Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS6990956 B2
Publication typeGrant
Application numberUS 10/895,913
Publication dateJan 31, 2006
Filing dateJul 22, 2004
Priority dateAug 7, 2003
Fee statusPaid
Also published asUS20050028791
Publication number10895913, 895913, US 6990956 B2, US 6990956B2, US-B2-6990956, US6990956 B2, US6990956B2
InventorsKuniaki Niimi
Original AssigneeToyota Jidosha Kabushiki Kaisha
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Internal combustion engine
US 6990956 B2
Abstract
An internal combustion engine, in which multiple kinds of fuels are fed to a cylinder from multiple fuel injectors each corresponding to each of multiple kinds of fuels at a target mixing ratio determined according to a running condition, includes an actual fuel mixing ratio calculator calculating an actual fuel mixing ratio of fuel fed to cylinder. The actual fuel mixing ratio calculator at first calculates actual fuel injection quantity of each fuel injection by adding or subtracting predetermined stuck-on-wall fuel to or from each quantity of fuel injected from each fuel injector, and then calculates an actual fuel mixing ratio of fuel fed to cylinder on the basis of the calculated actual fuel injection quantity of each fuel injector.
Images(8)
Previous page
Next page
Claims(7)
1. An internal combustion engine, in which multiple kinds of fuels are fed to a cylinder from multiple fuel injection means each corresponding to each of multiple kinds of fuels at a target mixing ratio determined according to a running condition, comprising
an actual fuel mixing ratio calculation means calculating an actual fuel mixing ratio of fuel fed to cylinder,
said actual fuel mixing ratio calculation means calculates actual fuel injection quantity of each fuel injection means by adding or subtracting predetermined stuck-on-wall fuel to or from each quantity of fuel injected from each fuel injection means, and then calculates an actual fuel mixing ratio of fuel fed to cylinder on the basis of the calculated actual fuel injection quantity of each fuel injection means.
2. An internal combustion engine, according to claim 1, wherein
the internal combustion engine is a spark-ignited internal combustion engine, and comprises timing setting means for setting an ignition timing,
said ignition timing setting means obtaining an execution ignition timing corresponding to the actual mixing ratio calculated by the actual fuel mixing ratio calculation means.
3. An international combustion engine, according to claim 2, wherein
the ignition timing setting means comprises base ignition timing setting means for obtaining a base ignition timing corresponding to a running condition and ignition timing correction means for obtaining an execution ignition timing by correcting the base ignition timing obtained by the base ignition timing setting means,
said ignition timing correction means comprising ignition timing modification means for modifying the execution ignition timing in accordance with the actual fuel mixing ratio calculated by the actual fuel mixing ratio calculation means.
4. An internal combustion engine, according to claim 1, wherein
the internal combustion engine is a spark-ignited internal combustion engine, and comprises
means for setting an ignition timing based on a driving condition just before an ignition; and
ignition timing correction means for correcting an ignition timing set by the means for setting an ignition timing based on a driving condition, just before an ignition, in accordance with a running condition according to which the actual fuel mixing ratio is calculated, if the running condition is transient.
5. An internal combustion engine, in which multiple kinds of fuels are fed to a cylinder from multiple fuel injection means each corresponding to each of multiple kinds of fuels at a target mixing ratio determined according to a running condition, comprising
an actual fuel mixing ratio calculation means calculating an actual fuel mixing ratio of fuel fed to cylinder, and
a fuel flow rate detecting means for detecting fuel flow rata of each of multiple kinds of fuels,
said actual fuel mixing ratio calculation means calculates actual fuel mixing ratio of fuel fed to cylinder on the basis of fuel flow rate of each of fuels detected by said fuel flow rate detecting means.
6. An internal combustion engine, according to claim 5, wherein
the internal combustion engine is a spark-ignited internal combustion engine, and comprises timing setting means for setting an ignition timing,
said ignition timing setting means obtaining an execution ignition timing corresponding to the actual mixing ratio calculated by the actual fuel mixing ratio calculation means.
7. An internal combustion engine, according to claim 5, wherein
the internal combustion engine is a spark-ignited internal combustion engine, and comprises
means for setting an ignition timing based on a driving condition just before an ignition; and
ignition timing correction means for correcting an ignition timing set by the means for setting an ignition timing based on a driving condition, just before an ignition, in accordance with a running condition according to which the actual fuel mixing ratio is calculated, if the running condition is transient.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to an internal combustion engine in which a high RON fuel and a low RON fuel are mixed and fed to a combustion chamber, wherein high RON fuel means high octane number fuel, and low RON fuel means low octane number fuel.

