US 7167119 B1 Abstract A method of sampling an input signal in a delta-sigma modulator having at least an integrator stage and a feedback digital-to-analog converter (DAC) stage includes sampling an input signal at a sampling rate by alternately utilizing the two sampling capacitors during two sampling cycles such that the two sampling capacitors are each being utilized at half the rate of the sampling rate. Samples from the two sampling capacitors are summed at the sampling rate at an intermediate node with a feedback samples provided by the feedback DAC stage at the sampling rate to generate output samples which are output from integrator stage at the sampling rate.
Claims(17) 1. An input network for a delta-sigma modulator having at least an integrator stage and a feedback digital-to-analog converter (DAC) stage, comprising:
an input sampling and transfer circuit having input sampling switches coupled to two sampling capacitors and output sampling switches coupled to the two sampling capacitors, wherein the input sampling and transfer circuit:
samples an input signal at a sampling rate, alternately utilizing the two sampling capacitors during two sampling cycles such that the two sampling capacitors are each being utilized at half the rate of the sampling rate; and
charge transfers the samples at the sampling rate for the integrator stage; and
a feedback digital-to-analog converter (DAC) circuit coupled to switch outputs of the output sampling switches for providing at the switch outputs a feedback DAC signal at the sampling rate and independently of the half rate, the integrator stage providing from the switch outputs of the output sampling switches an output signal at the sampling rate.
2. The input network of
3. The input network of
4. The input network of
5. The input network of
6. The input network of
7. The input network of
8. A method of sampling an input signal in a delta-sigma modulator having at least an integrator stage and a feedback digital-to-analog converter (DAC) stage, comprising:
sampling an input signal at a sampling rate by alternately utilizing two sampling capacitors during two sampling cycles such that the two sampling capacitors are utilized at half of the sampling rate;
alternately transferring samples from each of the two sampling capacitors at half the sampling rate to an intermediate node for summation with feedback samples provided by the feedback DAC stage at the sampling rate; and
outputting samples summed at the intermediate node from the integrator stage at the sampling rate from the integrator stage.
9. The method of
charging the two capacitors at half the loop rate from two corresponding voltages during a sampling phase and cross-coupling the two sampling capacitors with the two voltages during a charge transfer phase to transfer charge to the intermediate node.
10. The method of
alternately coupling at half the loop rate each of the two sampling capacitors with the intermediate node.
11. The method of
12. The method of
13. The method of
14. A method of operating a delta-sigma modulator comprising at least one filter stage, a quantizer, and a feedback loop providing complementary feedback signals, comprising:
during alternating cycles performed at half the loop rate, charging first and second capacitors respectively from first and second inputs during a sampling phase and cross-coupling the first and second capacitors respectively with the second and first inputs during a charge transfer phase to transfer charge respectively from the first and second capacitors to first and second intermediate nodes;
during other alternating cycles performed at half the loop rate, charging the first and second capacitors respectively from the second and first inputs during a sampling phase and cross-coupling the first and second capacitors respectively with the first and second inputs during a charge transfer phase to transfer charge respectively from the second and first capacitors to the first and second intermediate nodes; and
transferring to operational amplifier summing nodes at the loop rate the charge at the first and second intermediate nodes along with the complementary feedback signals received at the intermediate nodes directly from the feedback loop at the loop rate.
