Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.


  1. Advanced Patent Search
Publication numberUS7208071 B2
Publication typeGrant
Application numberUS 10/453,350
Publication dateApr 24, 2007
Filing dateJun 3, 2003
Priority dateNov 1, 2000
Fee statusPaid
Also published asCA2360599A1, DE60116238D1, DE60116238T2, EP1203951A1, EP1203951B1, US6602401, US20030205485
Publication number10453350, 453350, US 7208071 B2, US 7208071B2, US-B2-7208071, US7208071 B2, US7208071B2
InventorsChang-Dong Feng
Original AssigneeRosemount Analytical Inc.
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Amperometric sensor for low level dissolved oxygen with self-depleting sensor design
US 7208071 B2
A dissolved oxygen sensor having a cathode and anode immersed in an electrolyte is designed to provide a low background current in the sensor when a potential is applied to the cathode. The background current is maintained at a desired level by selecting the area and length of a channel or path of diffusion of residual oxygen in the electrolyte to the cathode. The area (A) of the diffusion channel in relation to its length (L) is selected to be at or below a selected ratio, A/L.
Previous page
Next page
1. A sensor for sensing presence of a gas in a liquid, comprising:
a sensor housing with an open end and a chamber;
an anode and a cathode mounted in the sensor housing, the anode and cathode connecting to a potential V to generate a sensor output current;
a membrane covering the open end, the membrane having a first side facing the cathode and a second side in contact with the liquid;
chamber electrolyte contacting the anode in the chamber;
a channel between the cathode and the chamber electrolyte, the channel having inner and outer channel walls, the channel having a length L and a cross sectional area A;
channel electrolyte standing in the channel between the cathode and the chamber electrolyte; the channel electrolyte controlling a background sensor current level Ib; and
wherein the channel has an area to length A/L ratio less than 0.026 mm so that the channel resistance is high enough to control the background sensor current level Ib to below 5 nanoamperes per 40 microamperes of the sensor output current at a gas concentration of 8 ppm in the liquid to provide a sensing accuracy of approximately +−1 part per billion.
2. The sensor of claim 1 wherein the membrane comprises of a material that is permeable to oxygen to provide a dissolved oxygen sensor.
3. The sensor of claim 1 wherein the channel is an annular shape surrounding the cathode.
4. The sensor of claim 1 wherein the membrane comprises polytetra-fluoroethylene.
5. An amperometric dissolved oxygen sensor providing dissolved oxygen concentration sensing down to 1 part per billion, comprising:
an anode and a cathode;
an electrolyte coupled along a path between the anode and the cathode;
a potential source coupled to the anode and cathode to provide an output current of at least 40 microamperes in response to a dissolved oxygen concentration of 8 parts per million;
a membrane separating the cathode from a liquid in which the oxygen is dissolved; and
a diffusion channel along the path between the anode and the cathode, the diffusion channel having a length L along the path and a cross sectional area A transverse the path that provide an area to length ratio of A/L for the path that is less than 0.026 mm to deplete residual oxygen adjacent the cathode such that a background current portion of the output current is controlled to less than 5 nanoamperes, where the background current portion corresponds to less than 1 part per billion of oxygen concentration in the liquid.
6. The amperometric dissolved oxygen sensor of claim 5, wherein the background current portion of the output is maintained below 5 nanoamperes without an electrode guard ring to deplete residual oxygen around the cathode.
7. The amperometric dissolved oxygen sensor of claim 5, wherein the diffusion channel comprises a annular space between an outer surface of a cathode support sleeve and an inner surface of a spacer ring.

This is a Divisional of application Ser. No. 09/707,740, filed Nov. 1, 2000 now U.S. Pat. No. 6,602,401.


The present invention relates to a sensor to sense dissolved oxygen (DO) in boiler water, and the like, for determining purity of the water. The sensor provides an output current and the present invention teaches reducing background or offset current of the sensor to improve the ability to sense low levels of oxygen in water by controlling the configuration of an internal oxygen diffusion path of residual oxygen in a liquid electrolyte used for the sensor.

