing cycle is {fraction (1/30)} sec and this exposure controlling is provided for the 50-Hz-ac area.

In this case, in order to prevent flicker, the electronic shutter speed is set to be an integer times the luminance average level variation period of fluorescent lamps within the storing cycle. That is, the electronic shutter speed is controlled to be either of {fraction (3/100)} sec, {fraction (2/100)} sec, or {fraction (1/100)} sec. Then, the automatic exposure controlling circuit 5 has three controlling modes, that is, dark, intermediate, and bright modes. That is, the automatic exposure controlling circuit 5 compares the luminance average level with two different references REF1 and REF2. When the automatic exposure controlling circuit 5 judges the luminance average level is at a dark region (dark mode), the automatic exposure controlling circuit 5 generates the shutter speed setting value of {fraction (3/100)} sec. When the automatic exposure controlling circuit 5 judges the luminance average level is at an intermediate region (intermediate mode), the automatic exposure controlling circuit 5 generates the shutter speed setting value of {fraction (2/100)} sec. Similarly, when the automatic exposure controlling circuit 5 judges the luminance average level is at a bright region (bright mode), the automatic exposure controlling circuit 5 generates the shutter speed setting value of {fraction (1/100)} sec.

This shutter speed controlling is relatively coarse. Then, the automatic gain controlling circuit 2 further provides gain controlling every electronic shutter interval. That is, when the electronic shutter interval transients from {fraction (3/100)} sec to {fraction (2/100)} sec (from the dark mode to the intermediate mode), the actual storing interval becomes two thirds as shown in FIG. 2. Then, the gain of the automatic gain controlling circuit 2 is increased to +3.5 dB (ratio of shutter intervals) to make the output level of the automatic gain controlling circuit 1.5 times that at the dark region in addition to controlling the gain in inverse-proportion to the luminance average level. Accordingly, the output level of the automatic gain controlling circuit 2 is constant around the switching timing of the shutter speed. Next, the gain is gradually decreased with increase in brightness. When the electronic shutter interval transients from {fraction (2/100)} sec to {fraction (1/100)} sec, that is, the controlling mode moves to the bright mode, the gain of the automatic gain controlling circuit 2 is increased to +6 dB to make the output level of the automatic gain controlling circuit 2 twice that at the intermediate region. Thus, the output level of the automatic gain controlling circuit 2 is constant. Next, the gain is gradually decreased toward 0 dB at the high light. Accordingly, the output level of the automatic gain controlling circuit 2 is made constant.

As mentioned, the shutter speed is changed from {fraction (1/100)} sec to {fraction (3/100)} sec stepwise at the unit of the luminance variation period (voltage variation cycles per second of the ac line) of the illumination, so that the automatic exposure range is expanded. Moreover, the fine automatic gain controlling is provided every the shutter interval, so that it is possible to output the video signal without flicker. That is, the gain is offset by a ratio of the shutter intervals ({fraction (3/2)} or {fraction (2/1)}) when the luminance average level increases. Inversely, the gain is offset by a ratio of {fraction (3/2)} or {fraction (2/1)} when the luminance average level decreases.

At the 60-Hz-ac area, the electronic shutter speed is changed among four values, namely, {fraction (4/120)} sec, {fraction (3/120)} sec, {fraction (2/120)} sec to {fraction (1/120)} sec. Moreover, at transient of the shutter speed, the automatic gain is changed among +2.5 dB between the shutter intervals of {fraction (4/120)} sec and {fraction (3/120)} sec, +3.5 dB between the shutter intervals of {fraction (3/120)} sec and {fraction (2/120)} sec, and +6 dB between the shutter intervals of {fraction (2/120)} sec and {fraction (1/120)} sec. Moreover, in the case of a MOS type of imager of which storing cycle is {fraction (1/60)} sec, at 60-Hz-ac area, the electronic shutter speed is changed between two values, namely, {fraction (2/120)} sec and {fraction (1/120)} sec.