15. The method of
16. The method of
17. The method of
Description The present invention relates in general to mixed-signal circuit techniques, and in particular, to delta-sigma modulators with double sampling input networks and systems using the same. Delta-sigma modulators are particularly useful in digital to analog and analog to digital converters (DACs and ADCs). Using oversampling, a delta-sigma modulator spreads the quantization noise power across an oversampling frequency band, which is typically much greater than the input signal bandwidth. Additionally, the delta-sigma modulator performs noise shaping by acting as a lowpass filter to the input signal and a highpass filter to the noise; hence, most of the quantization noise power is thereby shifted out of the signal band. The typical delta-sigma modulator includes a summer summing the input signal with negative feedback, a linear filter, quantizer and a feedback loop with a digital to analog converter coupling the quantizer output and the inverting input of the summer. In a first order modulator, the linear filter comprises a single integrator stage while the filter in a higher order modulator comprises a cascade of a corresponding number of integrator stages. The quantizer can be either a one-bit or a multiple-bit quantizer. Higher-order modulators have improved quantization noise transfer characteristics over those of lower order, but stability becomes a more critical design factor as the order increases. Switched-capacitor filters/integrators are useful in a number of applications including the integrator stages in delta-sigma modulators. Generally, a basic differential switched-capacitor integrator samples the input signal, and often a reference voltage as well, onto a corresponding pair of sampling capacitors during the sampling (charging) phase. During the following charge transfer phase, the charge on the sampling capacitor is transferred at the summing nodes of an operational amplifier to a corresponding pair of integrator capacitors in the amplifier feedback loops. The operational amplifier drives the integrator output. Noise performance is an important design constraint in delta-sigma modulator design. Noise can result from a number of different factors, including parasitic capacitances and timing mismatches. Settling time is another constraint on noise performance when switched-capacitor integrator stages are utilized. Generally, sufficient time must be provided during the charge transfer phases to allow the voltages at the opamp inputs to settle to their steady state values. This time requirement in turn limits the switching speed of the integrator stage, and consequently the operating speed of the overall system, or alternatively limits noise performance. Reducing input impedance of a switched capacitor integrator stage is a further important design consideration. A higher input impedance will allow the integrator stage to be driven by a smaller, less complicated, and/or less expensive driver circuit. Hence, for applications requiring low-noise delta-sigma modulation, improved techniques for reducing noise are required. Another goal is the reduction of the input impedance at the input sampling network, such that smaller, less complicated, external drivers may be utilized. Finally, improvement of modulator performance at high frequencies is an additional design consideration, which should be addressed. In one representative embodiment of the principles of the present invention, a method is disclosed for sampling an input signal in a delta-sigma modulator having at least an integrator stage and a feedback digital-to-analog converter (DAC) stage and which includes sampling an input signal at a sampling rate by alternately utilizing two sampling capacitors during two sampling cycles such that the two sampling capacitors are utilized at half of the sampling rate. Samples from the two sampling capacitors are summed at the sampling rate at an intermediate node with feedback samples provided by the feedback DAC stage at the sampling rate to generate output samples which are output from integrator stage at the sampling rate. In sum, by alternatively switching each input between each sampling capacitor at half the modulator feedback loop rate, the impedance of the sampling network/integrator stage is approximately doubled. In turn, the external driver circuitry driving the stage may be made smaller and less expensive. Additionally, by alternating each input between sampling capacitors during odd and even cycles, the sampling capacitors must only be charged proportional to the relatively small change in the input voltage, rather than charged proportional to the full input voltage swing. Consequently, each sampling phase of each cycle may be shortened, and each charge transfer phase lengthened, such that power consumption and size of the first integrator stage in the cascade are reduced. Additionally, with the sampling capacitors being charged with a reduced voltage swing, noise and distortion are reduced. Finally, in a multiple stage delta-sigma modulator, decreasing the size and power of the first stage in the cascade allows for a proportional reduction in the size and power of the following stages. For a more complete understanding of the present invention, and the advantages thereof, reference is now made to the following descriptions taken in conjunction with the accompanying drawings, in which: The principles of the present invention and their advantages are best understood by referring to the illustrated embodiment depicted in A/D converter The resulting left and right channel digital audio data are output through a single serial port SDOUT of serial output interface The purpose of this additional feed-forward path is to cancel as much of the input signal energy from the delta-sigma loop as possible. Consequently, most of the voltage swing within the modulator will be quantization noise. In turn, the design constraints on the sub-circuits within modulator Input sampling network/integrator Generally, during sampling phase φ During the sampling phase φ At the same time, charges from the outputs DAC+ and DAC− of DAC Advantageously, by performing the odd and even cycles at half the sampling rate f The specific operation of exemplary input sampling network/integrator At the rising edge of the The control signal xφ At time t Shortly after time t While the control signal is φ The even cycle begins at time t The signal xφ The charge transfer phase of the even cycle begins shortly before time t During the fine portion of the charge transfer phase of the even cycle, at time t The odd and even cycles repeat in a similar fashion while integrator Generally, charge is transfer at the full modulator feedback loop rate. In the illustrated embodiment, charge is provided from DAC outputs DAC+ and DAC− every two periods of the A representative sample/charge transfer cycle within DAC Hence, input sampling network/integrator Although the invention has been described with reference to specific embodiments, these descriptions are not meant to be construed in a limiting sense. Various modifications of the disclosed embodiments, as well as alternative embodiments of the invention, will become apparent to persons skilled in the art upon reference to the description of the invention. It should be appreciated by those skilled in the art that the conception and the specific embodiment disclosed might be readily utilized as a basis for modifying or designing other structures for carrying out the same purposes of the present invention. It should also be realized by those skilled in the art that such equivalent constructions do not depart from the spirit and scope of the invention as set forth in the appended claims. It is therefore contemplated that the claims will cover any such modifications or embodiments that fall within the true scope of the invention. Patent Citations
Non-Patent Citations
Referenced by
Classifications
Legal Events
Rotate |