2. Description of the Related Art

The low RON fuel has a good ignitability and a poor antiknock property, and the high RON fuel has a poor ignitability and a good antiknock property. Accordingly, an internal combustion engine in which the low RON fuel is stored in a low RON fuel tank and the high RON fuel is stored in a high RON fuel tank, and the low RON fuel and the high RON fuel are fed to a combustion chamber at a mixing ratio appropriate to a driving condition is well known and is disclosed in, for example, Japanese Unexamined Patent Publication (Kokai) No. 2001-50070.

In the internal combustion engine described in Japanese Unexamined Patent Publication (Kokai) No. 2001-50070, a target fuel mixing ratio is determined based on a running condition and fuel volumes in each tank. Multiple kinds of fuels are injected from a fuel injector so that the determined target fuel mixing ratio is achieved. However, the fuel infected from the fuel injector can stick to an intake port and, accordingly, a divergence, between the mixing ratio of the fuel actually fed to a combustion chamber and the target fuel mixing ratio, occurs. On the other hand, an ignition timing is set on the precondition that a plurality of fuel components are fed at the target fuel mixing ratio. Therefore, if a divergence, between the mixing ratio of the fuel actually fed to a combustion chamber and the target fuel mixing ratio, occurs a predetermined performance cannot be achieved.

SUMMARY OF THE INVENTION

The object of the present invention is to obtain a mixing ratio of the fuel actually fed to a combustion chamber, and to control other control parameters in accordance with the mixing ratio, in an internal combustion engine to which multiple kinds of fuels are fed.

According to a first aspect of the present invention, there is provided an internal combustion engine, in which multiple kinds of fuels are fed to a cylinder from multiple fuel injection means each corresponding to each of multiple kinds of fuels at a target mixing ratio determined according to a running condition, comprising an actual fuel mixing ratio calculation means calculating an actual fuel mixing ratio of fuel fed to cylinder, the actual fuel mixing ratio calculation means calculates actual fuel injection quantity of each fuel injection means by adding or subtracting predetermined stick-on-wall fuel to or from each quantity of fuel injected from each fuel injection means, and then calculates an actual fuel mixing ratio of fuel fed to cylinder on the basis of the calculated actual fuel injection quantity of each fuel injection means.

In the internal combustion engine having the above structure, the actual fuel mixing ratio of the fuel fed to a cylinder is accurately calculated by subtracting the stuck-on-wall fuel quantity from the quantity of fuel injected from each fuel injection means so that the target mixing ratio is achieved.

According to a second aspect of the present invention, there is provided an internal combustion engine, in which multiple kinds of fuels are fed to a cylinder from multiple fuel injection means each corresponding to each of multiple kinds of fuels at a target mixing ratio determined according to a running condition, comprising an actual fuel mixing ratio calculation means calculating an actual fuel mixing ratio of fuel fed to cylinder, and a fuel flow rate detecting means for detecting fuel flow rata of each of multiple kinds of fuels, the actual fuel mixing ratio calculation means calculates actual fuel mixing ratio of fuel fed to cylinder on the basis of fuel flow rate of each of fuels detected by the fuel flow rate detecting means.

In the internal combustion engine having the above structure, the actual fuel mixing ratio of the fuel fed to a cylinder is accurately calculated based on the flow rate of the fuel fed to each fuel injection means, which is detected by the fuel flow rate detecting means.

According to a third aspect of the present invention, there is provided an internal combustion engine, in the first or second aspect of the present invention, wherein the internal combustion engine is a spark-ignited internal combustion engine, and comprises ignition timing setting means for setting an ignition timing, said ignition timing setting means obtaining an execution ignition timing corresponding to the actual mixing ratio calculated by the actual fuel mixing ratio calculation means.

In the internal combustion engine having the above structure, the execution ignition timing corresponding to the actual fuel mixing ratio is set and, accordingly, the performance can be sufficiently achieved.

According to a fourth aspect of the present invention, there is provided an international combustion engine, in the third aspect of the present invention, wherein the ignition timing setting means comprises base ignition timing setting means for obtaining a base ignition timing corresponding to a running condition and ignition timing correction means for obtaining an execution ignition timing by correcting the base ignition timing obtained by the base ignition timing setting means, said ignition timing correction means comprising ignition timing modification means for modifying the execution ignition timing in accordance with the actual fuel mixing ratio calculated by the actual fuel mixing ratio calculation means.

