Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS7081131 B2
Publication typeGrant
Application numberUS 10/873,052
Publication dateJul 25, 2006
Filing dateJun 22, 2004
Priority dateApr 3, 2002
Fee statusPaid
Also published asDE60317886D1, DE60317886T2, EP1489996A1, EP1489996B1, US6752828, US7682385, US20030191525, US20040230297, US20060253189, WO2003084443A1
Publication number10873052, 873052, US 7081131 B2, US 7081131B2, US-B2-7081131, US7081131 B2, US7081131B2
InventorsSally C. Thornton
Original AssigneeBoston Scientific Corporation
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Artificial valve
US 7081131 B2
Abstract
Method and apparatus implementing and using techniques for controlling flow in a body lumen, including use of an implantable medical device. The device includes a membrane implantable in a body lumen and invertibly deformable between a first position and a second position. The membrane is invertible in response to the direction of fluid flow through the lumen and can be deformable by fluid flow in the body lumen.
Images(15)
Previous page
Next page
Claims(19)
1. A method comprising:
positioning two or more frameless membranes in a body lumen, each membrane invertibly deformable between a first position and a second position,
wherein at least one frameless membrane is invertible in response to the direction of fluid flow through the lumen relative to the membrane in the first position.
2. The method of claim 1, including positioning the two or more frameless membranes symmetrically in the body lumen.
3. The method of claim 1, wherein the two or more frameless membranes include an anchoring element, the method further including:
penetrating the anchoring element through the body lumen.
4. The method of claim 1, wherein the two or more frameless membranes include an anchoring element, the method further including:
embedding the anchoring element of at least one frameless membrane into the body lumen.
5. A medical system, comprising:
a first frameless membrane;
an elongate catheter including a central portion including a first groove surrounded by a retractable sheath, the first frameless membrane positioned in the first groove between the retractable sheath and the central portion; and
a first push rod extending through the elongate catheter to the first groove to contact and extend the first frameless membrane from the elongate catheter.
6. The medical system of claim 5, wherein the first frameless membrane includes an anchoring element, where the first push rod contacts the anchoring element of the first frameless membrane.
7. The medical system of claim 6, wherein the first push rod pushes the anchoring element of the first frameless membrane from an opening of the first groove.
8. The medical system of claim 7, wherein the retractable sheath fully retracts to expose the first frameless membrane.
9. The medical system of claim 5, further including:
a second frameless membrane including an anchoring element, wherein the central portion of the elongate catheter further includes a second groove, the second frameless membrane positioned in the second groove between the retractable sheath and the central portion; and
a second push rod extending through the elongate catheter to the second groove to contact the anchoring element and extend the second frameless membrane from the elongate catheter.
10. The medical system of claim 9, where the first frameless membrane and the second frameless membrane are invertibly deformable between a first position and a second position in response to a direction of a fluid flow past the first frameless membrane and the second frameless membrane.
11. The medical system of claim 9, where each of the first frameless membrane and the second frameless membrane define a portion of a cone.
12. The medical system of claim 11, where each of the first frameless membrane and the second frameless membrane include an anchoring element adjacent to a vertex of the cone.
13. The medical system of claim 12, where the sheath retracts to provide a first opening and a second opening, where the anchoring element of the first frameless membrane is pushed by the first push rod through the first opening, and the anchoring element of the second frameless membrane is pushed by the second push rod through the second opening.
14. The medical system of claim 13, where the anchoring element of the first frameless membrane and the second frameless membrane are formed of a relatively rigid material.
15. The medical system of claim 13, where the anchoring element of the first frameless membrane and the second frameless membrane includes a loop.
16. The medical system of claim 13, where the anchoring element of the first frameless membrane and the second frameless membrane includes a barb.
17. The medical system of claim 9, where the first frameless membrane and the second frameless membrane are formed of a polymer.
18. The medical system of claim 17, where the polymer is a material selected from a group consisting of polyurethanes, polyethylenes, and fluoroplastics.
19. The medical system of claim 9, where the first groove and the second groove are positioned symmetrically in the elongate catheter.
Description
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. application Ser. No. 10/115,557, filed Apr. 3, 2002, now U.S. Pat. No. 6,752,828 issued Jun. 22, 2004, the specification of which is incorporated herein by reference.