The amount of dissolved oxygen in aqueous solutions such as water is a direct indication of water quality for power plant corrosion control applications. The prior art dissolved oxygen sensors are enclosed in a housing that protrudes into a flowing stream or sample of the water and when energized with an electrical potential the oxygen in the water or other liquid will pass through a gas permeable membrane to a component of the sensor, called a cathode.

The gas permeable membrane of prior art sensors cover the sensor components, which are in an outer housing. The cathode which is normally gold, and a silver anode are mounted at spaced locations in the housing. An electrolyte solution, such as potassium chloride, immerses the cathode and anode.

When the sensor does start to operate, that is, when an oxygen reduction potential is applied to the cathode, the oxygen in the electrolyte stored in a chamber in the sensor housing diffuses into a film of electrolyte between the membrane and the cathode. Oxygen in the vicinity of the cathode gets reduced through the following known electrochemical process:
O2+2H2O+4e→4OH—  (1)

The process creates an oxygen concentration gradient around the cathode which generates a diffusion of residual dissolved oxygen contained in the liquid electrolyte in the sensor chamber toward the cathode. At steady state a constant residual oxygen flux reaches the cathode and creates the constant background or offset current. The current from constant residual oxygen flux follows Fick's First Law, and the background current Ib can be expressed as:
Ib=4FSDAP/L.  (2)

In the above equation (2), F is the Faradaic constant; S the oxygen solubility; D the diffusion coefficient of oxygen through the electrolyte; A the cross sectional area of the diffusion flux, or essentially the cross sectional area of the channel between the cathode and the electrolyte chamber; P the partial pressure of oxygen in air; and L the diffusion channel length. In equation (2) above all of the values of the factors at the right are known. At room temperature F is 95600 C/mole, SD was tested to be 510−10 mole/atm.m.s, and P is 0.21 atm.

A, the area of the channel or path provided for diffusion of oxygen flux from the electrolyte chamber to the cathode, and L, the diffusion path length both can be changed through sensor design.

The residual oxygen thus causes an output current, even when the sensor is exposed to oxygen-free media.

When the sensor is used for sensing oxygen in water (or other aqueous solutions) to be monitored the membrane is exposed to the water and dissolved oxygen in the water is also attracted to the cathode and diffuses through the membrane to the film of electrolyte between the membrane and the cathode and then to the cathode.

The output current from dissolved oxygen in water being sampled, above the background or offset current of the sensor, is directly proportional to the oxygen partial pressure in the water, or in other words, proportional to the concentration of dissolved oxygen in the water.

To achieve sensitivity to low levels of dissolved oxygen in the water, in the range of a few parts per billion (ppb), the background or offset current of the sensor must be low. The background current is mostly contributed from the dissolved oxygen that remains in the electrolyte stored in the sensor, which has been termed the residual oxygen. One prior art method to reduce the background current has been to use an extra electrode guard ring to deplete the residual oxygen around the cathode electrochemically during the sensor operation. This adds cost and parts to the sensor.

The residual oxygen cannot be eliminated from the electrolyte. So the problem is to reduce the background current caused by the residual oxygen in the electrolyte with a simple, low cost construction, without sacrificing performance for measuring dissolved oxygen in water samples.


The present invention relates to a dissolved oxygen sensor that maintains the background current at a very low level while also maintaining the desired sensitivity by controlling the ratio of the area (A) to the length (L) of the channel for diffusion of residual oxygen from an electrolyte in a sensor chamber to a cathode. When the A/L ratio is small enough, the cathode will deplete the residual oxygen around it. Thus, the present invention results in a self-depleting dissolved oxygen sensor.

The A/L ratio is selected to be at or below a value selected as a function of the sensitivity which can be determined by using equation (2) and selecting the background current that provides the desired sensitivity. The minimum A/L ratio (a very small passage) that can be used is a finite number that can be calculated to provide limited residual oxygen flux diffusion in a reasonable response time. The minimum A/L usable also depends on the ability to manufacture small cross sectional area channels for flux diffusion.