According to a fifth aspect of the present invention, there is provided an internal combustion engine, in the first or second aspect of the present invention, wherein the internal combustion engine is a spark-ignited internal combustion engine, and comprises means for setting an ignition timing based on a driving condition just before an ignition; and ignition timing correction means for correcting an ignition timing set by the means for setting an ignition timing based on a driving condition, just before an ignition, in accordance with a running condition according to which the actual fuel mixing ratio is calculated, if the running condition is transient.

In the internal combustion engine having the above structure, the ignition timing is set based on a running condition just before an ignition, and if the running condition is transient, the set ignition timing is corrected in accordance with the running condition according to which the actual fuel mixing ratio is calculated.

The present invention may be more fully understood from the description of preferred embodiments of the invention set forth below, together with the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a view of a first embodiment of a hardware structure according to the present invention;

FIG. 2 is a view of a second embodiment of a hardware structure according to the present invention;

FIG. 3 is a flowchart of a first embodiment of a control operation according to the present invention;

FIG. 4 is a flowchart of a second embodiment of a control operation according to the present invention;

FIG. 5 is a flowchart of a third embodiment of a control operation according to the present invention;

FIG. 6 is a map of a base ignition timing BSA;

FIG. 7 is a map of a target fuel mixing ratio TFMIX;

FIG. 8 is a map of a corrective ignition advance modifier dSA;

FIG. 9 is a map of a stuck-on-wall fuel quantity LW1 of a low RON fuel; and

FIG. 10 is a map of a stuck-on-wall fuel quantity LW2 of a high RON fuel.

DESCRIPTION OF THE PREFERRED EMBODIMENTS

Embodiments of the present invention will be described below with reference to the accompanying drawings.

FIG. 1 is a schematic view of an embodiment of a hardware structure according to the present invention. In FIG. 1, a vehicle 100 is provided with a low RON fuel tank 5 to which a low RON fuel should be fed and a high RON fuel tank 7 to which a high RON fuel should be fed.

Fuel in the low RON fuel tank 5 and fuel in the high RON fuel tank 7 are fed to a first fuel injector 13 a and a second fuel injector 13 b that are attached to an intake port 12 of a spark-ignited internal combustion engine (hereinafter simply referred to as “engine”) having a spark plug 11, by a low RON fuel pump 5 a and a high RON fuel pump 7 a, via a first fuel pipe 15 a and a second fuel pipe 15 b, respectively.

A first fuel flow meter 16 a and a second fuel flow meter 16 b for measuring the flow rate of the low RON fuel and the high RON fuel fed to the first fuel injector 13 a and the second fuel injector 13 b are provided in the first fuel pipe 15 a and the second fuel pipe 15 b, respectively. Detected values of the first fuel flow meter 16 a and the second fuel flow meter 16 b are sent to an electronic control unit (ECU) 20.

The first fuel injector 13 a and the second fuel injector 13 b inject the low RON fuel and the high RON fuel at a predetermined ratio appropriate to a driving condition, based on an instruction from the ECU 20. The injected fuels are mixed in the intake port 12 and a combustion chamber.

In the present embodiment, the intake port 12 is provided with two fuel injectors 13 a, 13 b. However, only one of the injectors may be an injector which can directly inject fuel into a cylinder, or an integral-type injector which can inject two fuel components to the intake port 12 may be provided.

A crank angle sensor 10 a to detect an engine speed and a knock sensor 10 b to measure the state of occurrence of a knock are attached to the engine 10. An airflow meter 14 a to detect, as a load, an intake air flow rate is attached to an intake pipe 14. The detected values of the sensors and the meter are sent to the ECU 20.

Signals from other sensors are sent to the ECU 20, and signals are sent from the ECU 20 to control devices. However, signals that are not directly related to the present invention are omitted.

The control operation of a first embodiment of the present invention having the above-described hardware structure will be described below.

First, the outline of the control operation will be described. In the first embodiment, a difference between an actual fuel mixing ratio AFMIX and a target fuel mixing ratio TFMIX, i.e., a fuel mixing ratio difference DFMIX is obtained and then, an execution ignition timing is corrected based on the fuel mixing ratio difference DFMIX. The actual fuel mixing ratio AFMIX is obtained from a flow rate FL1 of the low RON fuel, detected by the first fuel flow meter 16 a and a flow rate FL2 of the high RON fuel, detected by the second fuel flow meter 16 b. The target fuel mixing ratio TFMIX is obtained from a map based on an intake air flow rate GA as a load of an engine speed NE.