FIELD OF THE INVENTION

This invention relates to medical devices for use in a body lumen.

BACKGROUND

A venous valve functions to prevent retrograde flow of blood and allow only antegrade flow of blood to the heart. Referring to FIG. 1A, a healthy venous valve 12 is illustrated in a vessel 10. The valve is bicuspid, with opposed cusps 14. In the closed condition, the cusps 14 are drawn together to prevent retrograde flow (arrow 16) of blood. Referring to FIG 1B, if the valve is incompetent, the cusps 14 do not seal properly and retrograde flow of blood occurs. Incompetence of a venous valve is thought to arise from at least the following two medical conditions: varicose veins and chronic venous insufficiency.

SUMMARY

This invention relates to medical devices for use with a body lumen. In one aspect, the invention features a medical device including a membrane implantable in a body lumen and invertibly deformable between a first position and a second position. The membrane is invertible in response to the direction of fluid flow through the lumen and can be deformable by fluid flow in the body lumen. The membrane can be invertible relative to a radial direction of the body lumen. The membrane can be reversibly deformable between the first position and the second position.

Implementations can include one or more of the following. The membrane can define a portion of a cone, and can include an anchoring element adjacent a vertex of the cone. The membrane can include an anchoring element configured to embed within the body lumen, or alternatively configured to penetrate through the body lumen. The anchoring element may be, for example, a loop or a barb. The membrane can be formed of a polymer, for example, a polyurethane, polyethylene or fluoroplastic.

In another aspect, the invention features a medical system. The system includes multiple membranes, each membrane implantable in a body lumen and invertibly deformable between a first position and a second position. Each membrane is invertible in response to the direction of fluid flow through the lumen.

Implementations of the system can include one or more of the following. The membranes can be symmetrically implantable in the body lumen. Each membrane can be invertible relative to a radial direction of the body lumen and can be deformable by fluid flow in the body lumen. At least one membrane can be reversibly deformable between the first position and the second position. At least one membrane can define a portion of a cone and can include an anchoring element adjacent a vertex of the cone. At least one membrane can include an anchoring element configured to embed within the body lumen or alternatively configured to penetrate through the body lumen. The anchoring element can be, for example, a loop or a barb. At least one membrane can be formed of a polymer, for example, a polyurethane, polyethylene or fluoroplastic.

In another aspect, the invention features a method. The method includes positioning at least one membrane in a body lumen, each membrane invertibly deformable between a first position and a second position. Each membrane is invertible in response to the direction of fluid flow through the lumen.

Implementations of the method can include one or more of the following. The method can include positioning multiple membranes in the body lumen. The multiple membranes can be positioned symmetrically in the body lumen. The method can include penetrating an anchoring element of the at least one membrane through the body lumen or, alternatively, embedding an anchoring element of the at least one membrane into the body lumen.

In another aspect, the invention features a method of controlling flow in a body lumen. The method includes invertibly deforming a membrane between a first position and a second position, the membrane being invertible in response to the direction of fluid flow through the lumen. Implementations can include one or more of the following. The membrane in the second position and a portion of the body lumen can define a cavity. Deformation of the membrane can be relative to a radial axis of the body lumen. The membrane can be deformable by fluid flow in the body lumen. The membrane in the first position and the membrane in the second position can be approximately mirror images of each other. The method can further include invertibly deforming a plurality of membranes.

Embodiments may have one or more of the following advantages. One or more invertible membranes, which can function as artificial valve cusps, can be implanted at a treatment site using a catheter. As such, implantation is minimally invasive and avoids surgery and the possibility of the inherent complications. The membrane is fabricated from a polymer such as a polyurethane, polyethylene or fluoroplastic, which materials are more easily accessible than a natural tissue excised from an animal, and can be manufactured with consistency and efficiency that could be more difficult or more expensive using a natural tissue.

Other features, objects, and advantages of the invention will be apparent from the description and drawings, and from the claims.

DESCRIPTION OF DRAWINGS

FIGS. 1A and 1B are illustrations of a venous valve and an incompetent venous valve, respectively.

FIGS. 2A, 2B, and 2C are partial perspective views of an embodiment of a valve cusp.

FIG. 3 is a cross-sectional view of the valve cusp of FIG. 2A, taken along line 33.

