Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS7161194 B2
Publication typeGrant
Application numberUS 11/005,107
Publication dateJan 9, 2007
Filing dateDec 6, 2004
Priority dateDec 6, 2004
Fee statusPaid
Also published asUS20060118809
Publication number005107, 11005107, US 7161194 B2, US 7161194B2, US-B2-7161194, US7161194 B2, US7161194B2
InventorsPrimit Parikh, Yifeng Wu, Adam William Saxler
Original AssigneeCree, Inc.
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
High power density and/or linearity transistors
US 7161194 B2
Abstract
Field effect transistors having a power density of greater than 25 W/mm when operated at a frequency of at least 4 GHz are provided. The power density may be at least 30 W/mm when operated at 4 GHz. The power density of at least 30 W/mm may be provided at a drain voltage of 120 V. Transistors with a power density of at least 30 W/mm when operated at 8 GHz are also provided. The power density of at least 30 W/mm may be provided at a drain voltage of 120 V. Field effect transistors having a power density of greater than 20 W/mm when operated at a frequency of at least 10 GHz are also provided. Field effect transistors having a power density of at least 2.5 W/mm and a two tone linearity of at least −30 dBc of third order intermodulation distortion at a center frequency of at least 4 GHz and a power added efficiency (PAE) of at least 40% are also provided.
Images(8)
Previous page
Next page
Claims(35)
1. A field effect transistor having a power density of greater than 25 W/mm when operated at a frequency of at least 4 GHz.
2. The field effect transistor of claim 1, wherein the power density is provided at a compression of not greater than 3 dB.
3. The field effect transistor of claim 1, wherein the power density is at least 30 W/mm when operated at 4 GHz.
4. The field effect transistor of claim 3, wherein the power density of at least 30 W/mm is provided at a drain voltage of 120 V.
5. The field effect transistor of claim 1, wherein the power density is at least 30 W/mm when operated at 8 GHz.
6. The field effect transistor of claim 5, wherein the power density of at least 30 W/mm is provided at a drain voltage of 120 V.
7. The field effect transistor of claim 1, wherein the transistor comprises a high electron mobility transistor (HEMT).
8. The field effect transistor of claim 7, wherein the transistor comprises a Group III-nitride HEMT.
9. The field effect transistor of claim 8, wherein the Group III-nitride HEMT comprises:
a GaN channel layer;
an AlN layer on the GaN channel layer;
an AlGaN layer on the AlN layer;
a gate contact on the AlGaN layer;
source and drain contacts on the AlGaN layer;
an insulating layer on the gate contact; and
a field plate on the insulating layer and electrically coupled to the gate contact.
10. The field effect transistor of claim 9, wherein the field plate has a field plate length (LF) of from about 0.3 μm to about 1.1 μm.
11. The field effect transistor of claim 10, wherein the field plate length is from 0.3–0.5 μm.
12. The field effect transistor of claim 10, wherein the field plate length is from 0.9–1.1 μm.
13. A field effect transistor having a power density of greater than 20 W/mm when operated at a frequency of at least 10 GHz.
14. The field effect transistor of claim 13, wherein the power density is provided at a compression of not greater than 3 dB.
15. The field effect transistor of claim 13, wherein the power density of greater than 20 W/mm is provided at a drain voltage of 70 V.
16. The field effect transistor of claim 15, wherein the transistor comprises a high electron mobility transistor (HEMT).
17. The field effect transistor of claim 16, wherein the transistor comprises a Group III-nitride HEMT.
18. The field effect transistor of claim 17, wherein the Group III-nitride HEMT comprises:
a GaN channel layer;
an AlN layer on the GaN channel layer;
an AlGaN layer on the AlN layer;
a gate contact on the AlGaN layer;
source and drain contacts on the AlGaN layer;
an insulating layer on the gate contact; and
a field plate on the insulating layer and electrically coupled to the gate contact.
19. The field effect transistor of claim 18, wherein the field plate has a field plate length (LF) of from about 0.3 μm to about 1.1 μm.
20. The field effect transistor of claim 19, wherein the field plate length is from 0.3–0.5 μm.
21. The field effect transistor of claim 19, wherein the field plate length is from 0.9–1.1 μm.
22. A field effect transistor having a power density of at least 2.5 W/mm and a two tone linearity of at least −30 dBc of third order intermodulation distortion (IM3) at a center frequency of at least 4 GHz and a power added efficiency (PAE) of at least 40% with IM3 of at least −30 dBc.
23. The field effect transistor of claim 22, wherein the power density is provided at a compression of not greater than 3 dB.
24. The field effect transistor of claim 22, wherein the drain voltage power density is provided at a drain voltage of 48 V.
25. The field effect transistor of claim 22, wherein the PAE is at least 50%.
26. The field effect transistor of claim 22, wherein the power density is at least 5 W/mm with IM3 of at least −30 dBc.
27. The field effect transistor of claim 22, wherein the power density is provided at a drain voltage of 108 V.
28. The field effect transistor of claim 22, wherein the power density is at least 10 W/mm with IM3 of at least −30 dBc.
29. The field effect transistor of claim 28, wherein the power density is provided at a drain voltage of 108 V.
30. The field effect transistor of claim 22, wherein the transistor comprises a high electron mobility transistor (HEMT).
31. The field effect transistor of claim 30, wherein the transistor comprises a Group III-nitride HEMT.
32. The field effect transistor of claim 31, wherein the Group III-nitride HEMT comprises:
a GaN channel layer;
an AlN layer on the GaN channel layer;
an AlGaN layer on the AlN layer;
a gate contact on the AlGaN layer; and
source and drain contacts on the AlGaN layer.
33. The field effect transistor of claim 32, further comprising:
an insulating layer on the gate contact; and
a field plate on the insulating layer and electrically coupled to the gate contact.
34. The field effect transistor of claim 33, wherein the field plate has a field plate length (LF) of from about 0.3 μm to about 1.1 μm.
35. The field effect transistor of claim 34, wherein the field plate length is about 0.7 μm.
Description
FIELD OF THE INVENTION

The present invention relates to semiconductor devices and, more particularly, to transistors.

BACKGROUND

Materials such as silicon (Si) and gallium arsenide (GaAs) have found wide application in semiconductor devices. These, more familiar, semiconductor materials may not be well suited for higher power and/or high frequency applications, however, because of their relatively small bandgaps (e.g., 1.12 eV for Si and 1.42 for GaAs at room temperature) and/or relatively small breakdown voltages.

In light of the difficulties presented by Si and GaAs, interest in high power, high temperature and/or high frequency applications and devices has turned to wide bandgap semiconductor materials such as silicon carbide (2.996 eV for alpha SiC at room temperature) and the Group III nitrides (e.g., 3.36 eV for GaN at room temperature). These materials, typically, have higher electric field breakdown strengths and higher electron saturation velocities as compared to gallium arsenide and silicon.

A device of particular interest for high power and/or high frequency applications is the High Electron Mobility Transistor (HEMT), which, in certain cases, is also known as a modulation doped field effect transistor (MODFET). These devices may offer operational advantages under a number of circumstances because a two-dimensional electron gas (2DEG) is formed at the heterojunction of two semiconductor materials with different bandgap energies, and where the smaller bandgap material has a higher electron affinity. The 2DEG is an accumulation layer in the undoped (“unintentionally doped”), smaller bandgap material and can contain a very high sheet electron concentration in excess of, for example, 1013 carriers/cm2. Additionally, electrons that originate in the wider-bandgap semiconductor transfer to the 2DEG, allowing a high electron mobility due to reduced ionized impurity scattering.

This combination of high carrier concentration and high carrier mobility can give the HEMT a very large transconductance and may provide a strong performance advantage over metal-semiconductor field effect transistors (MESFETs) for high-frequency applications.

High electron mobility transistors fabricated in the gallium nitride/aluminum gallium nitride (GaN/AlGaN) material system have the potential to generate large amounts of RF power because of the combination of material characteristics that includes the aforementioned high breakdown fields, their wide bandgaps, large conduction band offset, and/or high saturated electron drift velocity. A major portion of the electrons in the 2DEG is attributed to polarization in the AlGaN. HEMTs in the GaN/AlGaN system have already been demonstrated. U.S. Pat. Nos. 5,192,987 and 5,296,395 describe AlGaN/GaN HEMT structures and methods of manufacture. U.S. Pat. No. 6,316,793, to Sheppard et al., which is commonly assigned and is incorporated herein by reference, describes a HEMT device having a semi-insulating silicon carbide substrate, an aluminum nitride buffer layer on the substrate, an insulating gallium nitride layer on the buffer layer, an aluminum gallium nitride barrier layer on the gallium nitride layer, and a passivation layer on the aluminum gallium nitride active structure.

Wide bandgap GaN-based high-electron-mobility-transistors (HEMTs) have come a long way as microwave devices since their description in 1993 in Khan et al., Appl. Phys. Lett., vol. 63, p. 1214, 1993, and a demonstration of their power capability in 1996 in Wu et al., IEEE Electron Device Lett., vol. 17, pp. 455–457, September, 1996. Many research groups have presented devices with power densities exceeding 10 W/mm, a ten-fold improvement over conventional III–V devices. See Tilak et al., IEEE Electron Device Lett., vol. 22, pp. 504–506, November, 2001; Wu et al., IEDM Tech Dig., Dec. 2–5, 2001, pp. 378–380; and Ando et al., IEEE Electron Device Lett., vol. 24, pp. 289–291, May, 2003. Much of the previous work covered material quality, choice of substrate, epi-layer structures and processing techniques. Less effort has been put on advanced device designs, leaving room for further improvement. An overlapping gate structure, or field plate, was used by Zhang et al. with GaN HEMTs for high-voltage switching applications. Zhang et al., IEEE Electron Device Lett., vol. 21, pp. 421–423, September, 2000. Following this, Karmalkar et al. performed simulations for the field plate structure, predicting up to five times enhancement in breakdown voltages. Karmalkar et al., IEEE Trans. Electron Devices, vol. 48, pp. 1515–1521, August, 2001. However, fabricated devices at that time had low cutoff frequencies, not suitable for microwave operation. Ando et al. recently used a similar structure with smaller gate dimensions and demonstrated performance of 10.3 W output power at 2 GHz using a 1-mm-wide device on a SiC substrate. Ando et al., IEEE Electron Device Lett., vol. 24, pp. 289–291, May, 2003. Chini et al. implemented a new variation of the field-plate design with further reduced gate dimensions and obtained 12 W/mm at 4 GHz from a 150-μm-wide device on a sapphire substrate. Chini et al., IEEE Electron Device Lett., vol. 25, No. 5, pp. 229–231, May, 2004.