With regard to the ignition timing, basically, the execution ignition timing SA is obtained by adding a corrective ignition advance KSA to advance the ignition timing to a knocking limit at which a knock is detected by a knock sensor 10 b, to a base ignition timing BSA. The corrective ignition advance KSA is corrected based on the fuel mixing ratio difference DFMIX as described above.

FIG. 3 is a flowchart of the first embodiment in which the above-described control operation is carried out.

First, at step 301, the engine speed NE and the intake air flow rate GA as a load are read. At step 302, the base ignition timing BSA corresponding to the engine speed NE and to the intake air flow rate GA read at step 301, is read from a map shown in FIG. 6, which has been previously stored. At step 303, the target fuel mixing ratio TFMIX is read from a map shown in FIG. 7, which has been previously stored. The target fuel mixing ratio TFMIX is stored as a ratio of the quantity of the low RON fuel or the high RON fuel to the sum of the quantities of the low RON fuel and the high RON fuel.

At step 304, the flow rate FL1 of the low RON fuel, which is detected by the first fuel flow meter 16 a, is read. At step 305, the flow rate FL2 of the high RON fuel, which is detected by the second fuel flow meter 16 b, is read. At step 306, the actual fuel mixing ratio AFMIX is calculated from the flow rate FL1 of the low RON fuel and the flow rate FL2 of the high RON fuel, which are read at steps 304, 305. The actual fuel mixing ratio AFMIX is calculated in a manner identical to the target fuel mixing ratio TFMIX.

At step 307, a fuel mixing ratio difference DFMIX between the actual fuel mixing ratio AFMIX and the target fuel mixing ratio TFMIX is obtained. The DFMIX is defined by DFMIX=(AFMIX−TFMIX)/TFMIX, and is a non-dimensional value represented by a ratio to the target fuel mixing ratio TFMIX.

At step 308, a corrective ignition advance modifier dSA corresponding to the fuel mixing ratio difference DFMIX is read from a map shown in FIG. 8, in which the relationship therebetween is previously stored. At step 309, the corrective ignition advance modifier dSA is added to the corrective ignition advance KSA. At step 310, the corrective ignition advance KSA obtained at step 309 by adding the corrective ignition advance modifier dSA is added to the base ignition timing BSA, to calculate the execution ignition timing SA and, then, the process ends. This routine is repeated at predetermined time intervals.

The first embodiment is constructed and operated as described above. Therefore, the actual fuel mixing ratio AFMIX is accurately obtained based on the flow rate FL1 of the low RON fuel, which is detected by the first fuel flow meter 16 a and the flow rate FL2 of the high RON fuel, which is detected by the second fuel flow meter 16 b, and the execution ignition timing SA is set in accordance with the obtained AFMIX. Consequently, the performance of the engine can be sufficiently achieved.

A second embodiment will be described below. FIG. 2 is a view of a second embodiment of a hardware structure according to the present invention. Except for the first fuel flow meter 16 a and the second fuel flow meter 16 b being removed, the second embodiment is identical to the first embodiment shown in FIG. 1.

In the second embodiment, the actual fuel mixing ratio AFMIX is obtained by subtracting the stuck-on-wall fuel quantities LW1 and LW2 (obtained from a map), for the intake pipe 12, from the injection fuel quantity TAU1 of the first fuel injector 13 a and the injection fuel quantity TAU2 of the second fuel injector 13 b, respectively. If a negative pressure is large, during coasting or the like, fuel stuck to an intake pipe wall surface is drawn in the cylinder. Thus, the stuck-on-wall fuel quantities LW1, LW2 are negative values and, accordingly, not subtraction but addition of LW1 and LW2 is actually executed.

FIG. 4 is a flowchart of the second embodiment in which the above-described control operation is carried out. Steps 401 to 403 are identical to the steps 301 to 303 in the flowchart of the first embodiment. At steps 404, 405, the injection fuel quantity TAU1 of the first fuel injector 13 a and the injection fuel quantity TAU2 of the second fuel injector 13 b are read. An instruction value of a valve opening period is read from the ECU 20 into each fuel injector.

At steps 406, 407, the stuck-on-wall fuel quantity LW1 of the low RON fuel and the stuck-on-wall fuel quantity LW2 of the high RON fuel are read from maps shown in FIGS. 9, 10, which has been previously stored.