FIG. 4 is a cross-sectional view of the valve cusp of FIG. 2C, taken along line 44.

FIGS. 5A, 5B, 5C, 5D and 5E are schematic views of an embodiment of a method for implanting a valve cusp.

FIGS. 6A and 6B are partial perspective views of an embodiment of a valve cusp.

FIGS. 7A and 7B are partial perspective views of an embodiment of a valve cusp.

FIG. 8 is a cross-sectional view of the valve cusp of FIG. 7A, taken along line 88.

FIG. 9 is a cross-sectional view of the valve cusp of FIG. 7B, taken along line 99.

FIG. 10 is a partial perspective view of an embodiment of an anchoring element.

FIG. 11 is a partial perspective view of an embodiment of an anchoring element.

DETAILED DESCRIPTION

Referring to FIGS. 2A2C through FIG. 4, a pair of artificial valve cusps 30 are illustrated positioned within a vessel 46, e.g., a vein. Cusps 30 can be positioned upstream or downstream relative to an incompetent venous valve, such as the valve shown in FIG. 1B. Each artificial valve cusp 30 includes at least one anchoring element 38 attached to an invertible portion 42, here, an approximately triangular, flexible membrane. Anchoring element 38 is generally configured to hold invertible portion 39 at a desired location in vessel 46. For example, anchoring element 38 can embed itself within a wall 44 of vessel 46, or penetrate through the wall to secure cusp 30 to the vessel. Invertible portion 42 is capable of deforming between a first position and a second position, e.g., between an opened condition and a closed position, in response to flow of body fluid in vessel 46 to allow or to reduce the flow in the vessel.

Referring particularly to FIG. 2A and FIG. 3, the cusps 30 are shown in a first position in which each cusp 30 forms an approximate semi-cone, such that an opening 50 is formed by the curved surfaces of the cusps 30. The opening 50 allows antegrade flow of a fluid through the vessel in the direction indicated by arrow 48. The membranes of invertible portions 42 are relatively thin and can conform closely to the vessel wall 44 to maximize the size of opening 50. However, each cusp 30 is also held slightly away from the wall 44 of the vessel 46 by the anchoring element 38, such that a gap 52 is formed between the invertible portion 42 and the wall 44.

Referring particularly to FIG. 2B, retrograde flow of fluid (arrows 51) in the vessel can accumulate in the gap 52 and exert pressure on the invertible portion 42 of the cusp 30. Since invertible portion 42 is flexible, it can deform under the exerted pressure and invert to form another approximate semi-cone, as shown in FIG. 2C. That is, each cusp 30 forming a first semi-cone in the first position can invert or flip relative to a radial axis of vessel 46 to form a second semi-cone that is approximately the mirror image of the first semi-cone. As the interior 32 of the second semi-cone accumulates retrograde flowing fluid, pressure is exerted on the interior of cusp 30, causing the cusp to move away from the wall 44 of the vessel. As a result, the space 53 between the two cusps 30 narrows, the size of opening 50 decreases, and fluid flow through the vessel and past the cusps is reduced (FIG. 4).

The cusps 30 can remain in the second position until antegrade fluid flow exerts sufficient pressure on the surface of cusps 30 opposite interior 32 and inverts the cusps to the first position. Thus, cusps 30 provide an artificial valve that automatically responds to the flow of fluid or pressure changes in vessel 46.

FIGS. 5A to 5E show one method of positioning cusps 30 at a treatment site in vessel 46 using a catheter 18 that may be delivered into the vessel 46 ercutaneously. The catheter 18 is generally adapted for delivery through the vessel 46, e.g., using a guidewire. Catheter 18 includes a long, flexible body having a central portion 21, and a retractable sheath 22 over the central portion. Referring particularly to FIG. 5B, a cross-sectional view of FIG. 5A taken along line 55, two grooves 25 are formed on either side of the central portion 21, and a push rod 28 is positioned inside each of the grooves 25. Each cusp 30 is positioned in a groove 25 in a compacted state and held in place by the retractable sheath 22 until delivery at the treatment site.