Modern communication applications also may require high linearity for power devices. Chini et. al. reported two-tone linear power of 2.4 W/mm with PAE of 53% at 4 GHz from FP devices at a 3rd-order-intermodulation level (IM3) of −30 dBc. Chini et al., IEEE Electron Device Lett., vol. 25, No. 5, pp. 229–231, May, 2004.

SUMMARY OF THE INVENTION

Some embodiments of the present invention provide field effect transistors having a power density of greater than 25 W/mm when operated at a frequency of at least 4 GHz. In some embodiments, the power density is at least 30 W/mm when operated at 4 GHz. Furthermore, the power density of at least 30 W/mm may be provided at a drain voltage of 120 V. In some embodiments, the power density is provided at a compression of not greater than 3 dB.

In still further embodiments of the present invention, the power density is at least 30 W/mm when operated at 8 GHz. The power density of at least 30 W/mm may be provided at a drain voltage of 120 V.

In particular embodiments of the present invention, the transistors are a high electron mobility transistor (HEMT). The transistors may be Group III-nitride HEMTs. The Group III-nitride HEMTs may include a GaN channel layer, an AlN layer on the GaN channel layer, an AlGaN layer on the AlN layer, a gate contact on the AlGaN layer, source and drain contacts on the AlGaN layer, an insulating layer on the gate contact and a field plate on the insulating layer that is electrically coupled to the gate contact. The field plate may have a field plate length (LF) of from about 0.3 μm to about 1.1 μm. In particular embodiments, the field plate length is from 0.3–0.5 μm. In other embodiments, the field plate length is from 0.9–1.1 μm.

In some embodiments, field effect transistors having a power density of greater than 20 W/mm when operated at a frequency of at least 10 GHz is provided. The power density of greater than 20 W/mm may be provided at a drain voltage of 70 V. In some embodiments, the power density is provided at a compression of not greater than 3 dB. The transistors may be high electron mobility transistors (HEMTs). The transistors may be Group III-nitride HEMTs. The Group III-nitride HEMTs may include a GaN channel layer, an AlN layer on the GaN channel layer, an AlGaN layer on the AlN layer, a gate contact on the AlGaN layer, source and drain contacts on the AlGaN layer, an insulating layer on the gate contact and a field plate on the insulating layer that is electrically coupled to the gate contact. The field plate may have a field plate length (LF) of from about 0.3 μm to about 1.1 μm. In some embodiments, the field plate length is from 0.3–0.5 μm. In other embodiments, the field plate length is from 0.9–1.1 μm.

Still further embodiments of the present invention provide field effect transistors having a power density of at least 2.5 W/mm and a two tone linearity of at least −30 dBc of third order intermodulation distortion (IM3) at a center frequency of at least 4 GHz and a power added efficiency (PAE) of at least 40%. The power density may be provided at a drain voltage of 48 V. The PAE may be at least 50%. The power density may be at least 5 W/mm, while maintaining IM3 of at least −30 dBc. The power density may be provided at a drain voltage of 108 V. In some embodiments, the linear power density is at least 10 W/mm, while maintaining IM3 of at least −30 dBc. In such a case, the power density may be provided at a drain voltage of 108 V. In some embodiments, the power density is provided at a compression of not greater than 3 dB.

In particular embodiments of the present invention, the transistors are high electron mobility transistors (HEMTs). The transistors may be Group III-nitride HEMTs. In particular embodiments, the Group III-nitride HEMTs include a GaN channel layer, an AlN layer on the GaN channel layer, an AlGaN layer on the AlN layer, a gate contact on the AlGaN layer and source and drain contacts on the AlGaN layer. The HEMT may also include an insulating layer on the gate contact and a field plate on the insulating layer that is electrically coupled to the gate contact. The field plate may have a field plate length (LF) of from about 0.3 μm to about 1.1 μm. In particular embodiments, the field plate length is about 0.7 μm.

Transistors having various combinations and/or sub-combinations of transistor characteristics described above may also be provided according to some embodiments of the present invention.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a cross-sectional diagram of a transistor according to some embodiments of the present invention.

FIG. 2 is a graph of current-gain and power-gain cutoff frequencies, ft and fMAX, as a function of field plate dimension LF. The devices were biased at VDS=10 V and ID=300 mA/mm, where the best ft is typically located. Gate length and width were 0.55 μm and 2×123 μm with LGS=1 μm and LFD>2 μm.

FIG. 3 is a graph of power performance versus length of field plate LF when measured at 4 GHz with drain biases of 28 and 48 V for the devices of FIG. 2.

FIG. 4 is a graph of power performance and large signal gain versus length of field plate LF when measured at 8 GHz with drain bias of 48 V for the devices of FIG. 2.

FIG. 5 is a power sweep graph at 4 GHz for 246-μm-wide devices showing 32.2 W/mm power density and 54.8% power added efficiency (PAE) when biased at 120 V. Linear gain is 16.9 dB and associated large-signal gain is 14 dB. Device dimensions: LGS=1 μm, LG=0.55 μm; LF=1.1 μm, and LFD=3 μm.

FIG. 6 is a power sweep graph at 8 GHz for 246-μm-wide devices showing 30.6 W/mm power density and 49.6% PAE when biased at 120 V. Linear gain is 10.7 dB (−2.3 dB compression). Device dimensions: LGS=1 μm, LG=0.55 μm; LF=0.9 μm, and LFD=3 μm.

FIG. 7 is a graph of linearity performance of a device with LF=0.7 μm at VDS=48V and IQ=20 mA/mm, which achieved a 57% PAE at −30 dBc IM3 with associated power of 3.7 W/mm. The device dimensions were 0.5×246 μm2 with LG=0.5 μm, LGS=1 μm and LFD=2 μm. Single tone power at 3 dB compression was P3dB=8.8 W/mm with PAE=71%.

FIG. 8 is a graph of linearity performance of a device with LF=1.1 μm at VDS=108V and IQ=20 mA/mm, which achieved a 41% PAE at −30 dBc IM3 with associated power of 10 W/mm. The device dimensions were 0.5×246 μm2 with LG=0.5 μm, LGS=1 μm and LFD=3 μm. Single tone power at 3 dB compression was P3dB=24 W/mm with PAE=48%.

FIGS. 9 and 10 are graphs of cutoff frequency versus bias current and voltage respectively for devices with a field plate length LF (labeled Lp in FIGS. 10 and 11) ranging from 0 to 1.1 μm, LG=0.5 μm, LGS=1 μm and LFD>2 μm.

FIG. 11 is a graph of current versus voltage characteristics for devices according to some embodiments of the present invention. The devices of FIG. 11 have a very-high nμ product: 2350×1013 (Vs)−1, low on-resistance: 2.1–2.3 Ω-mm and ID,MAX>1200 mA/mm. For the devices of FIG. 11, LF=0.7 μm, LG=0.5 μm, LGS=1 μm and LFD=2 μm.

FIG. 12 is a graph of power performance versus LF at increasing voltages with LG=0.5 μm, LGS=1 μm and LFD>2 μm.

FIG. 13 is a graph of linearity performance of a device without a field plate VDS=48V and IQ=20 mA/mm, which achieved a 56% PAE at −30 dBc IM3 with associated power of 3.4 W/mm. The device dimensions were 0.5×246 μm2 with LG =0.5 μm and LGS=1 μm. Single tone power at 3 dB compression was P3dB=8 W/mm with PAE=70%.

FIG. 14 is a graph of performance of a device with a field plate at 10 GHz, VDS=70V and IQ=20 mA/mm, which achieved a 50% PAE with associated power density of 20 W/mm. The device dimensions were a gate width WG of 246 μm, LF=0.7 μm, LFD=2 μm, LG=0.5 μm and LGS=1 μm.

DETAILED DESCRIPTION OF EMBODIMENTS OF THE INVENTION

The present invention now will be described more fully hereinafter with reference to the accompanying drawings, in which embodiments of the invention are shown. However, this invention should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. In the drawings, the thickness of layers and regions are exaggerated for clarity. Like numbers refer to like elements throughout. As used herein the term “and/or” includes any and all combinations of one or more of the associated listed items.

The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. As used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.

It will be understood that when an element such as a layer, region or substrate is referred to as being “on” or extending “onto” another element, it can be directly on or extend directly onto the other element or intervening elements may also be present. In contrast, when an element is referred to as being “directly on” or extending “directly onto” another element, there are no intervening elements present. It will also be understood that when an element is referred to as being “connected” or “coupled” to another element, it can be directly connected or coupled to the other element or intervening elements may be present. In contrast, when an element is referred to as being “directly connected” or “directly coupled” to another element, there are no intervening elements present. Like numbers refer to like elements throughout the specification.

It will be understood that, although the terms first, second, etc. may be used herein to describe various elements, components, regions, layers and/or sections, these elements, components, regions, layers and/or sections should not be limited by these terms. These terms are only used to distinguish one element, component, region, layer or section from another region, layer or section. Thus, a first element, component, region, layer or section discussed below could be termed a second element, component, region, layer or section without departing from the teachings of the present invention.

Furthermore, relative terms, such as “lower” or “bottom” and “upper” or “top,” may be used herein to describe one element's relationship to another elements as illustrated in the Figures. It will be understood that relative terms are intended to encompass different orientations of the device in addition to the orientation depicted in the Figures. For example, if the device in the Figures is turned over, elements described as being on the “lower” side of other elements would then be oriented on “upper” sides of the other elements. The exemplary term “lower”, can therefore, encompass both an orientation of “lower” and “upper,” depending of the particular orientation of the figure. Similarly, if the device in one of the figures is turned over, elements described as “below” or “beneath” other elements would then be oriented “above” the other elements. The exemplary terms “below” or “beneath” can, therefore, encompass both an orientation of above and below. Furthermore, the term “outer” may be used to refer to a surface and/or layer that is farthest away from a substrate.

Embodiments of the present invention are described herein with reference to cross-section illustrations that are schematic illustrations of idealized embodiments of the present invention. As such, variations from the shapes of the illustrations as a result, for example, of manufacturing techniques and/or tolerances, are to be expected. Thus, embodiments of the present invention should not be construed as limited to the particular shapes of regions illustrated herein but are to include deviations in shapes that result, for example, from manufacturing. For example, an etched region illustrated as a rectangle will, typically, have tapered, rounded or curved features. Thus, the regions illustrated in the figures are schematic in nature and their shapes are not intended to illustrate the precise shape of a region of a device and are not intended to limit the scope of the present invention.

Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. It will be further understood that terms, such as those defined in commonly used dictionaries, should be interpreted as having a meaning that is consistent with their meaning in the context of the relevant art and will not be interpreted in an idealized or overly formal sense unless expressly so defined herein.

It will also be appreciated by those of skill in the art that references to a structure or feature that is disposed “adjacent” another feature may have portions that overlap or underlie the adjacent feature.

Embodiments of the present invention may be particularly well suited for use in nitride-based devices such as Group III-nitride based HEMTs. As used herein, the term “Group III nitride” refers to those semiconducting compounds formed between nitrogen and the elements in Group III of the periodic table, usually aluminum (Al), gallium (Ga), and/or indium (In). The term also refers to ternary and quaternary compounds such as AlGaN and AlInGaN. As is well understood by those in this art, the Group III elements can combine with nitrogen to form binary (e.g., GaN), ternary (e.g., AlGaN, AlInN), and quaternary (e.g., AlInGaN) compounds. These compounds all have empirical formulas in which one mole of nitrogen is combined with a total of one mole of the Group III elements. Accordingly, formulas such as AlxGa1-xN where 0≦x≦1 are often used to describe them.

While embodiments of the present invention are described with reference to particular structures, other structures and/or techniques for fabricating GaN-based HEMTs could also be utilized in some embodiments of the present invention. Such structures and/or techniques may include those described, for example, in commonly assigned U.S. Pat. No. 6,316,793 and U.S. Patent Publication No. 2002/0066908A1 filed Jul. 12, 2001 and published Jun. 6, 2002, for “ALUMINUM GALLIUM NITRIDE/GALLIUM NITRIDE HIGH ELECTRON MOBILITY TRANSISTORS HAVING A GATE CONTACT ON A GALLIUM NITRIDE BASED CAP SEGMENT AND METHODS OF FABRICATING SAME,” U.S. Patent Publication No. 2002/0167023A1 to Smorchkova et al., published Nov. 14, 2002, entitled “GROUP-III NITRIDE BASED HIGH ELECTRON MOBILITY TRANSISTOR (HEMT) WITH BARRIER/SPACER LAYER”, U.S. patent application Ser. No. 10/617,843 filed Jul. 11, 2003 for “NITRIDE-BASED TRANSISTORS AND METHODS OF FABRICATION THEREOF USING NON-ETCHED CONTACT RECESSES,” U.S. patent application Ser. No. 10/772,882 filed Feb. 5, 2004 for “NITRIDE HETEROJUNCTION TRANSISTORS HAVING CHARGE-TRANSFER INDUCED ENERGY BARRIERS AND METHODS OF FABRICATING THE SAME,” U.S. patent application Ser. No. 10/897,726, filed Jul. 23, 2004 entitled “METHODS OF FABRICATING NITRIDE-BASED TRANSISTORS WITH A CAP LAYER AND A RECESSED GATE,” U.S. patent application Ser. No. 10/849,617, filed May 20, 2004 entitled “METHODS OF FABRICATING NITRIDE-BASED TRANSISTORS HAVING REGROWN OHMIC CONTACT REGIONS AND NITRIDE-BASED TRANSISTORS HAVING REGROWN OHMIC CONTACT REGIONS,” U.S. patent application Ser. No. 10/849,589, filed May 20, 2004 and entitled “SEMICONDUCTOR DEVICES HAVING A HYBRID CHANNEL LAYER, CURRENT APERTURE TRANSISTORS AND METHODS OF FABRICATING SAME,” U.S. Patent Publication No. 2003/0020092 filed Jul. 23, 2002 and published Jan. 30, 2003 for “INSULATING GATE ALGAN/GAN HEMT”, and U.S. patent application Ser. No. 10/996,249, filed Nov. 23, 2004 and entitled “CAP LAYERS AND/OR PASSIVATION LAYERS FOR NITRIDE-BASED TRANSISTORS, TRANSISTOR STRUCTURES AND METHODS OF FABRICATING SAME,” the disclosures of which are incorporated herein as if described in their entirety.

Some embodiments of the present invention provide transistors having a power density of greater than 25 W/mm at a frequency of at least 4 GHz. Furthermore, the transistors may provide a power added efficiency (PAE) of a least 50% at 4 GHz and/or at least 45% at 8 GHz. Additional embodiments of the present invention provide a power density of at least 20 W/mm at a frequency of at least 10 GHz and may have a PAE of at least 50% at that frequency. In some embodiments, the power density and/or PAE are obtained with a compression of not greater than 3 dB. Some embodiments of the present invention provide a two tone linearity of at least −30 dBc of third order intermodulation distortion (IM3) at a center frequency of at least 4 GHz and a power added efficiency (PAE) of at least 40% and a power density of at least 2.5 W/mm. Two tone linearity refers to characteristics of the device when driven with a 2-tone signal with 100 kHz spacing around a center frequency, such as, for example, 4 GHz. At narrower tone spacings, a given power density and PAE are more difficult to achieve for a given IM3 value. A discussion of IM3 is provided, for example, in Walker, J. L. B. (Ed.), (1993), High-power GaAs FET Amplifiers, pp. 119–120, Norwood, Mass.: Artech House, the disclosure of which is incorporated herein as if set forth in its entirety.

Exemplary devices according to some embodiments of the present invention are schematically illustrated in FIG. 1. However, embodiments of the present invention should not be construed as limited to the particular exemplary embodiments described herein but may include any suitable structure that provides transistor characteristics as described herein.

Turning to FIG. 1 a substrate 10 is provided on which nitride based devices may be formed. In particular embodiments of the present invention, the substrate 10 may be a semi-insulating silicon carbide (SiC) substrate that may be, for example, 4H polytype of silicon carbide. Other silicon carbide candidate polytypes include the 3C, 6H, and 15R polytypes. The term “semi-insulating” is used descriptively rather than in an absolute sense. In particular embodiments of the present invention, the silicon carbide bulk crystal has a resistivity equal to or higher than about 1×105 Ω-cm at room temperature.

Optional buffer, nucleation and/or transition layers (not shown) may be provided on the substrate 10. For example, an AlN buffer layer may be provided to provide an appropriate crystal structure transition between the silicon carbide substrate and the remainder of the device. Additionally, strain balancing transition layer(s) may also be provided as described, for example, in commonly assigned U.S. Patent Publication No. 2003/0102482A1, filed Jul. 19, 2002 and published Jun. 5, 2003, and entitled “STRAIN BALANCED NITRIDE HETROJUNCTION TRANSISTORS AND METHODS OF FABRICATING STRAIN BALANCED NITRIDE HETEROJUNCTION TRANSISTORS,” or United States Patent Publication No. 2004/0012015 A1, filed Jul. 19, 2002 and published Jan. 22, 2004, and entitled “STRAIN COMPENSATED SEMICONDUCTOR STRUCTURES AND METHODS OF FABRICATING STRAIN COMPENSATED SEMICONDUCTOR STRUCTURES,” the disclosures of which are incorporated herein by reference as if set forth fully herein.

Appropriate SiC substrates are manufactured by, for example, Cree, Inc., of Durham, N.C., the assignee of the present invention, and methods for producing are described, for example, in U.S. Pat. Nos. Re. 34,861; 4,946,547; 5,200,022; and 6,218,680, the contents of which are incorporated herein by reference in their entirety. Similarly, techniques for epitaxial growth of Group III nitrides have been described in, for example, U.S. Pat. Nos. 5,210,051; 5,393,993; 5,523,589; and 5,592,501, the contents of which are also incorporated herein by reference in their entirety.

Although silicon carbide may be used as a substrate material, embodiments of the present invention may utilize any suitable substrate, such as sapphire, aluminum nitride, aluminum gallium nitride, gallium nitride, silicon, GaAs, LGO, ZnO, LAO, InP and the like. In some embodiments, an appropriate buffer layer also may be formed.

Returning to FIG. 1, a channel layer 12 is provided on the substrate 10. The channel layer 12 may be deposited on the substrate 10 using buffer layers, transition layers, and/or nucleation layers as described above. The channel layer 12 may be under compressive strain. Furthermore, the channel layer 12 and/or buffer nucleation and/or transition layers may be deposited by MOCVD or by other techniques known to those of skill in the art, such as MBE or HVPE.

In some embodiments of the present invention, the channel layer 12 is a Group III-nitride, and, in particular GaN. The channel layer 12 may be undoped (“unintentionally doped”) and may be grown to a thickness of greater than about 20 Å. In particular embodiments of the present invention, the channel layer 12 is GaN and has a thickness of about 2 μm.

A barrier layer is provided on the channel layer 12. The channel layer 12 may have a bandgap that is less than the bandgap of the barrier layer and the channel layer 12 may also have a larger electron affinity than the barrier layer. The barrier layer may be deposited on the channel layer 12. In certain embodiments of the present invention, the barrier layer is provide by an AlN layer 14 and an AlGaN layer 16. Examples of layers according to certain embodiments of the present invention are described in U.S. Patent Publication No. 2002/0167023A1, to Smorchkova et al., entitled “GROUP-III NITRIDE BASED HIGH ELECTRON MOBILITY TRANSISTOR (HEMT) WITH BARRIER/SPACER LAYER” the disclosure of which is incorporated herein by reference as if set forth fully herein. In particular embodiments of the present invention, the barrier layer is thick enough and has a high enough Al composition and doping to induce a significant carrier concentration at the interface between the channel layer 12 and the barrier layer through polarization effects. In particular embodiments of the present invention, the barrier layer comprises an AlN layer having a thickness of about 0.8 nm and an AlGaN layer having 24% Al and a thickness of about 250 Å.

A gate contact 18 is provided on the barrier layer and, in particular, on the AlGaN layer 16. Source and drain contacts 20 and 22 are provided as ohmic contacts on the AlGaN layer 16. Ohmic contacts are processed (e.g, sintering) to have low resistivity connection through the barrier layer to the channel layer. A SiN layer 24 is provided on the exposed portions of the AlGaN layer 16 and the gate contact 18. References to SiN, SiON, SiOx, MgN and the like refer to stoichiometric and/or non-stoichiometric materials. A field plate 26 is provided on the SiN layer 24 and is electrically connected to the gate contact 18. Transistors with field plates and methods of fabricating such transistors are described, for example, in U.S. patent application Ser. No. 10/930,160, filed Aug. 31, 2004 and entitled “WIDE BANDGAP TRANSISTOR DEVICES WITH FIELD PLATES”, U.S. patent application Ser. No. 10/856,098, filed May 28, 2004 and entitled “CASCODE AMPLIFIER STRUCTURES INCLUDING WIDE BANDGAP FIELD EFFECT TRANSISTOR WITH FIELD PLATE” and International Application Number PCT/US04/29324, filed Sep. 9, 2004 and entitled “FABRICATION OF SINGLE OR MULTIPLE GATE FIELD PLATES,” the disclosures of which are incorporated herein by reference as if set forth in their entirety.