At step 408, the actual injection fuel quantity is updated by subtracting the stuck-on-wall fuel quantity LW1 from the injection fuel quantity TAU1 of the first fuel injector 13 a. Likewise, at step 409, the actual injection fuel quantity is updated by subtracting the stuck-on-wall fuel quantity LW2 from the injection fuel quantity TAU2 of the first fuel injector 13 a.

At step 410, the actual fuel mixing ratio AFMIX is obtained in a manner similar to the step 306 of the first embodiment. Steps 411 to 414 are identical to the steps 307 to 310 of the first embodiment.

The second embodiment is constructed and operated as described above. The actual fuel mixing ratio AFMIX is accurately obtained based on the injection fuel quantities TAU1, TAU2 that have been updated into the actual injection fuel quantities and, then, the execution ignition timing SA is set in accordance with the obtained AFMIX. Thus, the performance of the engine is sufficiently achieved.

A third embodiment will be described. In the third embodiment, when a running condition is transient, a divergence between the mixing ratio of fuel that is actually fed to a combustion chamber 1 c and the mixing ratio when an ignition timing is set, occurs. This prevents the occurrence of a knock.

FIG. 5 is a flowchart of the third embodiment. Steps 501, 502 are identical to the steps 401, 402 of the second embodiment. At step 503, whether or not a running condition is transient is judged.

If the judgment at step 503 is negative, i.e., the running condition is not transient, after steps 505 to 507 identical to the steps 403 to 405 of the second embodiment are carried out, steps 510 to 518 identical to the steps 406 to 414 of the second embodiment.