Catheter 18 can be delivered to the treatment site using endoprosthesis delivery techniques, e.g., by tracking an emplaced guidewire with central lumen 101. At the treatment site, the retractable sheath 22 is retracted proximally to form an opening 26 at the end of each groove 25. Referring particularly to FIG. 5C, push rods 28 are used to push each cusp distally toward the opening 26 to push the anchoring element 38 out of the opening 26. The cusps 30 are pushed out of the openings 26 until the anchoring elements 38 secure the cusps 30 to the wall 44 of the vessel 46. For example, the anchoring elements 38 can embed within the wall 44 or penetrate the wall 44 and secure to the exterior of the vessel 46.

After each cusp 30 is secured to the vessel 46, the retractable sheath 22 is retracted to fully expose the cusps 30 (FIG. 5D). The central portion 21 is then pulled proximally past the flexible (and deflectable) cusps 30 and retracted from the vessel 46 (FIG. 5E). The cusps 30, now secured to the wall 44, can deform between the first and second positions, as described above.

Cusps 30 are preferably made of a biocompatible material capable of reversible deformation as described above. Each cusp 30 can be formed from a thin, flexible material, such as a polyurethane, polyethylene or fluoroplastic, for example, polytetrafluoroethylene (PTFE). Invertible portion 42 can be formed of one or more materials. For example, invertible portion 42 may include an edge portion that is relatively more flexible or more compliant than another portion of the invertible portion to help the edges meet and seal when the cusps 30 are in the second position. Cusps 30 can include a radiopaque material, such as a polymer including a radiopacifier, e.g., tantalum metal or bismuth oxychloride, for positioning and monitoring the cusps.

Similarly, anchoring element 38 is preferably biocompatible. The anchoring element 38 can be formed of a relatively rigid material, such as a polymer having suitable hardness, for example, acrylonitrile-butadiene-styrene (ABS). Other materials can be used, such as metals (e.g., tantalum, tungsten or gold), alloys (e.g., stainless steel or Nitinol), and ceramics. Anchoring elements 38 can include a radiopaque material for positioning and monitoring cusps 30. The anchoring element can be embedded in the invertible portion or fixed to a surface of the invertible portion with, for example, adhesive.

OTHER EMBODIMENTS

In other embodiments, any number of cusps can be anchored to the wall 44 of the vessel 46 to function as a valve for preventing retrograde flow of blood through the blood vessel 46. Referring to FIGS. 6A and 6B, a single cusp 60 can be used. The cusp 60 can be 10 transported to the treatment site and anchored to the wall 44 of a vessel 46 in the same manner as described above using a catheter. In a first position, the cusp 60 forms an approximate semi-cone, with the edges 63 of the semi-cone facing the wall 44 opposite from where the cusp 60 is anchored to the wall 44. The interior of the cone forms a channel 64 allowing fluid flow past the cusp 60. The anchoring element 65 holds the cusp 30 slightly away from the wall 44 such that a gap 66 is formed between the cusp 60 and the wall 44. Retrograde flowing fluid can accumulate in the gap 66 and exert pressure on the cusp 60, deforming the cusp 60 and widening the gap 66 until the pressure on the cusp 60 inverts the cusp. Referring particularly to FIG. 6B, in an inverted position the cusp 60 forms an approximate cone with the wall 44 and accumulates retrograde flowing fluid in a sack 68 formed by the interior of the cone. Accumulated fluid can exert pressure on the cusp 60, causing the cusp 60 to move away from the wall 44. As a result, the space 66 between the cusp 60 and the wall 44 opposite the anchoring element narrows, until the cusp 60 touches the wall 44, in a second position as shown. In the second position, flow is reduced past the cusp 60 relative to the flow when the cusp 60 was in the first position. The cusp 60 remains in the second position until pressure exerted on the cusp 60 by the antegrade flow of fluid is sufficient to invert the cusp 60 to the first position.

Referring to FIGS. 7A7B, three cusps 70 a70 c can be symmetrically secured to the wall 44 of a vessel 46 in a similar manner as described above. Referring particularly to FIG. 7A, the cusps 70 a70 care shown in first position that does not substantially impede flow of a fluid through the vessel 46. As shown in FIG. 8, the surfaces of the cusps 70 a70 cconform to the wall 44 of the vessel 46, allowing a substantial opening 72 for flow past the cusps 70 a70 c. Each cusp 70 a70 cis held away from the wall 44 by anchoring elements 71 a71 c, such that a gap 76 is formed between each cusp and the wall 44. As described above, retrograde flowing fluid accumulates in the gap 76 and exerts pressure on the cusp 70, causing the cusp to deform away from the wall 44, until the cusps invert.