In FIG. 1, the distance from the gate contact 18 to the source contact 20 is indicated as LGS, the length of the gate contact 18 is indicated as LG and is referred to herein as the gate length. The distance the field plate 26 extends beyond the gate contact 18 is indicated as LF and is referred to herein as the field plate length. The distance from the field plate 26 to the drain contact 22 is indicated as LFD. The thickness of the SiN layer 24 is indicated as t. The dimension of the gate contact 18 extending into and out of the page in FIG. 1 is referred to herein as the gate width WG. Power density is used herein to normalize device characteristics across different size devices. Power density is referred to as W/mm of gate width or merely W/mm.

Particular embodiments of the structure of FIG. 1 will now be described in further detail. In some embodiments, after a HEMT with a conventional gate is fabricated, a layer of SiN is deposited on the wafer surface. Additional lithography is then performed to place a metal plate covering the gate and extending to the access region on the drain side. In some embodiments, the metal plate may be provided as described in Chini et al., IEEE Electron Device Lett., vol. 25, No. 5, pp. 229–231, May, 2004, the disclosure of which is incorporated herein by reference as if set forth in its entirety. This metal plate is electrically connected to the gate on the gate pad in a third dimension outside of the active channel region. The metal plate tracks the potential of the gate electrode. The function of the field plate is to reshape the distribution of the electric field on the drain side of the gate edge and to reduce its peak value. This not only increases device breakdown voltage but also reduces the high-field trapping effect, hence enhancing current-voltage swings at high frequencies. The trade-off of the field plate structure includes addition of the gate-drain capacitance at low voltages and extension of the gate-drain depletion length at high voltages, which reduces gain.

Gate length (LG) determines the transit time under the gate. The SiN thickness (t) controls the onset voltage for additional channel depletion under the field plate while the field-plate length (LF) dictates the size of the field-reshaping region. To maintain good frequency performance, a basic design guideline is to limit the addition of capacitance by the field plate to 10–15% of the original gate capacitance. With an LG of 0.5–0.6 μm and an AlGaN thickness of about 250 Å, t was chosen as 2000 Å and LF was varied from 0 to 1.1 m. The separation between the field plate and the drain (LFD) was set to >2 μm to avoid premature breakdown. The gate to source distance LGS was set to 1 μm.

Except as described herein, the epi-structure and processing steps for fabricating the exemplary devices may be carried out using conventional fabrication techniques, such as those described in Wu et al., IEDM Tech Dig., Dec. 2–5, 2001, pp. 378–380, the disclosure of which is incorporated herein by reference as if set forth in its entirety. In contrast to a conventional AlGaN—GaN HEMT, the exemplary devices according to some embodiments of the present invention included a thin AlN barrier layer 14 adjacent to the GaN channel 12. It has been found this AlN barrier layer offers significant advantage over the conventional AlGaN barrier, simultaneously providing higher sheet charge density and mobility as described in U.S. Patent Publication No. 2002/0167023A1, to Smorchkova et al., entitled “GROUP-III NITRIDE BASED HIGH ELECTRON MOBILITY TRANSISTOR (HEMT) WITH BARRIER/SPACER LAYER” the disclosure of which is incorporated herein by reference as if set forth fully herein. Additionally, Fe doping of the GaN buffer was used in a manner similar to that described in Heikman et al., Appl. Phys. Lett., vol. 81, pp. 439–441, July 2002, the disclosure of which is incorporated herein by reference as if set forth in its entirety. In particular, the GaN buffer layer was doped with 2×1017/cm3 of Fe for a thickness of about 1 μm.

The field plate comprises 100 Å Ti and 5000 Å Au by e-beam evaporation. The sheet resistance was measured to be 265 Ω/□ by on-wafer TLM patterns, which is an equivalent of a sheet-density-mobility (nμ) product of 2.36×1016 (Vs)−1.

Thus, in summary, the devices of FIG. 1 included a semi-insulating SiC substrate 10, such as those provided by Cree, Inc. A GaN layer 12 is provided on the SiC substrate 10 and has a thickness of about 2 μm. About 1 μm of the GaN layer 12 is doped with Fe to a concentration of about 2×1017/cm3. An AlN layer 14 is provided on the GaN layer 12 and has a thickness of about 0.8 nm. An AlGaN layer 16 with about 24% Al is provided on the AlN layer 14 and has a thickness of about 250 Å. A SiN layer 24 is provided on the AlGaN layer 16 and has a thickness of about 2000–3000 Å. The source and drain contacts 20 and 22 are provided on the AlGaN layer 16 and are comprised of Ti/Al/Ni/Au with a total thickness of about 2000 Å. The gate contact 18 is also provided on the AlGaN layer 16 and is Ni/Au with a total thickness of about 4500 Å. The field plate 26 is provided on the SiN layer 24 and is 100 Å Ti and 5000 Å Au. Furthermore, LGS for the exemplary devices is 1 μm, LG is from 0.5 to 0.6 μm, LF is varied from 0 to 1.1 μm and LFD is 2–3 μm.

Unless indicated otherwise, the devices discussed below with reference to FIGS. 2 through 14 are devices having the above described structure, other than FIG. 13 is a graph of performance of a device as described above but without a field plate. Performance of exemplary devices as described herein will now be described. However, embodiments of the present invention should not be construed as limited to these particular devices but includes other devices capable of providing the performance characteristics described herein. Furthermore, while various theories of operation are described herein, embodiments of the present invention should not be construed as limited to a particular theory of operation.

Device Performance

Power Density and PAE

A typical device, as described above, exhibited a low on-resistance of 2.1–2.3 Ω-mm owing to both the high n-μ product in the channel and a low resistance ohmic contact of 0.4 Ω-mm. The channel pinched off at a gate-source bias (VGS) of −4 V and the maximum current exceeded 1200 mA/mm at VGS of 2 V (see FIG. 11). Comparison of current-voltage(I–V) characteristics of the devices with different field-plate dimensions revealed little difference at low voltages. At high voltages, larger LF reduced sub-threshold leakage, which helps extend the current-voltage swing. The dc breakdown voltage was about 140 V for LF=0 and >170 V for LF=0.7 to 1.1 μm.

Small-signal characterization was performed with a bias optimum for current-gain cutoff frequency (ft) and is shown in FIG. 2. Due to the increase in the gate-drain capacitance, ft decreases from 26.2 to 21.8 GHz from LF=0 to LF=1.1 μm, a rate of 4 GHz per μm, or 16% per μm. This is much less than the rate of decrease in ft at 23.6 GHz per μm if the actual gate length, LG, were extended from 0.55 μm to 1.1 μm. The power-gain cutoff frequency (fMAX), however, increases slightly at first and then drops at a rate of 27% per μm after LF>0.3 μm. The initial enhancement is due to the increased gate conductance by the relatively large Au field plate on top of the gate. As a result, the fMAX/ft, ratio shows a more gradual decrease as LF increases.

At higher voltages, ft decreased slowly but persistently. In contrast, fMAX increased with increase in voltage, reaching a peak and slowly coming down. Such enhancement in fMAX was maintained up to much higher voltages for devices with longer field plates, which should aid their performance at high biases as also pointed out by Ando et al. This phenomenon may be due to the reduction of both the gate-drain capacitance and the output conductance as the channel under the field plate depletes with increase in drain voltage. The peak fMAX was measured as 68 GHz at 36 V for LF=0, 69 GHz at 51 V for LF=0.7 μm, and at >61 GHz at >61 V for LF=1.1 μm. Such a relationship is seen in FIGS. 9 and 10, which are graphs of cutoff frequency versus bias current and voltage respectively for devices with a field plate length LF (labeled Lp in FIGS. 9 and 10) ranging from 0 to 1.1 μm.

Power performance was first evaluated using a Focus load-pull system with maximum reflection coefficient of 0.75–0.77. The matching was tuned for best combination of output power at 3 dB compression (P3 dB) and the power-added efficiency (PAE). FIG. 3 summarizes the measurement result at 4 GHz where gain is less of a limiting factor. A lower bias of 28 V and a higher bias of 48 V were chosen to examine the effect of the field plate. The enhancement in output power is readily evident even at 28 V. Addition of a 0.3-μm-long field plate boosts P3 dB from 4.5 to 6.4 W/mm. Devices with larger LF also deliver high power but with a gradual degradation in PAE owing to the lower gain. The device without a field plate (LF=0) is clearly not limited by breakdown at 28 V bias as seen by all evidence including the gate current monitored during the measurement. Hence, the benefit from a field plate is attributed to reduced trapping through reduction in peak electric field. As the drain bias steps up to 48 V, the enhancement by the field plate becomes more significant for both P3 dB and PAE. P3 dB increases from 7.8 W/mm for LF=0 to 10.6 W/mm for LF=0.3 μm, and saturates at 12.4 W/mm for LF>0.9 μm. PAE also rises from 47.2% for LF=0 to 61% for LF=0.5 and 0.7 μm and slowly reduces to 57.5% at LF=1.1 μm. The optimum LF for the best combination of and PAE at 48 V and 4 GHz has a broad range centered at 0.6 μm. When drain bias further increased to 68 V, devices without a field plate suffered severe degradation in PAE with little increase in output power. The optimal LF moved upward to 0.7–0.9 μm, with which P3 dB of 18–18.5 W/mm and PAE of 54% were obtained. At 88 V, the optimum LF further increased to 0.9–1.1 m and yielded P3 dB of 24 W/mm with PAE of 48%. Beyond 88 V the Focus load-pull system failed to properly match these 246-μm-wide devices.

The devices with different LF values were also measured at 8 GHz as illustrated in FIG. 4. Because power gain plays a more important role at this higher frequency, it may be expected that devices with larger LF values may fail to perform well. While it is confirmed that large-signal power gain did degrade from 11.6 to 7.6 dB from LF=0 to LF=1.1 μm when biased at 48 V, the P3 dB actually increased from 7.3 W/mm for LF=0 to 10 W/mm for LF=0.3 μm and continuously rose all the way to 11.5 W/mm for LF=1.1 μm. This monotonic increase in is not as pronounced at 4 GHz. An explanation may be that all devices have the same transit time under the gate because of the identical gate length LG. The cause of gain reduction may be from the additional gate-drain capacitance by the field plate. This capacitor provides a path for the Miller feedback (a negative current feedback). While it reduces gain and has a stronger effect at higher frequencies (due to the reduced capacitive reactance), it also offers some linearization effect and apparently reduces gain compression for large LF values. As an overall result, at 8 GHz, the optimum LF value for the best combination of and PAE at increasing applied voltages is similar to the 4-GHz result, probably shifting down by about 0.1–0.2 μm if a simultaneous higher gain is also preferred.

