US 7065757 B2 Abstract Consider a set of functions, each of whose calculations are almost identical. A common example is the set of trigonometric functions sine, cosine, and tangent. Each of these functions is computed by first performing argument reduction and some preliminary calculations, which are identical for all members of the set. A few unique instructions are performed at the end for each of the functions in the set. Normally, when such functions are encountered, a separate sequence of instructions is called for each function even if the functions appear in close proximity. This results in duplicate instructions being performed which increases execution time and length of compiled program. Specialized functions exists to minimize execution, but programs with such specialized function calls suffer from non-portability. The present invention includes a method and a system to optimize function calls for faster execution while maintaining portability. The present invention requires no specialized knowledge on the part of the programmer and also utilizes standard compiler optimization techniques.
Claims(28) 1. A compiler used by a computer architecture to compile a family of related functions, comprising:
a member recognize configured to recognize a member function from said family of related functions, wherein each member function of the family of member functions is a mathematical function operable to be executed using a set of instructions and a portion of the set of instructions for each member function are identical;
a family start caller configured to make a family-start function call for said family of related functions, wherein the family-start function call is a call to a family-start function performing the identical set of instructions for each member function;
a member finish caller to make a member-finish function call for said member function, wherein the member-finish function call is a call to a member-finish function performing instructions unique to the member function; and
an optimizer configured to optimize said family-start function call;
wherein the optimized family-start function call causes execution of the portion of the set of instructions that are identical for each member function to occur prior to execution of instructions for each of a plurality of member-finish functions to reduce a number of instructions executed by the computer architecture in computing more than one member function from said family of related functions.
2. The compiler of
3. The compiler of
4. The compiler of
5. The compiler of
6. The compiler of
7. The compiler of
8. The compiler of
9. The compiler of
10. The compiler of
11. The compiler
12. The compiler of
13. A method to compile a family of related functions, comprising:
recognizing a member function from said family of related functions wherein each member function of the family of member functions is a mathematical function operable to be executed using a set of instructions and a portion of the set of instructions for each member function are identical;
making a family-start call for said family of related functions wherein the family-start function call is a call to a family-start function performing the identical set of instructions for each member function;
making a member-finish call for said member function, wherein the member-finish function call is a call to a member-finish function, performing instructions unique to the member function; and
optimizing said family-start call to cause execution of the portion of the set of instructions that are common identical for each member function to reduce a number of instructions executed by a computer architecture in computing more than one member function from sail family of related functions.
14. The method of
optimizing member-finish function calls.
15. The method of
optimizing on at least one of intermediate language level and architecture specific level.
16. The method of
17. The method of
18. The method of
19. The method of
20. The method of
21. The method of
22. The method of
23. The method of
24. The method of
25. The compiler of
26. The compiler of
27. The method of
28. The method of
Description This invention relates generally to the compilation of functions. More specifically, this invention relates to efficient compilation of a family of related functions. In computer programming, certain sets of functions are related. In other words, for a given set of functions, the calculation of each member function is almost identical. A common example is the set of trigonometric functions, i.e. sine, cosine, tangent, cotangent, secant, and cosecant. Each trigonometric function may be computed by first performing an argument reduction and some preliminary calculations. The argument reduction and the preliminary calculations are identical for all trigonometric functions within the set. A few unique instructions are performed at the end for each member trigonometric function. Normally, when a conventional compiler encounters a trigonometric function in a program, a separate function call is made for each. Thus, for example, even if calls to sin(theta) and cos(theta) appear in close proximity, two calls are made, each of which executes all of the common instructions, and then the few unique instructions are executed to complete the computation of the desired function. As an illustration, assume that the following statements appear in a computer program: - X=sin(theta);
- Y=cos(theta);
The conventional compiler typically makes the following calls: - R
**1**=call _sin(theta); - R
**2**=call _cos(theta);
As noted above, much of the instructions to perform sine and cosine calculations are identical. For example, on the assignee's IA-64 computer architecture, each trigonometric function may take about 50 instructions to complete. Of these, about 48 instructions may be identical for sine and cosine functions (the tangent function may also have the identical 48 instructions). This indicates that only about the last two instructions are unique for the sine and cosine functions (tangent may require about 12 unique instructions). With the conventional compiler, as many as 100 instructions may be performed to calculate the sine and cosine values. However, as many as 48 instructions are performed twice, which lengthens the actual execution time and perhaps the compiled program size. Such penalty is multiplied as more member functions from a family of functions are called and the full price of executing each member function is paid by the running program. Alternatively, special functions, which return all the members (or the most commonly called members) of a related family of functions, are available. However, these function names are non-standard and the user (the programmer) must know the names of the non-standard functions to invoke it and extract values of interest from the resultant structure. While such special function calls may help to speed up the execution, programs written with such special function calls suffer from non-portability, i.e. become architecture specific, and