Referring particularly to FIG. 7B, in an inverted position the interior of each cusp 70 a70 caccumulates retrograde flowing fluid. Exerting pressure on the cusps causes them to move toward one another, until the cusps 70 a70 cmeet in a second position and reduce flow past the cusps 70 a70 crelative to the when the cusps 70 a70 care in the first position. Referring to FIG. 9, the opening 72 is significantly reduced, thus restricting the fluid flow. The cusps 70 a70 cremain in the second position until pressure exerted on the cusps 70 a70 cby antegrade flow of fluid inverts the cusps to the first position.

Although the embodiments above describe a device having one to three cusps, any number of cusps can be used to prevent retrograde flow through a vessel. The cusps can be arranged symmetrically as shown, or can be arranged in any other configuration. Although the embodiments described above included cusps of similar size and configuration, cusps of differing sizes and configurations can be used in conjunction with each other.

The anchoring element can take a number of different forms that permit the end of the cusp to penetrate the wall of a blood vessel and restrain the end of the cusp from re-entering the vessel. For example, the anchoring element can be a barb element, as shown in the embodiments described above. Alternatively, the anchoring element can be a T-hook device 80 as shown in FIG. 10, wherein T-hook 80 penetrates the wall of a vessel and hooks 82 prevent the anchor from re-entering the vessel. In another embodiment, the anchoring element can define a loop 84, as shown in FIG. 11, wherein the looped end 86 prevents the anchor from re-entering the vessel.

In other embodiments, a cusp can include more than one anchoring element. A cusp can have other polygonal configurations. For example, a generally rectangular cusp can be secured to a vessel using two anchoring elements adjacent to two corners of the cusp. The cusp can form a semi-cylinder.

