Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS6997737 B2
Publication typeGrant
Application numberUS 10/898,183
Publication dateFeb 14, 2006
Filing dateJul 26, 2004
Priority dateAug 26, 2003
Fee statusPaid
Also published asDE102004041173A1, DE102004041173B4, US20050048825
Publication number10898183, 898183, US 6997737 B2, US 6997737B2, US-B2-6997737, US6997737 B2, US6997737B2
InventorsHirokazu Hiwatashi
Original AssigneeSumitomo Wiring Systems, Ltd.
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Soldering structure between a tab of a bus bar and a printed substrate
US 6997737 B2
Abstract
A soldering structure between a tab of a bus bar and a printed substrate is disclosed to provide a soldering structure between a tab of a bus bar and a printed substrate that causes no crack. An electrical conductive material is formed on a printed substrate. A tab through-hole is provide to penetrate the electrical conductive material and printed substrate. A tab formed by bending a body of the bus bar enters the tab through-hole. A periphery of the tab and the electrical conductive material are interconnected by soldering. A stress-absorbing aperture or recess is provided in an insulation plate on which the body of the bus bar is mounted. The stress-absorbing aperture or recess can absorb an axial stress caused in the tab.
Images(3)
Previous page
Next page
Claims(1)
1. A soldering structure between a bus bar and a printed substrate, comprising:
an electrical conductive material formed on the printed substrate;
a tab through-hole provided to penetrate the electrical conductive material and the printed substrate;
a tab formed by bending a body of the bus bar that enters the tab through-hole, wherein a first periphery of the tab and a second periphery of the electrical conductive material are interconnected by soldering;
an insulation plate on which the body of the busbar is mounted; and
a rectangular-shaped stress-absorbing aperture disposed in the insulation plate immediately below a proximal end of the tab, wherein the stress-absorbing aperture absorbs an axial stress caused in the tab and prevents cracks in a soldered portion between the tab and the printed substrate.
Description
CLAIM FOR PRIORITY

This invention relates to subject-matter contained in and claims priority to JP 2003-301935, filed on Aug. 26, 2003, the entire disclosure of which is incorporated herein by reference thereto.

BACKGROUND OF THE INVENTION

1. Field of Invention

This invention relates to a soldering structure between a tab of a bus bar and a printed substrate. More particularly, in the case where the printed substrate and bus bar are contained in a layered manner in an electrical junction box to be mounted on an automobile vehicle, and where the tab of the bus bar is soldered on an electrical conductive material on the printed substrate so that the tab intersects the electrical conductive material in a vertical direction, the soldered portion can be prevented from causing cracks.

2. Description of Related Art

As electrical components to be mounted on an automobile vehicle increase, a printed substrate constituting an ECU (Electronic Control Unit) together with bus bars are contained in the electrical junction box and they are electrically connected to form high density circuits.

FIG. 4 shows a typical connection between an electrical conductive material on a printed substrate and a bus bar in a casing of an electrical junction box. A printed substrate 3 is located in a layered manner above or below a bus bar 2 secured on an insulation plate 1 in a horizontal direction. A tab 2 b is formed by bending a body 2 a of the bus bar 2 in a vertical direction. The tab 2 b enters a tab through-hole 5 formed in an electrical conductive material 4 and the printed substrate 3. A solder 6 electrically interconnects the tab 2 b and the electrical conductive material 4 around the tab through-hole 5. See Japanese Patent Public Disclosure 2000-22353.

When the solder 6 interconnects the tab 2 b and electrical conductive material 4, the tab 2 b made of a brass plate is different from the solder 6 with respect to coefficients of extension at a high temperature. The printed substrate 3 on which the solder 6 interconnects the tab 2 b and electrical conductive material 4 is secured to a casing of the electrical junction box by using screws. When the tab 2 b extends at a high temperature, a stress is caused in an axial direction in the soldered portion. If this stress increases, the soldered portion between the tab 2 b and the electrical conductive material 4 tends to cause cracks.

In order to overcome the above problem, in many cases, a connector connected to the electrical conductive material is attached to the printed substrate and the tab of the bus bar is mated with a female terminal in the connector. See Japanese Patent Public Disclosure HEI 10-1890855 (1998).

However, this connecting means using the connector will increase the number of components and working steps and will further bring the ECU and printed substrate into a large size.