Typically, the flux diffusion path is a narrow annular channel surrounding the cathode, filled with the electrolyte, and the diffusion channel length is measured in axial direction from the electrolyte chamber in which the anode is placed to the cathode surface or plane facing the membrane. The diffusion path for residual oxygen can be formed in other locations such as providing holes through the end of a support for the cathode, or it can comprise a series of holes or channels.

The cathode can be of any other noble metal in addition to gold, such as, rhodium, platinum, silver or similar metals. The anode preferably is silver, but also can be zinc, cadmium, or lead. The electrolyte is selected to be compatible with the cathode and anode materials selected.

The preferred membrane material is Teflon (Polytetrafluoroethylene or PTFE), but it can be other desired membrane materials that serve the same function.


FIG. 1 is a schematic representation of a typical pipe connector housing a dissolved oxygen (DO) sensor made according to the present invention.

FIG. 2 is a cross sectional view of a DO sensor including features of the present invention;

FIG. 3 is an enlarged cross sectional view of the membrane and cathode of the sensor FIG. 1 illustrating a typical diffusion channel for the oxygen flux;

FIG. 4 is an end view of the cathode and diffusion channel taken on line 44 in FIG. 3; and

FIG. 5 is a graphical representation of the plot of background current versus the A/L ratio, based upon Equation (2).


The present invention relates to a dissolved oxygen sensor for monitoring water quality. The sensor is designed to have a reduced level of background current, to permit sensing low levels of oxygen in water. The background current is generated when an electrical potential is applied between an anode and cathode which are immersed in an electrolyte in the sensor. The present invention controls the background current by properly shaping and sizing a channel from the electrolyte stored in a chamber of the sensor to the cathode, so the effect of residual oxygen in the electrolyte, which causes the background current, is reduced.

In FIG. 1, a dissolved oxygen sensor indicated generally at 10 includes an outer tubular housing 12 that mounts in a T-connection or fitting 14. The sensor cable 16 connects to suitable sensing circuitry 18 that provides the output signal. The output signal can be used in a transmitter to control a process or can be provided to an indicator showing the dissolved oxygen in the liquid passing through the fitting 14. The outer housing 12 of the sensor 10 is held in place with a coupling nut 20. An end portion 22 of the sensor protrudes into the fluid stream of aqueous liquid material, such as water, that flows through the fitting 14. A cathode support sleeve 32 is mounted inside the housing 12, and a cathode 34 is positioned at an outer end of the support sleeve and has a surface facing the membrane 30. A lead 36 carries a voltage or potential to the cathode in a normal manner.

As shown in FIG. 2, an outer nut 28 fits over the end of the outer housing 12 and is used to hold a membrane 30 over the open end of the housing. The membrane 30 is clamped between a spacer ring 38 and a clamp ring 44 that are clamped together with the nut 28. The surface of the spacer ring 38 opposite from the membrane is sealed relative to the end of housing 12 with an O ring 40 in a groove in the housing. The spacer ring 38 also carries an O ring 42 that engages membrane 30. The clamp plate 44 bears on the membrane 30 to force it against the O ring 42 and the spacer ring 38 to hold the membrane in position.

The outer end portion 31 of cathode support sleeve 32 has an outer surface 33 (see FIG. 3) that is inside the inner surface 37 of a center opening of spacer ring 38. The outer surface 33 of sleeve 32 and the inner surface 37 of the opening in spacer ring 38 form a narrow, axially extending annular channel 46 that surrounds the outer end portion of the cathode support sleeve, as shown in FIG. 3.

The restricted residual oxygen flux channel 46 has a diffusion path length L in a direction along the central longitudinal axis of the sensor from the electrolyte filled chamber 52 to the space 50 between the cathode surface and the membrane. An anode represented at 54 is positioned in chamber 52 and is immersed in the electrolyte. There is a thin layer of electrolyte in the space 50 between the membrane 30 and the facing surface of cathode 34, as shown in FIG. 3.