Finally, a Maury load-pull system with a higher maximum reflection coefficient of 0.88 was employed to further test the ultimate potential of the field-plate devices. The Maury system not only was able to verify previous results but also provided more flexibility to tradeoff between P3 dB and PAE. For example, at 4 GHz and 88 V, the devices could be tuned to yield 20 W/mm and 60% PAE. Devices with LF of 0.9–1.1 μm and LFD of 3 μm were able to operate up to 120 V bias (see FIG. 12 where LF is labeled as LP). The continuous wave (CW) power sweep at 4 GHz for a device with LF=1.1 μm is shown in FIG. 5. The device was measured on wafer at room temperature with deep class-AB bias. The linear gain is 16.8 dB. At an input level of 25 dBm, the output power reached 39.0 dBm, or 32.2 W/mm, with associated gain and PAE of 14 dB and 54.8%, respectively. A device with the same dimensions except for a smaller LF of 0.9 μm was also tested at 8 GHz and 120 V. As seen in FIG. 6, the device generated 30.6 W/mm output power at 2.2-dB compression, along with associated PAE and power gain of 49.6% and 10.7 dB, respectively. These power levels of >30 W/mm at C and X bands are a dramatic improvement over previous state-of-the-art of 10–12 W/mm with conventional gate structures. This ultra-high performance may be an accumulative result of the very-high nμ-product epi-design using an AlN barrier, low resistance ohmic contacts, and optimization of field-plate dimensions.

As evidenced by the above discussion, the field plate may offer benefits far out-weighing its apparent drawback of gain reduction. The advantage is maintained up to X band using a half-micron primary gate dimension by optical lithography. With 0.55-μm-long gate and 2000-Å-thick SiN as the field plate dielectric, optimum length of the plate at both 4 GHz and 8 GHz was found to increase with operating voltage from 0.3–0.5 μm at 28 V to 0.9–1.1 μm at 88–120 V. The window for the plate length was wide. Devices with field plates larger than the optimum still performed well with some compromise in gain.

Devices optimized for high-voltage operation could be biased up to 120 V. A 246-μm-wide device with a 1.1-μm-long field plate and 3 μm field-plate-to-drain separation achieved a CW power density of 32.2 W/mm at 4 GHz with associated gain of 14 dB and PAE of 54.8%. A device with the same dimensions except for a shorter field plate of 0.9 m demonstrated 30.6 W/mm at 8 GHz with associated gain and PAE of 10.7 dB and 49.6%, respectively.

Linearity

Linearity performance of GaN-channel HEMTs with various field plate lengths at biases up to 108 V was also evaluated. As with the devices above, the device epi-layers consisted of a GaN buffer with Fe doping, a thin AlN interlayer and an AlGaN barrier, all grown on semi-insulating SiC substrates by Metal-Organic-Chemical-Deposition. The device structure and the process was nominally similar to that described earlier. The SiN passivation layer thickness was 3000 Å. The gate dimensions were 0.5×246 μm2. The filed plate, which was electrically connected to the gate, was placed on top of the SiN passivation layer over the gate extending to the drain side. The lengths of the field plate (LF), defined as the extension of the FP over the gate edge on the drain side, were set at 0, 0.7 and 1.1 μm.

Both the non-field plate and field plate devices had similar dc characteristics including 1 A/mm open-channel current and a −4 V gate pinch-off voltage. However, the field plate device showed higher breakdown voltages of >140 V compared to ˜100 V for the non-field plate devices. When cutoff frequencies were investigated against bias current, all devices showed extremely sharp turn-on in power-gain cutoff frequencies (Fmax) as the device channel opened up. FIG. 9 illustrates such characteristics. Such gain characteristics are well suited for class B/deep class-AB operation for high efficiency. When biased at 48 V with a small quiescent current of 20 mA/mm and driven by a 2-tone signal with 100 kHz spacing at 4 GHz, a non-field plate device generated 3.4 W/mm with 56% PAE and 15.8 dB gain at IM3 of −30 dBc (see FIG. 13). The field plate devices showed improved linear power due to the benefit of field shaping. However, as LF increased, gain reduced, which affected PAE. As a compromise, LF=0.7 μm was found optimum at this bias voltage, achieving a linear power density of 3.7 W/mm with 57% PAE and 13.7 dB gain at IM3 of −30 dBc as seen in FIG. 7. A more significant advantage of the field plate devices is their capability for higher voltage operation. At 78 V, 7 W/mm linear power was obtained with 50% PAE and 15.2 dB gain from a device with LF=0.7 μm. With further increased bias voltages, a longer LF was needed. At 108 V, a device with LF=1.1 μm produced 10 W/mm linear power with 41% PAE and 14.3 dB gain at IM3 of −30 dBc as seen in FIG. 8.

FIG. 14 illustrates linearity performance at 10 GHz. FIG. 14 is a graph of performance of a device with a field plate at 10 GHz, VDS=70V and IQ=20 mA/mm, which achieved a 50% PAE with associated power density of 20 W/mm. The device dimensions were a gate width WG of 0.25 mm, LG=0.5 μm. Single tone power at 3 dB compression was P3dB=8 W/mm with PAE=70%.

While embodiments of the present invention have been described herein with reference to particular HEMT structures, the present invention should not be construed as limited to such structures. For example, additional layers may be included in the HEMT device while still benefiting from the teachings of the present invention. Such additional layers may include GaN cap layers, as for example, described in Yu et al., “Schottky barrier engineering in III–V nitrides via the piezoelectric effect,” Applied Physics Letters, Vol. 73, No. 13, 1998, or in U.S. Patent Publication No. 2002/0066908A1 filed Jul. 12, 2001 and published Jun. 6, 2002, for “ALUMINUM GALLIUM NITRIDE/GALLIUM NITRIDE HIGH ELECTRON MOBILITY TRANSISTORS HAVING A GATE CONTACT ON A GALLIUM NITRIDE BASED CAP SEGMENT AND METHODS OF FABRICATING SAME,” the disclosures of which are incorporated herein by reference as if set forth fully herein.

