Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS7276466 B2
Publication typeGrant
Application numberUS 10/650,101
Publication dateOct 2, 2007
Filing dateAug 26, 2003
Priority dateJun 11, 2001
Fee statusPaid
Also published asUS20040214724
Publication number10650101, 650101, US 7276466 B2, US 7276466B2, US-B2-7276466, US7276466 B2, US7276466B2
InventorsBradley L. Todd, Billy F. Slabaugh, Trinidad Munoz, Jr.
Original AssigneeHalliburton Energy Services, Inc.
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Compositions and methods for reducing the viscosity of a fluid
US 7276466 B2
Abstract
The present invention relates to improved methods and compositions for reducing the viscosity of subterranean servicing fluids where the servicing fluid has been cross-linked to increase its viscosity and that crosslinking can be reversed using a delayed release acid produced to reduce the fluid's pH.
Images(6)
Previous page
Next page
Claims(13)
1. A method of reducing the pH of a servicing fluid comprising:
providing a crosslinked, viscous servicing fluid comprising an acid-releasing degradable material selected from the group consisting of lactides, poly(lactides), glycolides, poly(glycolides), substantially water-insoluble anhydrides, poly(anhydrides), derivatives thereof, and combinations thereof, wherein the acid-releasing degradable material further comprises a solvent selected from the group consisting of acetone, propylene carbonate, dipropylglycolmethylether, methylene chloride, isopropyl alcohol, and combinations thereof;
allowing the acid-releasing degradable material to produce an acid; and
allowing a pH of the servicing fluid to be reduced.
2. The method of claim 1 wherein the servicing fluid comprises a fracturing fluid or a gravel packing transport fluid.
3. The method of claim 1 wherein the servicing fluid is crosslinked with a crosslinker selected from the group consisting of boric acid, disodium octaborate tetrahydrate, sodium diborate and pentaborates, ulexite, colemanite, zirconium lactate, zirconium lactate triethanolamine, zirconium carbonate, zirconium acetylacetonate, zirconium diisoproplyamine lactate, titanium ammonium lactate, titanium triethanolamine, titanium acetylacetonate, alumimum citrate, aluminum lactate, and combinations thereof.
4. The method of claim 1 wherein the servicing fluid de-crosslinks at a pH below about 9.
5. A method of fracturing a subterranean formation comprising:
providing a crosslinked, viscous fracturing fluid comprising an acid-releasing degradable material selected from the group consisting of lactides, poly(lactides), glycolides, poly(glycolides), substantially water-insoluble anhydrides, poly(anhydrides), derivatives thereof, and combinations thereof, wherein the acid-releasing degradable material further comprises a solvent selected from the group consisting of acetone, propylene carbonate, dipropylglycolmethylether, methylene chloride, isopropyl alcohol, and combinations thereof;
introducing the fracturing fluid into a subterranean formation at a pressure sufficient to create at least one fracture;
allowing the acid-releasing degradable material to produce an acid;
allowing a pH of the fracturing fluid to be reduced; and
allowing a viscosity of the fracturing fluid to be reduced.
6. The method of claim 5 wherein the fracturing fluid is crosslinked with a crosslinker selected from the group consisting of boric acid, disodium octaborate tetrahydrate, sodium diborate and pentaborates, ulexite, colemanite, zirconium lactate, zirconium lactate triethanolamine, zirconium carbonate, zirconium acetylacetonate, zirconium diisoproplyamine lactate, titanium ammonium lactate, titanium triethanolamine, titanium acetylacetonate, alumimum citrate, aluminum lactate, and combinations thereof.
7. The method of claim 5 wherein the fracturing fluid de-crosslinks at a pH below about 9.
8. A method of creating a gravel pack in a well bore comprising:
providing a crosslinked, viscous gravel transport fluid comprising gravel and an acid-releasing degradable material selected from the group consisting of lactides, poly(lactides), glycolides, poly(glycolides), substantially water-insoluble anhydrides, poly(anhydrides), derivatives thereof, and combinations thereof;
introducing the gravel transport fluid into a portion of a well bore so as to create a gravel pack;
allowing the acid-releasing degradable material to produce an acid;
allowing a pH of the gravel transport fluid to be reduced; and
allowing a viscosity of the gravel transport fluid to be reduced.
9. The method of claim 8 wherein the gravel transport fluid is crosslinked with a crosslinker selected from the group consisting of boric acid, disodium octaborate tetrahydrate, sodium diborate and pentaborates, ulexite, colemanite, zirconium lactate, zirconium lactate triethanolamine, zirconium carbonate, zirconium acetylacetonate, zirconium diisoproplyamine lactate, titanium ammonium lactate, titanium triethanolamine, titanium acetylacetonate, alumimum citrate, aluminum lactate, and combinations thereof.
10. The method of claim 8 wherein the gravel transport fluid de-crosslinks at a pH below about 9.
11. The method of claim 8 wherein the acid-releasing degradable material further comprises a solvent.
12. The method of claim 11 wherein the solvent is selected from the group consisting of acetone, propylene carbonate, dipropylglycolmethylether, methylene chloride, isopropyl alcohol, and combinations thereof.
13. A servicing fluid composition comprising
a crosslinked, viscous fluid,
an acid-releasing degradable material selected from the group consisting of lactides, poly(lactides), glycolides, poly(glycolides), substantially water-insoluble anhydrides, poly(anhydrides), derivatives thereof, and combinations thereof, and
a solvent selected from the group consisting of acetone, propylene carbonate, dipropylglycolmethylether, methylene chloride, isopropyl alcohol, and combinations thereof.
Description
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation-in-part of U.S. application Ser. No. 10/254,268 filed on Sep. 25, 2002 now abandoned which was itself a divisional of U.S. application Ser. No. 09/879,634 filed on Jun. 11, 2001 and issued on Dec. 3, 2002 as U.S. Pat. No. 6,488,091.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to methods and compositions for treating subterranean well formations, and more specifically, to improved methods and compositions for reducing the viscosity of subterranean servicing fluids where the servicing fluid has been crosslinked to increase its viscosity.