In this embodiment, the a/d converter 3 is provided. However, the a/d converter 3 may be omitted. Moreover, the above-mentioned embodiment has been described about the MOS type of imager. However, this invention is applicable to the video signal processing apparatus for CCD type of imagers.

The video signal processing apparatus according to this invention is provided to expand the automatic exposure controlling range by changing the shutter speed stepwise from {fraction (1/100)} sec to {fraction (3/100)} sec, for example, to provide coarse exposure controlling. Moreover, fine automatic gain controlling is provided every shutter interval to suppress flicker.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US4774588 *Oct 22, 1987Sep 27, 1988Hitachi, Ltd.Flickerless television camera
US4959727Jun 2, 1989Sep 25, 1990Hitachi, Ltd.Image pick-up apparatus
US5293238 *Jun 16, 1992Mar 8, 1994Hitachi, Ltd.Televison camera
US5966173 *Jan 2, 1997Oct 12, 1999Fuji Photo Film Co., Ltd.Video camera, printer apparatus and method of controlling same, and apparatus and method for detecting print inhibit signal
US6147706 *Jan 28, 1999Nov 14, 2000Fuji Photo Film Co., Ltd.Video camera, printer apparatus and method of controlling same, and apparatus and method for detecting print inhibit signal
US6271884 *Sep 28, 1999Aug 7, 2001Conexant Systems, Inc.Image flicker reduction with fluorescent lighting
US6567123 *Oct 8, 1998May 20, 2003Olympus Optical Co., Ltd.Electronic camera
US6710818 *Oct 6, 2000Mar 23, 2004Matsushita Electric Industrial Co., Ltd.Illumination flicker detection apparatus, an illumination flicker compensation apparatus, and an ac line frequency detection apparatus, methods of detecting illumination flicker, compensating illumination flicker, and measuring ac line frequency
US20020154225 *Feb 28, 2002Oct 24, 2002Hiroyuki MatsumotoImaging system using solid-state CMOS imaging device
US20020158971 *Dec 12, 2001Oct 31, 2002Fujitsu LimitedMethod of reducing flicker noises of X-Y address type solid-state image pickup device
US20030142223 *Jan 25, 2002Jul 31, 2003Xiaodong LuoMethod of fast automatic exposure or gain control in a MOS image sensor
US20040165084 *Dec 11, 2003Aug 26, 2004Matsushita Electric Industrial Co., Ltd.Flicker detecting method and flicker detecting apparatus
EP0971534A2Jun 16, 1999Jan 12, 2000Kabushiki Kaisha ToshibaAutomatic level control unit of camera
GB2284318A * Title not available
JPH1098650A * Title not available
JPH1169217A * Title not available
JPH01204578A * Title not available
JPH02306776A * Title not available
JPH02306777A * Title not available
JPH07298130A * Title not available
JPH08265652A * Title not available
JPH11155106A * Title not available
JPS56149183A * Title not available
Non-Patent Citations
Reference
1 *Thomson-Derwent machine assisted translation of Japanese Publ. No. 10-098650 A.
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US7106368 *Dec 12, 2001Sep 12, 2006Fujitsu LimitedMethod of reducing flicker noises of X-Y address type solid-state image pickup device
US7113205 *Feb 21, 2002Sep 26, 2006Carl-Zeiss-StiftungMethod for recording and displaying fluorescence images with a high spatial resolution
US7209169 *Feb 28, 2002Apr 24, 2007Renesas Technology Corp.Imaging system using solid-state CMOS imaging device
US7298401 *Aug 10, 2001Nov 20, 2007Micron Technology, Inc.Method and apparatus for removing flicker from images
US7340767 *Jun 24, 2004Mar 4, 2008Matsushita Electric Industrial Co, Ltd.Camera apparatus, image server and image server system