In the drawings and specification, there have been disclosed typical embodiments of the invention, and, although specific terms have been employed, they have been used in a generic and descriptive sense only and not for purposes of limitation.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US4424525Dec 29, 1980Jan 3, 1984Fujitsu LimitedHigh electron mobility single heterojunction semiconductor devices
US4471366Mar 1, 1982Sep 11, 1984Thomson-CsfGallium arsenide, aluminum gallium arsenide, n-junctions
US4727403Apr 8, 1986Feb 23, 1988Nec CorporationDouble heterojunction semiconductor device with injector
US4755867Aug 15, 1986Jul 5, 1988American Telephone And Telegraph Company, At&T Bell LaboratoriesVertical Enhancement-mode Group III-V compound MISFETs
US4788156Sep 24, 1986Nov 29, 1988Microwave Technology, Inc.Subchannel doping to reduce short-gate effects in field effect transistors
US4946547Oct 13, 1989Aug 7, 1990Cree Research, Inc.Method of preparing silicon carbide surfaces for crystal growth
US5053348Dec 1, 1989Oct 1, 1991Hughes Aircraft CompanyFabrication of self-aligned, t-gate hemt
US5172197Dec 20, 1991Dec 15, 1992Hughes Aircraft CompanyHemt structure with passivated donor layer
US5192987May 17, 1991Mar 9, 1993Apa Optics, Inc.Gallium nitride and aluminum gallium nitride junction layers
US5200022Oct 3, 1990Apr 6, 1993Cree Research, Inc.Method of improving mechanically prepared substrate surfaces of alpha silicon carbide for deposition of beta silicon carbide thereon and resulting product
US5210051Jun 5, 1991May 11, 1993Cree Research, Inc.P-n junctions
US5296395Mar 3, 1993Mar 22, 1994Apa Optics, Inc.Forming a multilayer element with gallium nitride and aluminum gallium nitride layers
US5298445May 21, 1993Mar 29, 1994Nec CorporationForming ohmic electrode on second semiconductor layer
US5389571Apr 16, 1993Feb 14, 1995Hiroshi AmanoHolding heated single crystal silicon substrate in atmosphere containing organic aluminum compound and nitrogen compound to form thin film on surface, forming single crystal layers of gallium aluminum indium nitride on intermediate layer
US5393993Dec 13, 1993Feb 28, 1995Cree Research, Inc.Buffer structure between silicon carbide and gallium nitride and resulting semiconductor devices
US5523589Sep 20, 1994Jun 4, 1996Cree Research, Inc.Conductive silicon carbide substrate; ohmic contact; conductive buffer layer
US5534462Feb 24, 1995Jul 9, 1996Motorola, Inc.Method for forming a plug and semiconductor device having the same
US5592501Sep 20, 1994Jan 7, 1997Cree Research, Inc.Low-strain laser structures with group III nitride active layers
US5686737Sep 16, 1994Nov 11, 1997Cree Research, Inc.Self-aligned field-effect transistor for high frequency applications
US5700714Jan 19, 1996Dec 23, 1997Oki Electric Industry Co., Ltd.Patterning aluminum nitride film to form diffusion mask with windows, diffusing impurity by annealing, etching with hydrofluoric acid
US5701019Aug 21, 1995Dec 23, 1997Hitachi, Ltd.Semiconductor device having first and second stacked semiconductor layers, with electrical contact to the first semiconductor layer
US5705827Sep 8, 1994Jan 6, 1998Nec CorporationTunnel transistor and method of manufacturing same
US5804482May 8, 1995Sep 8, 1998Abb Research Ltd.Diffusing dopant to the surface of silicon carbide layer, highly doping surface layer of silicon carbide prior first diffusion to control the diffusion of dopant under surface layer portion
US5885860Jun 16, 1997Mar 23, 1999Motorola, Inc.Forming on a silicon carbide substrate a gate having dielectric spacer along an edge, doping substrate using gate as a mask, activating dopant at low temperature
US5946547Dec 13, 1996Aug 31, 1999Samsung Electronics Co., Ltd.Liquid crystal display device fabrication methods with reduced numbers of patterning steps
US5990531Nov 12, 1997Nov 23, 1999Philips Electronics N.A. CorporationMethods of making high voltage GaN-AlN based semiconductor devices and semiconductor devices made
US6028328Dec 18, 1996Feb 22, 2000Siemens AktiengesellschaftHEMT double hetero structure
US6046464Aug 13, 1997Apr 4, 2000North Carolina State UniversityIntegrated heterostructures of group III-V nitride semiconductor materials including epitaxial ohmic contact comprising multiple quantum well
US6051849Feb 27, 1998Apr 18, 2000North Carolina State UniversityGallium nitride semiconductor structures including a lateral gallium nitride layer that extends from an underlying gallium nitride layer
US6064082May 29, 1998May 16, 2000Sony CorporationHeterojunction field effect transistor
US6086673Apr 2, 1998Jul 11, 2000Massachusetts Institute Of TechnologyProcess for producing high-quality III-V nitride substrates
US6150680Mar 5, 1998Nov 21, 2000Welch Allyn, Inc.Field effect semiconductor device having dipole barrier
US6177685Jan 20, 1999Jan 23, 2001Sharp Kabushiki KaishaNitride-type III-V HEMT having an InN 2DEG channel layer
US6177688Nov 24, 1998Jan 23, 2001North Carolina State UniversityLow defect densities
US6218680May 18, 1999Apr 17, 2001Cree, Inc.Semi-insulating silicon carbide without vanadium domination
US6255198Nov 17, 1999Jul 3, 2001North Carolina State UniversityMethods of fabricating gallium nitride microelectronic layers on silicon layers and gallium nitride microelectronic structures formed thereby
US6261929Feb 24, 2000Jul 17, 2001North Carolina State UniversityMethods of forming a plurality of semiconductor layers using spaced trench arrays
US6316793Jun 12, 1998Nov 13, 2001Cree, Inc.Nitride based transistors on semi-insulating silicon carbide substrates
US6376339Feb 9, 2001Apr 23, 2002North Carolina State UniversityPendeoepitaxial methods of fabricating gallium nitride semiconductor layers on silicon carbide substrates by lateral growth from sidewalls of masked posts, and gallium nitride semiconductor structures fabricated thereby
US6380108Dec 21, 1999Apr 30, 2002North Carolina State UniversityPendeoepitaxial methods of fabricating gallium nitride semiconductor layers on weak posts, and gallium nitride semiconductor structures fabricated thereby
US6429467Jan 27, 2000Aug 6, 2002Nec CorporationGroup 3 nitride
US6448648Mar 27, 1997Sep 10, 2002The United States Of America As Represented By The Secretary Of The NavyMetalization of electronic semiconductor devices
US6462355Nov 21, 2000Oct 8, 2002North Carolina State UniversityPendeoepitaxial gallium nitride semiconductor layers on silicon carbide substrates
US6486042Jul 16, 2001Nov 26, 2002North Carolina State UniversityMethods of forming compound semiconductor layers using spaced trench arrays and semiconductor substrates formed thereby
US6489221Feb 9, 2001Dec 3, 2002North Carolina State UniversityHigh temperature pendeoepitaxial methods of fabricating gallium nitride semiconductor layers on sapphire substrates
US6492669Jun 28, 2001Dec 10, 2002Nec CorporationSemiconductor device with schottky electrode having high schottky barrier
US6515316Jul 14, 2000Feb 4, 2003Trw Inc.Partially relaxed channel HEMT device
US6521514Nov 17, 1999Feb 18, 2003North Carolina State UniversityPendeoepitaxial methods of fabricating gallium nitride semiconductor layers on sapphire substrates
US6545300Jul 3, 2001Apr 8, 2003North Carolina State UniversityPendeoepitaxial methods of fabricating gallium nitride semiconductor layers on sapphire substrates, and gallium nitride semiconductor structures fabricated thereby
US6548333Jul 12, 2001Apr 15, 2003Cree, Inc.Aluminum gallium nitride/gallium nitride high electron mobility transistors having a gate contact on a gallium nitride based cap segment
US6570192Mar 14, 2000May 27, 2003North Carolina State UniversityGallium nitride semiconductor structures including lateral gallium nitride layers
US6582906Apr 5, 1999Jun 24, 2003Affymetrix, Inc.Proportional amplification of nucleic acids
US6582986Aug 21, 2001Jun 24, 2003Cree, Inc.Single step pendeo-and lateral epitaxial overgrowth of group III-nitride epitaxial layers with group III-nitride buffer layer and resulting structures
US6586778Apr 4, 2002Jul 1, 2003North Carolina State UniversityGallium nitride semiconductor structures fabricated by pendeoepitaxial methods of fabricating gallium nitride semiconductor layers on weak posts
US6586781Jan 29, 2001Jul 1, 2003Cree Lighting CompanyGroup III nitride based FETs and HEMTs with reduced trapping and method for producing the same
US6602763Feb 9, 2001Aug 5, 2003North Carolina State UniversityMethods of fabricating gallium nitride semiconductor layers by lateral overgrowth
US6602764May 7, 2001Aug 5, 2003North Carolina State UniversityMethods of fabricating gallium nitride microelectronic layers on silicon layers
US6608327Feb 27, 1998Aug 19, 2003North Carolina State UniversityGallium nitride semiconductor structure including laterally offset patterned layers
US6621148Oct 9, 2001Sep 16, 2003North Carolina State UniversityMethods of fabricating gallium nitride semiconductor layers on substrates including non-gallium nitride posts, and gallium nitride semiconductor structures fabricated thereby
US6639255Dec 8, 2000Oct 28, 2003Matsushita Electric Industrial Co., Ltd.GaN-based HFET having a surface-leakage reducing cap layer
US6686261Apr 1, 2003Feb 3, 2004North Carolina State UniversityPendeoepitaxial methods of fabricating gallium nitride semiconductor layers on sapphire substrates, and gallium nitride semiconductor structures fabricated thereby
US6706114May 21, 2001Mar 16, 2004Cree, Inc.Methods of fabricating silicon carbide crystals
US20010015446Dec 8, 2000Aug 23, 2001Kaoru InoueSemiconductor device
US20010020700Jan 12, 2001Sep 13, 2001Kaoru InoueSemiconductor device
US20010023964Jan 29, 2001Sep 27, 2001Yifeng WuGroup III nitride based FETs and hemts with reduced trapping and method for producing the same
US20010040246Feb 16, 2001Nov 15, 2001Hirotatsu IshiiGaN field-effect transistor and method of manufacturing the same
US20020008241Sep 28, 2001Jan 24, 2002Edmond John AdamGroup III nitride photonic devices on silicon carbide substrates with conductive buffer interlayer structure
US20020017696Jun 28, 2001Feb 14, 2002Tatsuo NakayamaSemiconductor device with schottky electrode having high schottky barrier