In view of the above problems, an object of the invention is to provide a soldering structure between a tab of a bus bar and a printed substrate that causes no crack.

SUMMARY OF THE INVENTION

In order to achieve the above object, the invention is directed to a soldering structure between a tab of a bus bar and a printed substrate. In the structure, an electrical conductive material is formed on a printed substrate. A tab through-hole is provide to penetrate the electrical conductive material and printed substrate. A tab formed by bending a body of the bus bar enters the tab through-hole. A periphery of the tab and the electrical conductive material are interconnected by soldering. A stress-absorbing aperture or recess is provided in an insulation plate on which the body of the bus bar is mounted. The stress-absorbing aperture or recess can absorb an axial stress caused in the tab.

According to the above structure, it is possible to absorb an extension of the tab by sinking a lower end of the tab into the stress-absorbing aperture or recess formed in the insulation plate at the position immediately below the tab, when the tab extends during a current flowing. Consequently, it is possible to prevent the soldered portion between the tab and the electrical conductive material on the printed substrate from causing a stress and from causing cracks.

Furthermore, because the stress-absorbing aperture or recess can be formed at the same time of producing the insulation plate, it is possible to reduce a cost of production and to enhance a working efficiency.

[Effects of the Invention]

As described above, in the case where the tab of the bus bar intersects the electrical conductive material on the printed substrate in perpendicular to each other, because the stress-absorbing aperture or recess formed in the insulation plate at the position immediately below the tab absorbs a difference in coefficients of extension between the tab and the electrical conductive material when the flowing current generates heat, it is possible to avoid applying a stress to the soldered portion.

Consequently, a connector connection is not required and a simple soldering process can reduce a cost and a working process greatly.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a sectional view of a main part of a first embodiment of a soldering structure between a tab of a bus bar and a printed substrate in accordance with the invention.

FIG. 2 is a perspective view of a main part of the soldering structure, illustrating an insulation plate, a bus bar, and a printed substrate.

FIG. 3 is a sectional view of a main part of a second embodiment of a soldering structure between a tab of a bus bar and a printed substrate in accordance with the invention.

FIG. 4 is a sectional view of a main part of a conventional soldering structure between a tab of a bus bar and a printed substrate.

DETAILED DESCRIPTION OF EXEMPLARY EMBODIMENTS

Referring now to the drawings, embodiments of a soldering structure between a tab of a bus bar and a printed substrate in accordance with the invention will be described below.

FIGS. 1 and 2 show a first embodiment of a soldering structure between a tab of a bus bar and a printed substrate in accordance with the invention. A bus bar 11 punched out from a brass plate is mounted on an insulation plate 10 in a horizontal direction and they are contained in an electrical junction box 9 to be mounted on an automobile vehicle. A printed substrate 20 is contained above the bus bar 11 in the electrical junction box 9. The bus bar 11 and printed substrate 20 are located in a layered manner in a vertical direction in the box 9.

A horizontal body 11 a of the bus bar 11 is mounted on the insulation plate 10. A tab 11 b is formed by bending an end of the body 11 a upward. A stress-absorbing aperture 10 a is provided in the insulation plate 10 immediately below a proximal end (lower end) of the tab 11 b. The stress-absorbing aperture 10 a extends longitudinally by a small distance from the position immediately below the proximal end of the tab 11 b. Thus, when the tab 11 b extends to insert the lower end of the tab 11 b into the stress-absorbing aperture 10 a, a part of the body 11 a enters the aperture 10 a while inclining the part. Consequently, the lower end of the tab 11 enters the stress-absorbing aperture 10 a smoothly.

An electrical conductive material 22 is formed on an upper surface of the printed substrate 20 located above the bus bar 11. A tab through-hole 23 is formed previously in the printed substrate 20 and electrical conductive material 22 to receive an upper end of the tab 11 b.

The upper end of the tab 11 b passes the through-aperture 23 upward and a solder 30 interconnects an outer periphery of the tab 11 b and a peripheral portion around the tab through-hole 23. The solder 30 is different from the tab 11 b made of a brass plate with respect to coefficients of extension at a high temperature. That is, the coefficient of extension of the tab 11 b is greater than that of the solder 30.