US7489347 *Sep 20, 2004Feb 10, 2009Fujitsu Microelectronics LimitedMethod and circuit for detecting flicker noise
US7626616 *Jul 19, 2006Dec 1, 2009Fujitsu Microelectronics LimitedAutomatic gain control circuit with exposure control circuit
US7948524Apr 4, 2005May 24, 2011Panasonic Electric Works Co., Ltd.Image processor and face detector using the same
US8013912 *Jan 29, 2008Sep 6, 2011Panasonic CorporationCamera apparatus, image server and image server system
US8018498 *Nov 16, 2007Sep 13, 2011Fujifilm CorporationImage pickup apparatus and exposure control method
US8063942 *Oct 19, 2007Nov 22, 2011Qualcomm IncorporatedMotion assisted image sensor configuration
US20020154225 *Feb 28, 2002Oct 24, 2002Hiroyuki MatsumotoImaging system using solid-state CMOS imaging device
US20020158971 *Dec 12, 2001Oct 31, 2002Fujitsu LimitedMethod of reducing flicker noises of X-Y address type solid-state image pickup device
US20020176007 *Feb 21, 2002Nov 28, 2002Markus CappellaroMethod for recording and displaying fluorescence images with a high spatial resolution
US20030030744 *Aug 10, 2001Feb 13, 2003Baer Richard L.Method and apparatus for removing flicker from images
US20030184661 *Mar 25, 2003Oct 2, 2003Kouichi YubataLight exposure control method, light exposure control circuit, image pickup apparatus, program and storage medium
US20040016919 *Jul 3, 2003Jan 29, 2004Fujitsu LimitedSolid-state image sensor
US20040252209 *Jun 11, 2003Dec 16, 2004Innovative Technology Licensing,LlcDigital programmable gain stage with high resolution for CMOS image sensors
US20040263673 *Jun 24, 2004Dec 30, 2004Matsushita Electric Industrial Co., Ltd.Camera apparatus, image server and image server system
US20050157203 *Dec 15, 2004Jul 21, 2005Sanyo Electric Co., Ltd.Flicker detecting device and image pickup apparatus
US20050206745 *Sep 20, 2004Sep 22, 2005Fujitsu LimitedMethod and circuit for detecting flicker noise
US20050265626 *Apr 4, 2005Dec 1, 2005Matsushita Electric Works, Ltd.Image processor and face detector using the same
US20060256207 *Jul 19, 2006Nov 16, 2006Fujitsu LimitedAutomatic gain control circuit
US20080122968 *Jan 29, 2008May 29, 2008Matsushita Electric Industrial Co., LtdCamera apparatus, image server and image server system
US20080309792 *Nov 16, 2007Dec 18, 2008Fujifilm CorporationImage pickup apparatus and exposure control method
US20090102935 *Oct 19, 2007Apr 23, 2009Qualcomm IncorporatedMotion assisted image sensor configuration
WO2004112098A2 *Jun 10, 2004Dec 23, 2004Altasens, Inc.Digital programmable gain stage with high resolution for cmos image sensors
WO2004112098A3 *Jun 10, 2004May 11, 2006Altasens IncDigital programmable gain stage with high resolution for cmos image sensors
Classifications
U.S. Classification348/226.1, 348/607, 348/E05.041, 348/E05.034, 348/255, 348/370
International ClassificationH04N5/355, H04N5/378, H04N5/357, H04N5/351, H04N5/372, H04N5/369, H04N5/335, H04N5/353, H04N5/374, H04N5/238, H04N5/21, H04N5/243, H04N5/235
Cooperative ClassificationH04N5/243, H04N5/235, H04N5/2357
European ClassificationH04N5/235S, H04N5/235, H04N5/243
Legal Events
DateCodeEventDescription
Jan 27, 2000ASAssignment
Owner name: MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD., JAPAN
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ODA, KAZUO;KARIYA, MASAKI;REEL/FRAME:010530/0391
Effective date: 20000119
Aug 23, 2005CCCertificate of correction
Sep 24, 2008FPAYFee payment
Year of fee payment: 4
Sep 20, 2012FPAYFee payment
Year of fee payment: 8
Sep 19, 2016FPAYFee payment
Year of fee payment: 12