Other embodiments are within the scope of the following claims.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US3859392Dec 11, 1972Jan 7, 1975Hoechst AgCarbamido-alkyl-phosphinic acid alkyl esters
US3903548May 14, 1973Sep 9, 1975Nakib Ahmad ArefHeart valve with two valving members
US4218782May 19, 1978Aug 26, 1980Biocoating AnpartsselskabHeart valve prosthesis and method for the production thereof
US4406022Nov 16, 1981Sep 27, 1983Kathryn RoyProsthetic valve means for cardiovascular surgery
US4580568Oct 1, 1984Apr 8, 1986Cook, IncorporatedPercutaneous endovascular stent and method for insertion thereof
US4643732Oct 21, 1985Feb 17, 1987Beiersdorf AktiengesellschaftHeart valve prosthesis
US4851001Jan 7, 1988Jul 25, 1989Taheri Syde AProsthetic valve for a blood vein and an associated method of implantation of the valve
US4863467Dec 14, 1988Sep 5, 1989Carbomedics Inc.Heart valve prosthesis with leaflets varying in thickness and having spherical ears
US5024232 *Jul 25, 1989Jun 18, 1991The Research Foundation Of State University Of NyNovel radiopaque heavy metal polymer complexes, compositions of matter and articles prepared therefrom
US5032128Jul 7, 1988Jul 16, 1991Medtronic, Inc.Heart valve prosthesis
US5080668Nov 29, 1989Jan 14, 1992Biotronik Mess- und Therapiegerate GmbH & Co. KG Ingenieurburo BerlinCardiac valve prosthesis
US5147389Nov 8, 1991Sep 15, 1992Vaso Products Australia Pty LimitedCorrection of incompetent venous valves
US5156619Jun 15, 1990Oct 20, 1992Ehrenfeld William KFlanged end-to-side vascular graft
US5163953Feb 10, 1992Nov 17, 1992Vince Dennis JToroidal artificial heart valve stent
US5358518Jan 25, 1993Oct 25, 1994Sante CamilliArtificial venous valve
US5360401Feb 18, 1993Nov 1, 1994Advanced Cardiovascular Systems, Inc.Catheter for stent delivery
US5413599Dec 13, 1993May 9, 1995Nippon Zeon Co., Ltd.Medical valve apparatus
US5476471Apr 15, 1994Dec 19, 1995Mind - E.M.S.G. LtdDevice and method for external correction of insufficient valves in venous junctions
US5607465Sep 2, 1994Mar 4, 1997Camilli; SantePercutaneous implantable valve for the use in blood vessels
US5609598Dec 30, 1994Mar 11, 1997Vnus Medical Technologies, Inc.Method and apparatus for minimally invasive treatment of chronic venous insufficiency
US5769780Oct 9, 1997Jun 23, 1998Baxter International Inc.Method of manufacturing natural tissue valves having variably compliant leaflets
US5810847Mar 6, 1997Sep 22, 1998Vnus Medical Technologies, Inc.Method and apparatus for minimally invasive treatment of chronic venous insufficiency
US5855601Jun 21, 1996Jan 5, 1999The Trustees Of Columbia University In The City Of New YorkArtificial heart valve and method and device for implanting the same
US5919224Feb 12, 1997Jul 6, 1999Schneider (Usa) IncMedical device having a constricted region for occluding fluid flow in a body lumen
US6015431Dec 23, 1996Jan 18, 2000Prograft Medical, Inc.Endolumenal stent-graft with leak-resistant seal
US6027525May 23, 1997Feb 22, 2000Samsung Electronics., Ltd.Flexible self-expandable stent and method for making the same
US6110201Feb 18, 1999Aug 29, 2000VenproBifurcated biological pulmonary valved conduit
US6126686Dec 10, 1997Oct 3, 2000Purdue Research FoundationArtificial vascular valves
US6162245Jan 5, 1999Dec 19, 2000Iowa-India Investments Company LimitedStent valve and stent graft
US6168614Feb 20, 1998Jan 2, 2001Heartport, Inc.Valve prosthesis for implantation in the body
US6168619Oct 16, 1998Jan 2, 2001Quanam Medical CorporationIntravascular stent having a coaxial polymer member and end sleeves
US6200336Jun 2, 1999Mar 13, 2001Cook IncorporatedMultiple-sided intraluminal medical device
US6241763Jun 8, 1999Jun 5, 2001William J. DraslerIn situ venous valve device and method of formation
US6287334Dec 17, 1997Sep 11, 2001Venpro CorporationDevice for regulating the flow of blood through the blood system
US6299637Aug 20, 1999Oct 9, 2001Samuel M. ShaolianTransluminally implantable venous valve
US6315793Sep 8, 1999Nov 13, 2001Medical Carbon Research Institute, LlcProsthetic venous valves