US20020066908Jul 12, 2001Jun 6, 2002Smith Richard PeterAluminum gallium nitride/gallium nitride high electron mobility transistors having a gate contact on a gallium nitride based cap segment and methods of fabricating same
US20020079508Dec 18, 2001Jun 27, 2002The Furukawa Electric Co., Ltd.GaN-based high electron mobility transistor
US20020119610Jan 25, 2002Aug 29, 2002Katsunori NishiiSemiconductor device and method for fabricating the same
US20020167023Mar 19, 2002Nov 14, 2002Cree Lighting Company And Regents Of The University Of CaliforniaGroup-III nitride based high electron mobility transistor (HEMT) with barrier/spacer layer
US20030017683Jul 18, 2001Jan 23, 2003Motorola, Inc.Structure and method for fabricating heterojunction bipolar transistors and high electron mobility transistors utilizing the formation of a complaint substrates for materials used to form the same
US20030020092Jul 23, 2002Jan 30, 2003Primit ParikhInsulating gate AlGaN/GaN HEMT
US20030102482Jul 19, 2002Jun 5, 2003Saxler Adam WilliamStrain balanced nitride heterojunction transistors and methods of fabricating strain balanced nitride heterojunction transistors
US20030123829Nov 12, 2002Jul 3, 2003Taylor Geoff W.Monolithic integrated circuit including a waveguide and quantum well inversion channel devices and a method of fabricating same
US20030145784Feb 10, 2003Aug 7, 2003Thompson Margarita P.Cubic (zinc-blende) aluminum nitride and method of making same
US20030157776Feb 25, 2003Aug 21, 2003Smith Richard PeterMethods of fabricating aluminum gallium nitride/gallium nitride high electron mobility transistors having a gate contact on a gallium nitride based cap segment
US20030213975Apr 17, 2003Nov 20, 2003Matsushita Electric Industrial Co, Ltd.Semiconductor device
US20040004223Jun 24, 2003Jan 8, 2004Nichia Chemical Industries, Ltd.Nitride semiconductor device
US20040012015Jul 19, 2002Jan 22, 2004Saxler Adam WilliamStrain compensated semiconductor structures and methods of fabricating strain compensated semiconductor structures
US20040021152Aug 5, 2002Feb 5, 2004Chanh NguyenGa/A1GaN Heterostructure Field Effect Transistor with dielectric recessed gate
US20040029330Aug 4, 2003Feb 12, 2004Tahir HussainOhmic metal contact and channel protection in GaN devices using an encapsulation layer
US20040061129Jul 11, 2003Apr 1, 2004Saxler Adam WilliamForming nitride-based semiconductor cap layer on channel layer; mask corresponds to recesses for contactors
US20040241970Apr 10, 2003Dec 2, 2004Zoltan RingMethod of Forming Vias in Silicon Carbide and Resulting Devices and Circuits
US20060118809 *Dec 6, 2004Jun 8, 2006Primit ParikhHigh power density and/or linearity transistors
USRE34861Oct 9, 1990Feb 14, 1995North Carolina State UniversitySublimation of silicon carbide to produce large, device quality single crystals of silicon carbide
EP0334006A1Feb 6, 1989Sep 27, 1989Siemens AktiengesellschaftStacked channel heterojunction fet
EP0563847A2Mar 29, 1993Oct 6, 1993Matsushita Electric Industrial Co., Ltd.A field effect transistor
JP2001230407A Title not available
JP2002016087A Title not available
JP2004342810A Title not available
JPH1050982A Title not available
JPH11261053A Title not available
WO1993023877A1May 7, 1993Nov 25, 1993Massachusetts Inst TechnologyIii-v based integrated transistor
WO2001057929A1Feb 1, 2001Aug 9, 2001Cree Lighting CoGroup iii nitride based fets and hemts with reduced trapping and method for producing the same
WO2003049193A1Nov 20, 2002Jun 12, 2003Cree IncStrain balanced nitride heterojunction transistors and methods of fabricating strain balanced nitride heterojunction transistors
WO2004008495A2Jul 15, 2003Jan 22, 2004Cree IncNitride-based transistors and methods of fabrication thereof using non-etched contact recesses
WO2005024909A2Sep 9, 2004Mar 17, 2005Univ CaliforniaFabrication of single or multiple gate field plates
Non-Patent Citations
Reference
1"Aluminum Free Group III-Nitride Based High Electron Mobility Transistors and Methods of Fabricating Same," U.S. Appl. No. 11/118,575, filed Apr. 29, 2005.
2"Binary Group III-Nitride Based High Electron Mobility Transistors and Methods of Fabricating Same," U.S. Appl. No. 11/118,675, filed Apr. 29, 2005.
3"Cap Layers and/or Passivation Layers for Nitride-Based Transistors, Transistor Structures and Methods of Fabricating the Same," U.S. Appl. No. 10/996,249, filed Nov. 23, 2004.
4"Cascode Amplifier Structures Including Wide Bandgap Field Effect Transistor With Field Plate," U.S. Appl. No. 10/856,098, filed May 28, 2004.
5"Co-Doping for Fermi Level Control in Semi-Insulating Group III Nitrides," U.S. Appl. No. 10/752,970, filed Jan. 7, 2004.
6"Composite Substrates of Conductive And Insulating or Semi-Insulating Group III-Nitrides For Group III-Nitride Devices," U.S. Appl. No. 11/103,127, filed Apr. 11, 2005.
7"Field Effect Transistors (FETS) Having Multi-Watt Output Power at Millimeter-Wave Frequencies," U.S. Appl. No. 11/005,423, filed Dec. 6, 2004.
8"Group III Nitride Field Effect Transistors (FETs) Capable of Withstanding High Temperature Reverse Bias Test Conditions," U.S. Appl. No. 11/080,905, filed Mar. 15, 2005.
9"Improved Dielectric Passivation for Semiconductor Devices," U.S. Appl. No. 10/851,507, filed May 22, 2004.
10"Methods of Fabricating Nitride-Based Transistors Having Regrown Ohmic Contact Regions and Nitride-Based Transistors Having Regrown Ohmic Contact Regions," U.S. Appl. No. 10/849,617, filed May 20, 2004.
11"Methods of Fabricating Nitride-Based Transistors with a Cap Layer and a Recessed Gate," U.S. Appl. No. 10/897,726, filed Jul. 23, 2004.
12"Methods of Having Laterally Grown Active Region and Methods of Fabricating Same," U.S. Appl. No. 10/899,215, filed Jul. 26, 2004.
13"Nitride Heterojunction Transistors Having Charge-Transfer Induced Energy Barriers and Methods of Fabricating the Same," U.S. Appl. No. 10/772,882, filed Feb. 5, 2004.
14"Nitride-Based Transistors and Methods of Fabrication Thereof Using Non-Etched Contact Recesses," U.S. Appl. No. 10/617,843, filed Jul. 11, 2003.
15"Nitride-Based Transistors with a Protective Layer and a Low-Damage Recess and Methods of Fabrication Thereof," U.S. Appl. No. 10/758,871, filed Jan. 16, 2004.
16"Semiconductor Devices Having a Hybrid Channel Layer Current Aperture Transistors and Methods of Fabricating Same" U.S. Appl. No. 10/849,589, filed May 20, 2004.
17"Silicon Carbide on Diamond Substrates and Related Devices and Methods," U.S. Appl. No. 10/707,898, filed Jan. 22, 2004.
18"Thick AIN template on SiC substrate-Novel semi insulating substrate for GaN-based devices," (C) 2003 by TDI, Inc., http://www.tdii.com/products/AIN<SUB>-</SUB>SiCT.html.
19"Thick Semi-Insulating or Insulating Epitaxial Gallium Nitride Layers and Devices Incorporating Same," U.S. Appl. No. 11/103,117, filed Apr. 11, 2005.
20"Wide Bandgap Transistor Devices With Field Plate," U.S. Appl. No. 10/930,160, filed Aug. 31, 2004.
21Ambacher et al., "Two Dimensional Electron Gases Induced by Spontaneous and Piezoelectric Polarization Charges in N- and Ga-face AlGaN/GaN Heterostructures," Journal of Applied Physics. vol. 85, No. 6, pp. 3222-3233 (Mar. 1999).
22Ando et al., "10-W/mm AlGaN-GaN HFET With a Field Modulating Plate," IEEE Electron Device Letters, 24(5), pp. 289-291 (May 2003).
23Asbeck et al. "Piezoelectric charge densities in AlGaN/GaN HFETs," Electronics Letters. vol. 33, No. 14, pp. 1230-1231, Jul. 1997.
24Beaumont, B. et al., "Epitaxial Lateral Overgrowth of GaN," Phys. Stat. Sol. (b) 227, No. 1, pp. 1-43 (2001).
25Ben-Yaacov et al., "AlGaN/GaN Current Aperture Vertical Electron Transistors with Regrown Channels," Journal of Applied Physics. vol. 95, No. 4, pp. 2073-2078, Feb. 2004.
26Breitschadel et al. "Minimization of Leakage Current of Recessed Gate AlGaN/GaN HEMTs by Optimizing the Dry-Etching Process," Journal of Electronic Materials. vol. 28, No. 12, pp. 1420-1423 (1999).
27Burm et al. "Recessed Gate GaN MODFETS," Solid-State Electronics. vol. 41, No. 2, pp. 247-250 (1997).
28Burm et al. "Ultra-Low Resistive Ohmic Contacts on n-GaN Using Si Implantation," Applied Physics Letters. vol. 70, No. 4, 464-66, Jan. 1997.
29Chang et al., "AlGaN/GaN Modulation-Doped Field-Effect Transistors with an Mg-doped Carrier Confinement Layer," Jpn. J. Appl. Phys., 42:3316-3319, Jun. 2003.
30Chen et al. "CI2 reactive ion etching for gate recessing of AlGaN/GaN field-effect transistors," J. Vac. Sci. Technol. B. vol. 17, No. 6, pp. 2755-2758, Nov. 1999.
31Chini et al., "Power and Linearity Characteristics of Field-Plagted Recessed-Gate AlGaN-GaN HEMTs," IEEE Electron Device Letters, 25(5), pp. 229-231 (May 2004).
32Cho et al., "A New GaAs Field Effect Transistor (FET) with Dipole Barrier (DIB)," Jpn. J. Appl. Phys. 33:775-778, Jan. 1994.
33Coffie et al., Unpassivated p-GaN/AlGaN/GaN HEMTs with 7.1 W/MMF at 10 GHz, Electronic Letters online No. 20030872, 39(19), (Sep. 18, 2003).
34Eastman et al. "GaN materials for high power microwave amplifiers," Mat. Res. Soc. Symp. Proc. vol. 512 (1998).
35Eastman et al. "Undoped AlGaN/GaN HEMTs for Microwave Power Amplification," IEEE Transactions on Electron Devices. vol. 48, No. 3, pp. 479-485 (Mar. 2001).
36Egawa et al. "Recessed gate ALGaN/GaN MODFET on Sapphire Grown by MOCVD," Applied Physics Letters. vol. 76, No. 1, pp. 121-123 (Jan. 2000).
37Gaska et al. "Electron Transport in AlGaN/GaN Heterostructures Grown on 6H-SiC Substrates," Applied Physics Letters. vol. 72, No. 6, pp. 707-709 (Feb. 1998).
38Gaska et al. "High-Temperature Performance of AlGaN/GaN HFET's on SiC Substrates," IEEE Electron Device Letters. vol. 18, No. 1, pp. 492-494 (Oct. 1997).
39Gaska et al., "Self-Heating in High-Power AlGaN/GaN HFET's," IEEE Electron Device Letters, 19(3), pp. 89-91 (Mar. 1998).
40Gelmont et al. "Monte Carlo simulation of electron transport in gallium nitride," Journal of Applied Physics. vol. 74, No. 3, pp. 1818-1821 (Aug. 1993).
41Heikman et al. "Polarization Effects in AlGaN/GaN and GaN/AlGaN/GaN heterostructures," Journal of Applied Physics. vol. 93, No. 12, pp. 10114-10118 (Jun. 2003).
42Heikman et al., "Growth of Fe-Doped Semi-insulating GaN by Metalorganic Chemical Vapor Deposition," Applied Physics Letters. vol. 83, No. 1, pp. 439-441 (Jul. 2002).