When the sensor starts to operate by applying a potential represented at V between the anode and cathode, oxygen will be reduced through the electrochemical process, which generates a diffusion of residual oxygen flux toward the cathode through the restricted channel 46. Channel 46 has an area “A”, as shown in FIG. 4, that is calculable and can be selected by the designer, and a length “L” shown in FIG. 3 that is also selectable. Both the area and length of the channel are thus known. When the residual oxygen in the electrolyte is reduced and the output signal is at a steady state, and no oxygen through membrane 30, for example when placing the sensor in deaerated water, the steady state current detected by circuit 18 is the constant background or offset current caused by the residual oxygen in the electrolyte.

In order to reduce the background current, the present invention provides a structure and a method of maintaining the ratio of the area of the restricted flux diffusion channel to the length of the flux diffusion channel small enough so that the background current is maintained at a desired low level.

It is known that with prior art amperometric sensor design the current output at 8 ppm dissolved oxygen can be designed to be about 40 μA. In such a case, since the sensor output is linear, an arithmetical ratio shows that background current below 5 ηA will provide a sensing accuracy of 1 ppb.

Referring to FIG. 5 and the graphical representation plotting the background current versus A/L, the A/L value needs to be below 0.026 mm in order to meet this criteria. The plot of FIG. 5 is based on equation (2).

In one example, a dissolved oxygen sensor having an A/L ratio around 0.009 was prepared. It was filled with an electrolyte, and subjected to a suitable potential, and after about 5 hours, the sensor output reached a stable value around 1.8 ηA which is the background or offset current. This is very close to the calculated value 1.7 ηA from Equation 2, and proves the concept of reducing the background current by having a low A/L ratio.

The minimum A/L ratio is one that will permit diffusion of oxygen flux in a reasonable length of time at start up. It has been found that very quick start up is achieved with the present invention because of the low background or offset current, because it brings a fast “come down speed” after the sensor is calibrated in air and placed back to oxygen free media. The simple design of the present invention makes it more easily manufactured, and maintainable than the guard ring electrode design.

The maximum A/L for a given sensor can be selected on the basis of the sensing accuracy desired. Background or offset current can be maintained at or below the selected level.

The present method includes selecting a desired background current to meet a desired sensing accuracy, for example, 5 ηA that meets a sensing accuracy of 1 ppb for a normal size cathode. For different desired levels of background current, the A/L ratio is kept below other selected maximum levels.

The area of the diffusion channel or passage for residual oxygen in the electrolyte can be selected, and then the length will be determined from equation (2). If the length of the diffusion channel is a set length, the area of the channel that is needed to obtain the desired ratio can be calculated from Equation (2).

The discovery of the effect of a proper A/L ratio of the residual oxygen diffusion path in reducing the background current can be applied to a range of different sizes of amperometric sensors. The size of the cathode and other factors can be taken into consideration as needed by persons skilled in the art.

The present invention, thus, teaches reducing background or stand off current and fast come down speed without added components, such as a guard ring electrode.