US6319281Mar 22, 1999Nov 20, 2001Kumar R. PatelArtificial venous valve and sizing catheter
US6328727Jan 11, 2000Dec 11, 2001Appriva Medical, Inc.Transluminal anastomosis method and apparatus
US6334873Sep 28, 1998Jan 1, 2002AutogenicsHeart valve having tissue retention with anchors and an outer sheath
US6440164Oct 21, 1999Aug 27, 2002Scimed Life Systems, Inc.Implantable prosthetic valve
US6458153Dec 31, 1999Oct 1, 2002Abps Venture One, Ltd.Endoluminal cardiac and venous valve prostheses and methods of manufacture and delivery thereof
US6503272Mar 21, 2001Jan 7, 2003Cordis CorporationStent-based venous valves
US6508833Mar 12, 2001Jan 21, 2003Cook IncorporatedMultiple-sided intraluminal medical device
US6572652Mar 20, 2001Jun 3, 2003Venpro CorporationMethod and devices for decreasing elevated pulmonary venous pressure
US6602286Oct 26, 2000Aug 5, 2003Ernst Peter StreckerImplantable valve system
US6666885Aug 27, 2001Dec 23, 2003Carbomedics Inc.Heart valve leaflet
US6666886Feb 16, 2000Dec 23, 2003Regents Of The University Of MinnesotaTissue equivalent approach to a tissue-engineered cardiovascular valve
US6669725Dec 28, 2000Dec 30, 2003Centerpulse Biologics Inc.Annuloplasty ring for regeneration of diseased or damaged heart valve annulus
US6673109Aug 7, 2001Jan 6, 20043F Therapeutics, Inc.Replacement atrioventricular heart valve
US6676698Dec 5, 2001Jan 13, 2004Rex Medicol, L.P.Vascular device with valve for approximating vessel wall
US6676702May 14, 2001Jan 13, 2004Cardiac Dimensions, Inc.Mitral valve therapy assembly and method
US6682558May 10, 2001Jan 27, 20043F Therapeutics, Inc.Delivery system for a stentless valve bioprosthesis
US6682559Jan 29, 2001Jan 27, 20043F Therapeutics, Inc.Prosthetic heart valve
US6685739Jul 9, 2002Feb 3, 2004Scimed Life Systems, Inc.Implantable prosthetic valve
US6692512Jun 25, 2001Feb 17, 2004Edwards Lifesciences CorporationPercutaneous filtration catheter for valve repair surgery and methods of use
US6695866Apr 5, 2000Feb 24, 2004St. Jude Medical, Inc.Mitral and tricuspid valve repair
US6695878Jun 8, 2001Feb 24, 2004Rex Medical, L.P.Vascular device for valve leaflet apposition
US6709456Oct 1, 2001Mar 23, 2004Ev3 Santa Rosa, Inc.Percutaneous mitral annuloplasty with hemodynamic monitoring
US6709457Nov 24, 1999Mar 23, 2004St. Jude Medical, Inc.Attachment of suture cuff to prosthetic heart valve
US6716241Mar 5, 2002Apr 6, 2004John G. WilderVenous valve and graft combination
US6716244Dec 20, 2000Apr 6, 2004Carbomedics, Inc.Sewing cuff assembly for heart valves
US6719767Sep 26, 2000Apr 13, 2004Edwards Lifesciences CorporationDevice and a method for treatment of atrioventricular regurgitation
US6719784Nov 21, 2001Apr 13, 2004Scimed Life Systems, Inc.Counter rotational layering of ePTFE to improve mechanical properties of a prosthesis
US6719786Mar 18, 2002Apr 13, 2004Medtronic, Inc.Flexible annuloplasty prosthesis and holder
US6719787Apr 11, 2002Apr 13, 20043F Therapeutics, Inc.Replacement semilunar heart valve
US6719788May 21, 2002Apr 13, 20043F Therapeutics, Inc.Replacement atrioventricular heart valve
US6719789May 21, 2002Apr 13, 20043F Therapeutics, Inc.Replacement heart valve
US6719790May 21, 2002Apr 13, 2004St. Jude Medical, Inc.Prosthetic heart valve with increased valve lumen
US6723038Oct 6, 2000Apr 20, 2004Myocor, Inc.Methods and devices for improving mitral valve function
US6723122Aug 30, 2001Apr 20, 2004Edwards Lifesciences CorporationContainer and method for storing and delivering minimally-invasive heart valves
US6723123Nov 10, 1999Apr 20, 2004Impsa International IncorporatedProsthetic heart valve
US6726715Oct 23, 2001Apr 27, 2004Childrens Medical Center CorporationFiber-reinforced heart valve prosthesis
US6726716Aug 24, 2001Apr 27, 2004Edwards Lifesciences CorporationSelf-molding annuloplasty ring
US6726717May 15, 2002Apr 27, 2004Edwards Lifesciences CorporationAnnular prosthesis for mitral valve
US6730118Oct 11, 2002May 4, 2004Percutaneous Valve Technologies, Inc.Implantable prosthetic valve