On the other hand, if the judgment at step 503 is affirmative, i.e., the running condition is transient, after TAU1 and TAU2, that have been previously memorized, are read at steps 508, 509, respectively, steps 510 to 518 identical to the steps 406 to 414 of the second embodiment are carried out. Therefore, if the running condition is transient, the ignition timing is corrected based on the running condition according to which the mixing ratio of fuel actually fed to the combustion chamber 1 c and, thus, no knock occurs.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US5195497 *Jan 16, 1991Mar 23, 1993Mitsubishi Jidosha Kogyo Kabushiki KaishaMethod for detecting fuel blending ratio
US5267163 *Jan 29, 1991Nov 30, 1993Mitsubishi Jidosha Kogyo Kabushiki KaishaMethod for detecting blending ratio of mixed fuel to be supplied to combustion chamber of internal combined engine
US5311852 *Aug 31, 1993May 17, 1994Mitsubishi Jidosha Kogyo Kabushiki KaishaMethod for detecting fuel blending ratio
US5934255 *Mar 5, 1998Aug 10, 1999Ford Global Technologies, Inc.Fuel control system
US6766269 *Dec 30, 2002Jul 20, 2004Hyundai Motor CompanyLPG fuel composition estimation method and system
GB2343714A Title not available
JP2000154771A Title not available
JP2000179368A Title not available
JP2000329013A Title not available
JP2001050070A Title not available
JP2001193525A Title not available
JPH0176567U Title not available
JPH06248988A Title not available
JPS61167167A * Title not available
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US7134420 *Jul 21, 2005Nov 14, 2006Toyota Jidosha Kabushiki KaishaIgnition timing control apparatus for internal combustion engine
US7225787Apr 6, 2005Jun 5, 2007Massachusetts Institute Of TechnologyOptimized fuel management system for direct injection ethanol enhancement of gasoline engines
US7302933 *Nov 30, 2005Dec 4, 2007Ford Global Technologies LlcSystem and method for engine with fuel vapor purging
US7305939 *Apr 24, 2006Dec 11, 2007Grant B. CarlsonAddition of flexible fuel engine control system
US7314033Nov 18, 2004Jan 1, 2008Massachusetts Institute Of TechnologyFuel management system for variable ethanol octane enhancement of gasoline engines
US7357101Nov 30, 2005Apr 15, 2008Ford Global Technologies, LlcEngine system for multi-fluid operation
US7389751Mar 17, 2006Jun 24, 2008Ford Global Technology, LlcControl for knock suppression fluid separator in a motor vehicle
US7406947Nov 30, 2005Aug 5, 2008Ford Global Technologies, LlcSystem and method for tip-in knock compensation
US7412966 *Nov 30, 2005Aug 19, 2008Ford Global Technologies, LlcEngine output control system and method
US7424881Sep 6, 2007Sep 16, 2008Ford Global Technologies, LlcSystem and method for engine with fuel vapor purging
US7426907Mar 23, 2007Sep 23, 2008Ford Global Technologies, LlcApparatus with mixed fuel separator and method of separating a mixed fuel
US7426908Oct 25, 2007Sep 23, 2008Ford Global Technologies, LlcDirect injection alcohol engine with variable injection timing
US7426925Aug 28, 2007Sep 23, 2008Ford Global Technologies, LlcWarm up strategy for ethanol direct injection plus gasoline port fuel injection
US7428895Oct 24, 2007Sep 30, 2008Ford Global Technologies, LlcPurge system for ethanol direct injection plus gas port fuel injection
US7444987Sep 19, 2005Nov 4, 2008Massachusetts Institute Of TechnologyFuel management system for variable anti-knock agent octane enhancement of gasoline engines
US7461628Dec 1, 2006Dec 9, 2008Ford Global Technologies, LlcMultiple combustion mode engine using direct alcohol injection
US7533651Mar 17, 2006May 19, 2009Ford Global Technologies, LlcSystem and method for reducing knock and preignition in an internal combustion engine
US7578281Mar 17, 2006Aug 25, 2009Ford Global Technologies, LlcFirst and second spark plugs for improved combustion control
US7581528Mar 17, 2006Sep 1, 2009Ford Global Technologies, LlcControl strategy for engine employng multiple injection types
US7584740Mar 14, 2008Sep 8, 2009Ford Global Technologies, LlcEngine system for multi-fluid operation
US7594498Nov 30, 2005Sep 29, 2009Ford Global Technologies, LlcSystem and method for compensation of fuel injector limits
US7640912Nov 30, 2005Jan 5, 2010Ford Global Technologies, LlcSystem and method for engine air-fuel ratio control
US7640913Mar 6, 2007Jan 5, 2010Ethanol Boosting Systems, LlcSingle nozzle injection of gasoline and anti-knock fuel
US7640914May 21, 2008Jan 5, 2010Ford Global Technologies, LlcEngine output control system and method
US7640915Oct 12, 2007Jan 5, 2010Massachusetts Institute Of TechnologyFuel management system for variable ethanol octane enhancement of gasoline engines
US7647899Mar 17, 2006Jan 19, 2010Ford Global Technologies, LlcApparatus with mixed fuel separator and method of separating a mixed fuel