The printed substrate 20, on which the solder 30 interconnects the tab 11 b and electrical conductive material 22, is secured by screws (not shown) to a casing or a partition in the electrical junction box at a room temperature. That is, a dimension of a space between the bus bar 11 and the printed substrate 20 is not set in consideration of an extension of the tab 11 b at a high temperature but the printed substrate 20 is secured in the box 9 under a condition at a room temperature.

In the soldering structure between the tab 11 b of the bus bar 11 and the electrical conductive material 22 on the printed substrate 20, as described above, when the bus bar 11 and tab 11 b are heated during a current flowing and the tab 11 b extends longitudinally (axially), because the printed substrate 20 and electrical conductive material 22 are located in a horizontal direction in the casing and they intersect the tab 11 b in a vertical direction in the casing, the printed substrate 20 and electrical conductive material 22 hardly extends in the vertical direction in the casing. Consequently, a stress is caused in a connecting portion formed by the solder 30.

However, when the tab 11 b extends longitudinally, the proximal (lower) end of the tab 11 b extends downward and enters the stress-absorbing aperture 10 a in the insulation plate 10, thereby absorbing the stress caused in the connecting portion formed by the solder 30, because the aperture 10 a is located at the position immediately below the lower end of the tab 11 b. Accordingly, it is possible to prevent the solder 30 from cracking due to a stress and to enhance reliability in electrical connection between the tab of the bus bar and the electrical conductive material in the ECU.

The invention is not limited to the first embodiment described above. For example, FIG. 3 shows a second embodiment of the invention. As shown in FIG. 3, a stress-absorbing recess 10 a′ may be provided in an insulation plate 10′ at a position immediately below the tab 11 b of the bus bar 11 in place of the stress-absorbing aperture 10 a in the first embodiment. Because an extension amount of the tab 11 b is minute during a current flowing, it is possible for the recess to absorb a stress, even if the insulation plate has a thin thickness.

Taking a heat radiation effect into consideration, it will be preferable to provide the stress-absorbing aperture 10 a in the first embodiment in place of the stress-absorbing recess 10 a′ in the second embodiment.

It is possible to dispose the bus bar on an upper position in the casing, to project the tab downward, and to connect the tab to the printed substrate disposed on a lower position in the casing.

Although the invention has been described with reference to particular means, materials and exemplary embodiments, it is to be understood that the invention is not limited to the particulars disclosed and extends to all equivalents within the scope of the claims. It is evident that many alternatives, modifications, and variations will be apparent to those skilled in the art in light of the foregoing description. It is therefore contemplated that the appended claims will embrace any such alternatives, modifications, and variations as falling within the true scope and spirit of the invention.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US4193660 *Dec 15, 1978Mar 18, 1980Harvey Hubbell, IncorporatedElectrical contact assembly
US4558912 *Dec 14, 1983Dec 17, 1985Amp IncorporatedEdge connector for chip carrier
US5984691 *Mar 10, 1998Nov 16, 1999International Business Machines CorporationFlexible circuitized interposer with apertured member and method for making same
JP2000022353A Title not available
JPH10189085A Title not available
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US7704088 *Apr 16, 2009Apr 27, 2010Yazaki CorporationCircuit board connector
US7771212 *Aug 20, 2009Aug 10, 2010Sumitomo Wiring Systems, Ltd.Electrical junction box
US7858880 *Oct 29, 2007Dec 28, 2010Omron CorporationConductive terminal welding method and conductive terminal structure
US7957156Aug 6, 2007Jun 7, 2011Lear CorporationBusbar circuit board assembly
Classifications
U.S. Classification439/474, 439/82, 439/83, 439/876, 439/721, 439/949
International ClassificationH01R12/55, H01R43/02, H05K3/34, H05K3/20, H01R4/02, H02G3/16, H05K7/06, H01R13/58
Cooperative ClassificationY10S439/949, H01R12/7088, H05K2201/10757, H01R9/091, H05K3/3447, H05K2201/0397, H05K2201/09063, H05K3/202, H05K2201/10272, H01R43/0256
European ClassificationH05K3/34D, H01R9/09B
Legal Events
DateCodeEventDescription
Jul 17, 2013FPAYFee payment
Year of fee payment: 8
Jul 15, 2009FPAYFee payment
Year of fee payment: 4
Jul 26, 2004ASAssignment
Owner name: SUMITOMO WIRING SYSTEMS, LTD., JAPAN
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HIWATASHI, HIROKAZU;REEL/FRAME:015614/0874
Effective date: 20040726