US6730121May 14, 2002May 4, 2004MedtentiaAnnuloplasty devices and related heart valve repair methods
US6730122Nov 28, 2000May 4, 2004St. Jude Medical, Inc.Prosthetic heart valve with increased lumen
US6736845May 3, 2001May 18, 2004Edwards Lifesciences CorporationHolder for flexible heart valve
US6736846Apr 11, 2002May 18, 20043F Therapeutics, Inc.Replacement semilunar heart valve
US6749630Aug 28, 2001Jun 15, 2004Edwards Lifesciences CorporationTricuspid ring and template
US6752813Jun 27, 2001Jun 22, 2004Evalve, Inc.Methods and devices for capturing and fixing leaflets in valve repair
US6752828Apr 3, 2002Jun 22, 2004Scimed Life Systems, Inc.Artificial valve
US6755857Dec 12, 2001Jun 29, 2004Sulzer Carbomedics Inc.Polymer heart valve with perforated stent and sewing cuff
US6761734Jul 22, 2002Jul 13, 2004William S. SuhrSegmented balloon catheter for stenting bifurcation lesions
US6761735Apr 25, 2002Jul 13, 2004Medtronic, Inc.Heart valve fixation process and apparatus
US6764494Oct 9, 2001Jul 20, 2004University Hospital Centre FreiburgDevice for removal of an aorta valve at a human heart in course of a minimal surgical operation
US6764508Sep 22, 2000Jul 20, 2004Co.Don AgMethod and device for inserting implants into human organs
US6764509Dec 21, 2000Jul 20, 2004Carbomedics Inc.Prosthetic heart valve with surface modification
US6764510Jan 9, 2002Jul 20, 2004Myocor, Inc.Devices and methods for heart valve treatment
US6767362Jun 28, 2002Jul 27, 2004Edwards Lifesciences CorporationMinimally-invasive heart valves and methods of use
US6769434Jun 29, 2001Aug 3, 2004Viacor, Inc.Method and apparatus for performing a procedure on a cardiac valve
US6770083Jul 24, 2002Aug 3, 2004Evalve, Inc.Surgical device for connecting soft tissue
US6780200Aug 25, 2001Aug 24, 2004Adiam Life Science AgProsthetic mitral heart valve
US6786924Mar 12, 2002Sep 7, 2004Medtronic, Inc.Annuloplasty band and method
US6786925Oct 19, 2000Sep 7, 2004St. Jude Medical Inc.Driver tool with multiple drive gear layers for heart prosthesis fasteners
US6790229Apr 23, 2000Sep 14, 2004Eric BerreklouwFixing device, in particular for fixing to vascular wall tissue
US6790230Apr 30, 2002Sep 14, 2004Universitatsklinikum FreiburgVascular implant
US6790231Feb 5, 2002Sep 14, 2004Viacor, Inc.Apparatus and method for reducing mitral regurgitation
US6793673Dec 26, 2002Sep 21, 2004Cardiac Dimensions, Inc.System and method to effect mitral valve annulus of a heart
US6797000Jan 18, 2002Sep 28, 2004Carbomedics Inc.Tri-composite, full root, stentless valve
US20020052651 *Jan 29, 2001May 2, 2002Keith MyersProsthetic heart valve
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US7331991Feb 24, 2006Feb 19, 2008California Institute Of TechnologyImplantable small percutaneous valve and methods of delivery
US7482936Oct 22, 2007Jan 27, 2009Biovigil, LlcHand cleanliness
US7616122Feb 14, 2006Nov 10, 2009Biovigil, LlcHand cleanliness
US7776053 *Dec 12, 2006Aug 17, 2010Boston Scientific Scimed, Inc.Implantable valve system
US7780724Jan 29, 2008Aug 24, 2010California Institute Of TechnologyMonolithic in situ forming valve system
US7811316 *May 10, 2007Oct 12, 2010Deep Vein Medical, Inc.Device for regulating blood flow
US7936275May 1, 2006May 3, 2011Biovigil, LlcHand cleanliness
US7982619Nov 9, 2009Jul 19, 2011Biovigil, LlcHand cleanliness
US8092517Jan 2, 2009Jan 10, 2012Deep Vein Medical, Inc.Device for regulating blood flow
US8409224 *Oct 4, 2010Apr 2, 2013Edgar L ShriverSuturing graft tubes to lumen walls percutaneously
US8502681Sep 8, 2010Aug 6, 2013Biovigil, LlcHand cleanliness
US20120083808 *Oct 4, 2010Apr 5, 2012Shriver Edgar LSuturing graft tubes to lumen walls percutaneously
Classifications
U.S. Classification623/1.24, 623/2.12, 623/1.23, 623/23.68
International ClassificationA61F2/24, A61F2/06
Cooperative ClassificationA61F2/2475, A61F2/2412
European ClassificationA61F2/24V, A61F2/24D
Legal Events
DateCodeEventDescription
Dec 27, 2013FPAYFee payment
Year of fee payment: 8
Dec 22, 2009FPAYFee payment
Year of fee payment: 4