US7647916Nov 30, 2005Jan 19, 2010Ford Global Technologies, LlcEngine with two port fuel injectors
US7665428Mar 17, 2006Feb 23, 2010Ford Global Technologies, LlcApparatus with mixed fuel separator and method of separating a mixed fuel
US7665452Mar 17, 2006Feb 23, 2010Ford Global Technologies, LlcFirst and second spark plugs for improved combustion control
US7676321Aug 10, 2007Mar 9, 2010Ford Global Technologies, LlcHybrid vehicle propulsion system utilizing knock suppression
US7681554 *Jul 11, 2007Mar 23, 2010Ford Global Technologies, LlcApproach for reducing injector fouling and thermal degradation for a multi-injector engine system
US7694666Jul 21, 2008Apr 13, 2010Ford Global Technologies, LlcSystem and method for tip-in knock compensation
US7721710Sep 15, 2008May 25, 2010Ford Global Technologies, LlcWarm up strategy for ethanol direct injection plus gasoline port fuel injection
US7726265Mar 9, 2007Jun 1, 2010Ethanol Boosting Systems, LlcFuel tank system for direct ethanol injection octane boosted gasoline engine
US7730872Nov 30, 2005Jun 8, 2010Ford Global Technologies, LlcEngine with water and/or ethanol direct injection plus gas port fuel injectors
US7740004Aug 17, 2007Jun 22, 2010Massachusetts Institute Of TechnologyFuel management system for variable ethanol octane enhancement of gasoline engines
US7740009Mar 17, 2006Jun 22, 2010Ford Global Technologies, LlcSpark control for improved engine operation
US7762233Dec 8, 2008Jul 27, 2010Massachusetts Institute Of TechnologyFuel management system for variable ethanol octane enhancement of gasoline engines
US7779813Mar 17, 2006Aug 24, 2010Ford Global Technologies, LlcCombustion control system for an engine utilizing a first fuel and a second fuel
US7823562 *May 16, 2008Nov 2, 2010Woodward Governor CompanyEngine fuel control system
US7841325Nov 18, 2009Nov 30, 2010Massachusetts Institute Of TechnologyFuel management system for variable ethanol octane enhancement of gasoline engines
US7845315May 8, 2008Dec 7, 2010Ford Global Technologies, LlcOn-board water addition for fuel separation system
US7877189Nov 30, 2005Jan 25, 2011Ford Global Technologies, LlcFuel mass control for ethanol direct injection plus gasoline port fuel injection
US7909019Aug 11, 2006Mar 22, 2011Ford Global Technologies, LlcDirect injection alcohol engine with boost and spark control
US7933713Mar 17, 2006Apr 26, 2011Ford Global Technologies, LlcControl of peak engine output in an engine with a knock suppression fluid
US7971567Oct 12, 2007Jul 5, 2011Ford Global Technologies, LlcDirectly injected internal combustion engine system
US7971572Jun 15, 2010Jul 5, 2011Massachusetts Institute Of TechnologyFuel management system for variable ethanol octane enhancement of gasoline engines
US8001934Apr 8, 2010Aug 23, 2011Ford Global Technologies, LlcPump control for reformate fuel storage tank
US8015951Mar 17, 2006Sep 13, 2011Ford Global Technologies, LlcApparatus with mixed fuel separator and method of separating a mixed fuel
US8015952Apr 8, 2010Sep 13, 2011Ford Global Technologies, LlcEngine fuel reformer monitoring
US8037850Apr 8, 2010Oct 18, 2011Ford Global Technologies, LlcMethod for operating an engine
US8041500Apr 8, 2010Oct 18, 2011Ford Global Technologies, LlcReformate control via accelerometer
US8069839May 27, 2011Dec 6, 2011Massachusetts Institute Of TechnologyFuel management system for variable ethanol octane enhancement of gasoline engines
US8082735Jan 25, 2008Dec 27, 2011Massachusetts Institute Of TechnologyOptimized fuel management system for direct injection ethanol enhancement of gasoline engines
US8096283Jul 29, 2010Jan 17, 2012Ford Global Technologies, LlcMethod and system for controlling fuel usage
US8118006Apr 8, 2010Feb 21, 2012Ford Global Technologies, LlcFuel injector diagnostic for dual fuel engine
US8118009Dec 12, 2007Feb 21, 2012Ford Global Technologies, LlcOn-board fuel vapor separation for multi-fuel vehicle
US8127745Jul 29, 2010Mar 6, 2012Ford Global Technologies, LlcMethod and system for controlling fuel usage
US8132555Nov 30, 2005Mar 13, 2012Ford Global Technologies, LlcEvent based engine control system and method
US8141356Jan 16, 2008Mar 27, 2012Ford Global Technologies, LlcEthanol separation using air from turbo compressor
US8146541Apr 8, 2010Apr 3, 2012Ford Global Technologies, LlcMethod for improving transient engine operation
US8146568Oct 27, 2011Apr 3, 2012Massachusetts Institute Of TechnologyFuel management system for variable ethanol octane enhancement of gasoline engines
US8171915Oct 19, 2010May 8, 2012Massachusetts Institute Of TechnologyFuel management system for variable ethanol octane enhancement of gasoline engines
US8191514Apr 8, 2010Jun 5, 2012Ford Global Technologies, LlcIgnition control for reformate engine
US8214130Aug 10, 2007Jul 3, 2012Ford Global Technologies, LlcHybrid vehicle propulsion system utilizing knock suppression