may also become operating system specific, when more than one operating system exists for a specific architecture. In one respect, an embodiment of a compiler to optimize compiling a family of related functions may include a member recognizer configured to recognize a member function from the family of related functions. The compiler may also include a family start caller configured to make a family-start function call for the family of functions related to the member function. The compiler may further include a member finish caller to make a member-finish function call for the recognized member function. Any combination of the member recognizer, family start caller, and member finish caller may be incorporated into a front end of the compiler. In another respect, an embodiment of a method to optimize compiling a family of related functions may include recognizing a member function from said family of related functions. The method may also include making a family-start call for the family of related functions and making a member-finish call for the recognized member function. Further, the method may include optimizing resulting function calls. The above disclosed embodiments may be capable achieving certain aspects. For example, no special action may be required from the programmer. Also, the portability of the original source code (or program) may be maintained. In addition, the source of identification for the family of related functions may be easily modified. Further, the resulting program may execute faster. Still further, standard compiler optimization techniques may be used to achieve these efficiency improvements. Features of the present invention will become apparent to those skilled in the art from the following description with reference to the drawings, in which: For simplicity and illustrative purposes, the principles of the present invention are described by referring mainly to exemplary embodiments thereof. However, one of ordinary skill in the art would readily recognize that the same principles are equally applicable to many situations where a family of related function calls may be optimized. As described in the Background section, a family of related functions is typified in that some part of the instructions performed are identical for each member function of the family. While not exhaustive, families of related functions include trigonometric functions (sin, cos, tan, etc), hyperbolic functions (sin h, cos h, tan h, etc), square root (sqrt, reciprocal sqrt), and the like. For example, when calculating trigonometric functions, each member function (sin, cos, tan) may be computed by first performing an argument reduction and some preliminary calculations. These computations are typically identical for all member functions. Then computation for each member function may be completed by performing a few unique instructions at the end. Thus, if the compiler recognizes sin( ), cos( ), and tan( ) as belonging to a family of trigonometric functions, then significant savings in execution time may be realized by eliminating execution of duplicate instructions. Using the IA-64 computer architecture given above as an example (see the Background section), it is seen that 48 instructions may be eliminated when computing both sin(theta) and cos(theta). Thus instead of executing 100 instructions, only 52 instructions may need to be executed. If tan(theta) is also needed, the savings becomes that much greater (64 instructions versus 160—tangent may require more unique instructions). If the function is a member of a known family, then the method proceeds to step Afterwards, in step As an illustration, again assume that the following statements appear in a computer program: - X=sin(theta);
- Y=cos(theta);
According to the exemplary method, in step - R
**1**=call _trig start(theta); - R
**2**=call _sin finish(R**1**);
The program statement Y=cos(theta) would be treated in a similar manner and the result may look like the following: - R
**3**=call _trig start(theta); - R
**4**=call _cos finish(R**3**);
Thus prior to entering step - R
**1**=call _trig start(theta); - R
**2**=call _sin finish(R**1**); - R
**3**=call _trig start(theta); - R
**4**=call _cos finish(R**3**);
It is seen that the exemplary method entails steps of recognizing member functions, and simply replacing them with appropriate family-start and member-finish function calls. The end result of this process may seem to result in a code that appears to be inefficient at a first glance. Looking at the example given above, the result is that _trig start( ) is called twice with the same argument theta. This occurs because the exemplary method calls for replacing the program statement cos(theta) with the family-start function _trig start( ), followed by the unique member-finish function _cos finish( ), even though the same family-start function was called previously due to the presence of the program statement sin(theta). However, after this replacement process is completed, all instructions, including the family-start calls, may be treated as ordinary instructions during the optimization step In this instance, during optimization performed at step - R
**1**=call _trig start(theta); - R
**2**=call _sin finish(R**1**); - R
**4**=call _cos finish(R**1**)
When optimization is completed, the total number of instructions is reduced since the second call to _trig start( ), taking up to 48 instructions to complete for the IA-64 architecture, has been eliminated. The method may be relatively simple to implement in compilers. Mainly, a compiler may include a member recognizer configured to recognize a member function from a family of related functions. The compiler may also include a family start caller configured to make a family-start function call for the family of related functions and a member finish caller to make a member-finish function call for said member function. In this manner, the original function call is replaced the appropriate family start and member finish calls to compute the desired value. Afterwards, the standard optimizer may be used to optimize the program. Any combination of the member recognizer, family start caller, and the member finish caller may be incorporated into a front end of the compiler. Also, any of them may be incorporated into other phases of the compiling. For example, the transformation of the original function calls to the family start and member finish calls may be performed during a prepass phase of the compilation. Note that the family-start and member-finish calls may be made to appear as primitive instructions in an intermediate language, i.e. a language independent of specific architectures and independent of specific operating systems. Because these calls have been made to appear as primitive instructions, the optimizer may also perform optimization on the calls made in the same intermediate language. The intermediate language code, whether optimized at the intermediate language level or not, may undergo an architecture specific optimization. For example, the compiler may in-line expand one or both the family-start and member-finish functions to take advantage of hardware parallelism that a particular architecture provides. The code may also undergo an operating system specific optimization. In these instances, certain operating system calls may allow access to the hardware resources faster than other operating system calls. In one implementation, the call to the family-start function may return a structure of values. For example, in an implementation of the trigonometric family of functions, the angular argument theta may be broken into two angles A and B, wherein sin(A) and cos(A) are obtained quickly from a look-up table and sin(B) and cos(B) are quickly computed by a short polynomial. The final result may be then computed from well-known trigonometry identities:
Then, it may be convenient to have _trig start ( ) return four values, corresponding to sin(A), cos(A), sin(B), and cos(B), as shown by the following declaration in the C programming language:
Then the functions _sin finish( ) and _cos finish( ) can be described in the C programming language as follows:
For informational purposes, fma( ) is an function introduced into the C99 standard for the C language. Thus using the fma( ) function does not destroy portability. A call to fma(a, b, c) computes a*b+c with only one rounding, after the sum has been computed. On architectures such as IA-64, Power PC™, and PA-RISC™, fma( ) is available as a single machine-language instruction. Also, many architectures such as IA-64, Power PC™, and PA-RISC™ contain variants of fma( ) to compute a*b−c (often called fms( )) and −a*b+c (often called fnma( )). With these architectures, the compiler can replace an fma( ) call with one of its arguments negated with one of the alternate instructions, which avoids an extra operation to actually negate that argument. When compiling for architectures lacking the fma( ) instruction, the finish routines may be rewritten in terms of simple addition and multiplication, with a slight loss of accuracy, but retaining relatively high performance. Examples of such architectures are IA-32™ and Sparc™. In another implementation of the trigonometric functions, the completely evaluated approximating polynomials for sin(B) and cos(B) are not returned. Instead, the value B itself is returned, as well as approximations to sin(B)/B, and (cos(B)−1)/B. While these quantities may appear to be complicated, the sin(B)/B results from omitting the final multiplication of an approximating polynomial to sin(B) by B. Likewise, (cos(B)−1)/B results from omitting the final constant term 1 from the cosine approximation, as well as omitting a multiplication by B. This seemingly more complicated approach leads to slightly better accuracy, at no cost in additional computation. The _trig start( ) routines may be shorter, and the member-finish function routines may be slightly longer. For this implementation, the defining structure may look like the following:
The finishing member functions may become one instruction longer each as shown below:
In yet another implementation of the trigonometric functions, the call to the family-start function returns a structure with resultant values of all member functions. In this instance, the defining structure may look like the following:
For this implementation, the _sin finish(x) and cos finish(x) may simply refer to the x. sin result and x. cos result quantities, respectively. However, this is not preferred since it occasionally sets spurious exception bits. Also, it may be that not all member functions are called in the source code resulting in unnecessary calculations being performed. Hyperbolic functions lend themselves to a substantially similar treatment to the trigonometric functions. The details of the implementation should be obvious to one of ordinary skill. Square root and reciprocal square root also lend themselves to this exemplary methodology. Often, to calculate the square root, the reciprocal square root is calculated first, and then the square root is derived from the reciprocal square root. Using the exemplary methodology outlined, the family-start function, perhaps named _rsqrt( ) may return the reciprocal square root itself. In this instance, because only a single value is returned, a structure associated with the result may not be necessary. The finishing routine, perhaps named _sqrt finish( ), using the result named recip from _rsqrt(x), may look like the following:
Thus when the compiler encounters a sqrt(x), the compiler may simply insert recip=_rsqrt(x) followed by a call to _sqrt finish(x, recip). However, if the compiler encounters sqrt(x) as a denominator of an expression, for example 1/sqrt(x), it may simply insert recip=_rsqrt(x) and use the value recip as the result of 1/sqrt(x), and the finishing routine can be empty. This technique for square roots is of particular importance in graphic rendering where the reciprocal square root is used more frequently than the square root itself. Again, it bears repeating that the invention is not limited to trigonometric, hyperbolic, and square root functions. The scope of the invention includes any family of related functions. Note that the knowledge of these families of related functions need not be encoded in the compiler itself. It may be preferred that the definitions for function families are contained in a separate look-up table or other data store. For example, data store may include ascii files, binary data files, database files, and more. The benefit of this implementation is that defining new families does not require changes to the actual compiler executable; the compiler may continue to work in the same manner regardless of the information in the data store. Another benefit from such an implementation is that it may be possible to add custom families to the data store and receive the same efficiency improvements from custom defined families as from common sets of functions like the trigonometric or hyperbolic functions discussed above. Also, it is seen that no special knowledge is required on the part of the programmer. The programmer writes code in a standard language (C, C++, J++, Fortran, etc). Thus, portability of the source code is maintained. While the invention has been described with reference to the exemplary embodiments thereof, those skilled in the art will be able to make various modifications to the described embodiments of the invention without departing from the true spirit and scope of the invention. The terms and descriptions used herein are set forth by way of illustration only and are not meant as limitations. In particular, although the method of the present invention has been described by examples, the steps of the method may be performed in a different order than illustrated or simultaneously. Those skilled in the art will recognize that these and other variations are possible within the spirit and scope of the invention as defined in the following claims and their equivalents. Patent Citations
Non-Patent Citations
Referenced by
Classifications
Legal Events
Rotate |