Although the present invention has been described with reference to preferred embodiments, workers skilled in the art will recognize that changes may be made in form and detail without departing from the spirit and scope of the invention.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US3718566Jan 7, 1971Feb 27, 1973Instrumentation Labor IncPolarographic electrode assembly
US3948746Jan 20, 1975Apr 6, 1976Fischer & Porter Co.Dissolved oxygen probe
US4003705Jun 12, 1975Jan 18, 1977Beckman Instruments, Inc.Analysis apparatus and method of measuring rate of change of electrolyte pH
US4078981Dec 3, 1976Mar 14, 1978Beckman Instruments, Inc.CO2 interference free O2 electrode
US4207161Dec 14, 1978Jun 10, 1980Cambridge Instrument Company, Inc.Dissolved oxygen analyzer
US4450064Mar 21, 1983May 22, 1984Beckman Instruments, Inc.Electrochemical gas sensor and method for producing the same
US4486291Sep 7, 1982Dec 4, 1984Fresenius AgMeasuring apparatus for the determination of oxygen partial pressure in fluids and gases
US4620918May 3, 1985Nov 4, 1986Bukamier Gary LSelective sensor construction
US4772375Sep 25, 1986Sep 20, 1988James R. DartezAntifouling electrochemical gas sensor
US4776942Feb 24, 1987Oct 11, 1988Beckman Industrial CorporationElectrochemical sensor
US4900422Jul 5, 1988Feb 13, 1990Bryan Avron ISystem for monitoring and reporting the operability and calibration status of a dissolved oxygen sensor
US4956063Mar 28, 1989Sep 11, 1990Orbisphere Laboratories (Inc.)Ozone measuring method
US5098547Oct 11, 1988Mar 24, 1992Bryan Avron IDissolved oxygen sensor calibration, monitoring and reporting system
US5239257Feb 27, 1991Aug 24, 1993Ingold Messtechnik AgMeasuring probe for amperometric determination of gases and/or nonionic compounds contained in a measured medium
US5384029Oct 15, 1993Jan 24, 1995Campbell; Lawrence A.Electrochemical membrane sensor
US5527444Apr 19, 1994Jun 18, 1996Sweeney, Jr.; John W.Probe having coaxial design for use with dissolved oxygen meter
US5723769Nov 18, 1994Mar 3, 1998Commonwealth Scientific And Industrial Research OrganisationDiffusion cell
US5728290Jun 3, 1996Mar 17, 1998Beckman Instruments, Inc.Polarographic sensor and method of using same
US6030827Jan 23, 1998Feb 29, 2000I-Stat CorporationMicrofabricated aperture-based sensor
US6068748Aug 25, 1997May 30, 2000Berger; JosephExtended use planar sensors
US6080294Jul 15, 1998Jun 27, 2000Atwood Industries, Inc.Gas sensor with dual electrolytes
US6602401 *Nov 1, 2000Aug 5, 2003Rosemount Analytical Inc.Amperometric sensor for low level dissolved oxygen with self-depleting sensor design
USRE36268Jul 12, 1996Aug 17, 1999Boehringer Mannheim CorporationMethod and apparatus for amperometric diagnostic analysis
JP2000074871A Title not available
JPH08233775A Title not available
Non-Patent Citations
1"Dissolved Oxygen Measurement in Municipal Waste Treatment", Rosemount Analytical Application Data Sheet, Oct. 1998, 2 pages.
2"Dissolved Oxygen Measurement in Oceans, Lakes and Rivers", Rosemount Analytical Application Data Sheet, Dec. 1998, 2 pages.
3"Dissolved Oxygen Sensor", Rosemount Analytical Instruction Manual Model 430 DO, May 1996, 22 pages.
4"Dissolved Oxygen Sensor", Rosemount Analytical Model 430 Product Data Sheet 71-430, Mar. 1996, pp. 1-4.
5"Free Residual Chlorine, Dissolved Oxygen and Dissolved Ozone Amperometric Sensors", Rosemount Analytical Instruction Manual Models 499A CL, DO, OZ, Jun. 1998, 28 pages.
6"Free Residual Chlorine, Dissolved Oxygen, and Dissolved Ozone Amperometric Sensors", Rosemount Analytical Product Data Sheet Models 499A CL, DO, OZ, Nov. 1998, pp. 1-6.
7"Liquid Analysis Instrumentation", Rosemount Analytical, Uniloc Division Brochure, Apr. 1998, 16 pages.
U.S. Classification204/415, 205/783, 205/782.5
International ClassificationG01N27/403, G01N27/404, G01N27/49
Cooperative ClassificationG01N27/404
European ClassificationG01N27/404, G01N27/403
Legal Events
Jun 2, 2010FPAYFee payment
Year of fee payment: 4
Oct 24, 2014FPAYFee payment
Year of fee payment: 8