US8230826Apr 8, 2010Jul 31, 2012Ford Global Technologies, LlcSelectively storing reformate
US8245671Apr 8, 2010Aug 21, 2012Ford Global Technologies, LlcOperating an engine with reformate
US8267066Jan 16, 2012Sep 18, 2012Ford Global Technologies, LlcMethod and system for controlling fuel usage
US8267074Jun 24, 2008Sep 18, 2012Ford Global Technologies, LlcControl for knock suppression fluid separator in a motor vehicle
US8276565Mar 2, 2012Oct 2, 2012Massachusetts Institute Of TechnologyFuel management system for variable ethanol octane enhancement of gasoline engines
US8302580Feb 8, 2012Nov 6, 2012Massachusetts Institute Of TechnologyFuel management system for variable ethanol octane enhancement of gasoline engines
US8307790Apr 8, 2010Nov 13, 2012Ford Global Technologies, LlcMethod for operating a vehicle with a fuel reformer
US8342140Apr 2, 2012Jan 1, 2013Ford Global Technologies, LlcMethod for improving transient engine operation
US8352160Jan 31, 2012Jan 8, 2013Ford Global Technologies, LlcReformate control via accelerometer
US8352162Jul 29, 2010Jan 8, 2013Ford Global Technologies, LlcMethod and system for controlling fuel usage
US8353269Nov 9, 2010Jan 15, 2013Massachusetts Institute Of TechnologySpark ignition engine that uses intake port injection of alcohol to extend knock limits
US8360015Sep 13, 2011Jan 29, 2013Ford Global Technologies, LlcEngine fuel reformer monitoring
US8364384Feb 17, 2012Jan 29, 2013Ford Global Technologies, LlcFuel injector diagnostic for dual fuel engine
US8371253Jun 29, 2011Feb 12, 2013Ford Global Technologies, LlcPump control for reformate fuel storage tank
US8387591Feb 28, 2012Mar 5, 2013Ford Global Technologies, LlcMethod and system for controlling fuel usage
US8402928Apr 8, 2010Mar 26, 2013Ford Global Technologies, LlcMethod for operating an engine with variable charge density
US8453627Jun 19, 2012Jun 4, 2013Ford Global Technologies, LlcHybrid vehicle propulsion system utilizing knock suppression
US8464699Oct 18, 2011Jun 18, 2013Ford Global Technologies, LlcMethod for operating an engine
US8468983Feb 5, 2010Jun 25, 2013Massachusetts Institute Of TechnologyOptimized fuel management system for direct injection ethanol enhancement of gasoline engines
US8483937Jul 29, 2010Jul 9, 2013Ford Global Technologies, LlcMethod and system for controlling fuel usage
US8516980Sep 13, 2012Aug 27, 2013Ford Global Technologies, LlcMethod for operating a vehicle with a fuel reformer
US8522746Sep 28, 2012Sep 3, 2013Massachusetts Institute Of TechnologyFuel management system for variable ethanol octane enhancement of gasoline engines
US8522749Sep 14, 2012Sep 3, 2013Ford Global Technologies, LlcMethod and system for controlling fuel usage
US8522758Sep 9, 2009Sep 3, 2013Ethanol Boosting Systems, LlcMinimizing alcohol use in high efficiency alcohol boosted gasoline engines
US8539914Apr 8, 2010Sep 24, 2013Ford Global Technologies, LlcMethod for operating an engine with a fuel reformer
US8550037Jun 5, 2012Oct 8, 2013Ford Global Technology, LlcIgnition control for reformate engine
US8554445Jul 29, 2010Oct 8, 2013Ford Global Technologies, LlcMethod and system for controlling fuel usage
US8613263Apr 8, 2010Dec 24, 2013Ford Global Technologies, LlcMethod for operating a charge diluted engine
US8635977Jul 31, 2012Jan 28, 2014Ford Global Technologies, LlcSelectively storing reformate
US8662024Aug 21, 2012Mar 4, 2014Ford Global Technologies, LlcOperating an engine with reformate
US8701630Mar 5, 2013Apr 22, 2014Ford Global Technologies, LlcMethod and system for controlling fuel usage
US8707913May 16, 2013Apr 29, 2014Massachusetts Institute Of TechnologyFuel management system for variable ethanol octane enhancement of gasoline engines
US8707938Aug 1, 2013Apr 29, 2014Ethanol Boosting Systems, LlcMinimizing alcohol use in high efficiency alcohol boosted gasoline engines
US8733330Jun 3, 2013May 27, 2014Ford Global Technologies, LlcHybrid vehicle propulsion system utilizing knock suppression
US8755989Jun 27, 2013Jun 17, 2014Ford Global Technologies, LlcMethod and system for controlling fuel usage
Classifications
U.S. Classification123/406.47, 123/27.0GE, 123/525, 123/575, 123/299, 123/1.00A
International ClassificationF02D41/04, F02B7/00, F02M43/00, F02D19/08, F02P5/152, F02D37/02, F02D41/00, F02D45/00, F02P5/15
Cooperative ClassificationF02D37/02, F02D41/047, F02D41/0025, F02B2275/16, F02D19/0628, F02D19/081, F02D2200/0614, F02P5/1527, F02M43/00, Y02T10/46, Y02T10/123, F02D19/0649, F02D19/0692
European ClassificationF02D19/06E2, F02D19/08C, F02M43/00, F02P5/152L, F02D41/00F, F02D41/04W, F02D37/02
Legal Events
DateCodeEventDescription
Mar 13, 2013FPAYFee payment
Year of fee payment: 8
Jul 1, 2009FPAYFee payment
Year of fee payment: 4
Jul 22, 2004ASAssignment
Owner name: TOYOTA JIDOSHA KABUSHIKI KAISHA, JAPAN
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:NIIMI, KUNIAKI;REEL/FRAME:015604/0441
Effective date: 20040714