43Heikman, et al., "Mass Transport Regrowth of GaN for Ohmic Contacts to AlGaN/GaN," Applied Physics Letters. vol. 78, No. 19, pp. 2876, May 2001.
44Heikman, Sten J., MOCVD Growth Technologies for Applications in AlGaN/Gan High Electron Mobility Transistors, Dissertation, University of California-Santa Barbara, Sep. 2002, 190 pages.
45Hikita et al., "350V/150A AlGaN/GaN Power HFET on Silicon Substrate With Source-via Grouding (SVG) Structure," Electron Devices Meeting, 2004, pp. 803-806, IEDM Technical Digest. IEEE International (Dec. 2004).
46Kanaev et al., "Femtosecond and Ultraviolet Laser Irradiation of Graphitelike Hexagonal Boron Nitride," Journal of Applied Physics, 96(8), pp. 4483-4489 (Oct. 15, 2004).
47Kanamura et al., "A 100-W High-Gain AlGaN/GaN HEMT Power Amplifier on a Conductive N-SiC Substrate for Wireless Base Station Applications," Electron Devices Meeting, 2004, pp. 799-802, IEDM Technical Digest. IEEE International (Dec. 2004).
48Karmalkar et al. "Enhancement of Breakdown Voltage in AlGaN/GaN High Electron Mobility Transistors Using a Field Plate," IEEETransactions on Electron Devices. vol. 48, No. 8, pp. 1515-1521 (Aug. 2001).
49Karmalkar et al. "RESURF AlGaN/GaN HEMT for High Voltage Power Switching," IEEE Electron Device Letters. vol. 22, No. 8, pp. 373-375 (Aug. 2001).
50Karmalkar et al., "Very High Voltage AlGaN/GaN High Electron Mobility Transistors Using a Field Plate Deposited on a Stepped Insulator," Solid State Electronics, vol. 45, pp. 1645-1652 (2001).
51Kasahara et al., "Ka-ban 2.3W Power AlGaN/GaN Heterojunction FET," IEDM Technical Digest, pp. 677-680, Dec. 2002.
52Khan et al., "High Electron Mobility Transistor Based on a GaN-AlxGa1<SUB>-</SUB>xN Heterojunction," Applied Physics Letters, vol. 63, No. 9, pp. 1214-1215 (Aug. 20, 1993).
53Komiak et al., "Fully Monolithic 4 Watt High Efficiency Ka-band Power Amplifier," IEEE MTT-S International Microwave Symposium Digest, vol. 3, pp. 947-950 (1999).
54Küsters et al., "Double-Heterojunction Lattice-Matched and Pseudomorphic InGaAs HEMT with o-Doped InP Supply Layers and p-InP Barier Enhancement Layer Grown by LP-MOVPE," IEEE Electron Device Letters, 14(1), (Jan. 1993).
55Kuzmik et al. "Annealing of Schottky contacts deposited on dry etched AlGaN/GaN," Semiconductor Science and Technology. vol. 17, No. 11 (Nov. 2002).
56Manfra et al., "Electron Mobility Exceeding 160 000 cm<SUP>2</SUP>/V s in AlGaN/GaN Heterostructures Grown by Molecular-beam Epitaxy," Applied Physics Letters, 85(22), pp. 5394-5396 (Nov. 29, 2004).
57Manfra et al., "High Mobility AlGaN/GaN Heterostructures Grown by Plasma-assisted Molecular beam epitaxy on Semi-Insulating GaN Templates Prepared by Hydride Vapor Phase Epitaxy," Journal of Applied Physics, 92(1), pp. 338-345 (Jul. 1, 2002).
58Manfra et al., "High-Mobility AlGaN/GaN Heterostructures Grown by Molecular-beam Epitaxy on GaN Templates Prepared by Hydride Vapor Phase Epitaxy," Applied Physics Letters, 77(18), pp. 2888-2890 (Oct. 30, 2000).
59Neuburger et al. "Design of GaN-based Field Effect Transistor Structures based on Doping Screening of Polarization Fields," WA 1.5, 7<SUP>th </SUP>Wide-Gandgap III-Nitride Workshop (Mar. 2002).
60Parikh et al., "Development of Gallium Nitride Epitaxy and Associated Material-Device Correlation for RF, Microwave 5nd MM-wave Applications," Cree, Inc. (35 slides). May 2004.
61Ping et al. "DC and Microwave Performance of High-Current AlGaN/GaN Heterostructure Field Effect Transistors Grown on p-Type SiC Substrates," IEEE Electron Device Letters. vol. 19, No. 2, pp. 54-56 (Feb. 1998).
62Saxler et al., "III-Nitride Heterostructures on High-Purity Semi-Insulating 4H-SiC Substrates for High-Power RF Transistors," International Workshop on Nitride Semiconductors (Jul. 19, 2004).
63Shen et al., "High-Power Polarization-Engineered GaN/AlGaN/GaN HEMTs Without Surface Passivation," IEEE Electronics Device Letters. vol. 25, No. 1, pp. 7-9, Jan. 2004.
64Sheppard et al. "High Power Demonstration at 10 GHz with GaN/AlGaN HEMT Hybrid Amplifiers." Presented at the 58<SUP>th </SUP>DRC, Denver, CO, Jun. 2000.
65Sheppard et al. "Improved 10-GHz Operation of GaN/AlGaN HEMTs on Silicon Carbide," Materials Science Forum. vols. 338-342, pp. 1643-1646, (2000).
66Shiojima et al., "Improved Carrier Confinement by a Buried p-Layer in the AlGaN/GaN HEMT Structure," IEICE Trans. Electron., E83-C(12), (Dec. 2000).
67Sriram et al. "RF Performance of AlGaN/GaN MODFET's on High Resistivity SiC Substrates," Presentation at Materials Research Society Fall Symposium, 1997.
68Sriram et al. "SiC and GaN Wide Bandgap Microwave Power Transistors," IEEE Samoff Symposium, Pittsburgh, PA, Mar. 18, 1998.
69Sullivan et al. "High-Power 10-GHz Operation of AlGaN HFET's on Insulating SiC," IEEE Electron Device Letters. vol. 19, No. 6, pp. 198-200 (Jun. 1998).
70Tilak et al., "Influence of Barrier Thickness on the High-Power Performance of AlGaN/Gan HEMTs," IEEE Electron Device Letters, 22(11), pp. 504-506 (Nov. 2001).
71Walker, J. L. B. (Ed.), High Power GaAs FET Amplifiers, Norwood, MA: Artech House, pp. 119-120 (1993).
72Wu et al. "High Al-Content AlGaN/GaN MODFET's for Ultrahigh Performance," IEEE Electron Device Letters. vol. 19, No. 2, pp. 50-53 (Feb. 1998).
73Wu et al., "3.5-Watt AlGaN/GaN HEMTs and Amplifiers at 35 GHz," Electron Devices Meeting, 2003. IEDM '03 Technical Digest. IEEE International. Dec. 8-10, 2003.
74Wu et al., "3.5-Watt AlGaN/GaN HEMTs and Amplifiers at 35 GHz," IEDM-2003, Cree, Inc, Dec. 2003.
75Wu et al., "30-W/mm GaN HEMTs by Field Plate Optimization," IEEE Electron Device Letters, 25(3), pp. 117-119 (Mar. 2004).
76Wu et al., "Bias-dependent Performance of High-Power AlGaN/GaN HEMTs," IEDM Technical Digest, p. 378-380 (2001).
77Wu et al., "Linearity Performance of GaN HEMTs With Field Plates," Device Research Conference, 2004. 62nd DRC. Conference Digest. Jun. 21-23, 2004.
78Wu et al., "Linearity Performance of GaN HEMTs With Field Plates," Device Research Conference, 2004. 62nd DRC. Jun. 21-23, 2004.
79Wu et al., "Measured Microwave Power Performance of AlGaN/GaN MODFET," IEEE Electron Device Letters, vol. 17, No. 9, pp. 455-457 (Sep. 9, 1996).
80Yu et al., "Schottky Barrier Engineering in III-V Nitrides via the Piezoelectric Effect," Applied Physics Letters, 73(13), pp. 1880-1882 (Sep. 28, 1998).
81Zhang et al., "High Breakdown GaN HEMT with Overlapping Gate Structure," IEEE Electron Device Letters, 21(9), pp. 421-423 (Sep. 2000).
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US7388236 *Mar 29, 2006Jun 17, 2008Cree, Inc.High efficiency and/or high power density wide bandgap transistors
US7479465 *Jul 28, 2006Jan 20, 2009Freescale Semiconductor, Inc.Transfer of stress to a layer
US7560318Mar 13, 2006Jul 14, 2009Freescale Semiconductor, Inc.Process for forming an electronic device including semiconductor layers having different stresses
US7566913Dec 4, 2006Jul 28, 2009Nitronex CorporationGallium nitride material devices including conductive regions and methods associated with the same
US7638818 *Jul 7, 2006Dec 29, 2009Cree, Inc.Robust transistors with fluorine treatment
US7745848Aug 15, 2007Jun 29, 2010Nitronex CorporationGallium nitride material devices and thermal designs thereof
US7800132Oct 25, 2007Sep 21, 2010Northrop Grumman Systems CorporationHigh electron mobility transistor semiconductor device having field mitigating plate and fabrication method thereof
US7955918Oct 20, 2009Jun 7, 2011Cree, Inc.Robust transistors with fluorine treatment
US8026581Feb 5, 2008Sep 27, 2011International Rectifier CorporationGallium nitride material devices including diamond regions and methods associated with the same
US8067786Jul 24, 2009Nov 29, 2011International Rectifier CorporationGallium nitride material devices including conductive regions
US8237198Jan 18, 2011Aug 7, 2012Transphorm Inc.Semiconductor heterostructure diodes
US8289065Sep 9, 2009Oct 16, 2012Transphorm Inc.Inductive load power switching circuits
US8343824Jun 20, 2008Jan 1, 2013International Rectifier CorporationGallium nitride material processing and related device structures
US8389977Dec 10, 2009Mar 5, 2013Transphorm Inc.Reverse side engineered III-nitride devices
US8390000Aug 28, 2009Mar 5, 2013Transphorm Inc.Semiconductor devices with field plates
US8493129Sep 14, 2012Jul 23, 2013Transphorm Inc.Inductive load power switching circuits
US8519438Apr 23, 2008Aug 27, 2013Transphorm Inc.Enhancement mode III-N HEMTs
US8530937 *Nov 17, 2011Sep 10, 2013Sanken Electric Co., Ltd.Compound semiconductor device having insulation film with different film thicknesses beneath electrodes
US8531232Sep 14, 2012Sep 10, 2013Transphorm Inc.Inductive load power switching circuits
US8541818Jun 26, 2012Sep 24, 2013Transphorm Inc.Semiconductor heterostructure diodes
US8598937Oct 7, 2011Dec 3, 2013Transphorm Inc.High power semiconductor electronic components with increased reliability
US8643062Feb 2, 2011Feb 4, 2014Transphorm Inc.III-N device structures and methods
US8669589May 20, 2011Mar 11, 2014Cree, Inc.Robust transistors with fluorine treatment
US8692294Jan 24, 2013Apr 8, 2014Transphorm Inc.Semiconductor devices with field plates
US8716141Mar 4, 2011May 6, 2014Transphorm Inc.Electrode configurations for semiconductor devices
US8742459May 14, 2009Jun 3, 2014Transphorm Inc.High voltage III-nitride semiconductor devices
US8742460Dec 15, 2010Jun 3, 2014Transphorm Inc.Transistors with isolation regions
US20120126287 *Nov 17, 2011May 24, 2012Sanken Electric Co., Ltd.Compound semiconductor device having insulation film with different film thicknesses beneath electrodes
US20120274402 *Apr 25, 2012Nov 1, 2012Texas Instruments IncorporatedHigh electron mobility transistor
Classifications
U.S. Classification257/194, 257/488, 257/E29.253, 257/E29.127
International ClassificationH01L31/00
Cooperative ClassificationH01L29/2003, H01L29/42316, H01L29/402, H01L29/7787
European ClassificationH01L29/423D2, H01L29/40P, H01L29/778E2
Legal Events
DateCodeEventDescription
Jun 9, 2010FPAYFee payment
Year of fee payment: 4
Feb 28, 2005ASAssignment
Owner name: CREE, INC., NORTH CAROLINA
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:PARIKH, PRIMIT;WU, YIFENG;SAXLER, ADAM WILLIAM;REEL/FRAME:015805/0732;SIGNING DATES FROM 20041217 TO 20041223