2. Description of the Prior Art

A variety of viscosified servicing fluids are used in subterranean applications, such as drilling fluids, fracturing fluids and gravel delivery fluids. Oftentimes, after the viscosified fluid has performed its desired task, it is necessary to reduce the viscosity so that the servicing fluid can be removed from the formation.

Fracturing operations commonly employ viscosified fluids to suspend propping particles. Fracturing generally involves pumping a viscous fracturing fluid into a subterranean formation at sufficient hydraulic pressure to create one or more cracks or “fractures.” The fracturing fluid must generally be viscous enough to suspend proppant particles that are placed in the fractures to hold the fracture open once the hydraulic pressure is released. Once at least one fracture is created and the proppant is substantially in place, the viscosity of the fracturing fluid is reduced and it is removed from the formation.

Similarly, sand control operations, such as gravel packing, use viscosified transport fluids to suspend gravel particles for delivery to an area in a well bore with unconsolidated or weakly consolidated particulates. One common type of gravel packing operation involves placing a gravel pack screen in the well bore and packing the annulus between the screen and the well bore with gravel of a specific size designed to prevent the passage of formation sand. The gravel pack screen is generally a filter assembly used to retain the gravel placed during gravel pack operation. A wide range of sizes and screen configurations are available to suit the characteristics of the gravel pack sand used. Similarly, a wide range of sizes of gravel is available to suit the characteristics of the unconsolidated or poorly consolidated particulates in the subterranean formation. The resulting structure presents a barrier to migrating sand from the formation while still permitting fluid flow. When installing the gravel pack, the gravel is carried to the formation in the form of a slurry by mixing the gravel with a transport fluid. Gravel packs act, inter alia, to stabilize the formation while causing minimal impairment to well productivity. The gravel, inter alia, acts to prevent the particulates from occluding the screen or migrating with the produced fluids, and the screen, inter alia, acts to prevent the gravel from entering the production tubing. Once the gravel pack is substantially in place, the viscosity of the transport fluid is reduced to allow it to be efficiently removed from the well bore.

Often, the viscosity of a servicing fluid is related to that fluid's pH. Thus, viscosity-reducing agents that reduce the pH of the servicing fluid may be added to reduce the viscosity of the fluid. To achieve that goal, gelled and cross-linked servicing fluids typically include internal delayed viscosity reducers such enzyme, oxidizing, acid, or temperature-activated viscosity reducers. However, these viscosity reducers may result in incomplete or premature viscosity reduction. Premature viscosity reduction can decrease the number and/or length of the fractures, and thus, can decrease the sought-after production-enhancing effects. Similarly, premature viscosity reduction of a gravel pack transport fluid may result in improper placement of the pack or insufficient packing of the gravel.

As an alternative to adding a viscosity-reducing agent to the servicing fluid, viscosity reduction may also be accomplished under the effect of time and temperature, as the viscosity of most servicing fluids will reduce naturally if given enough time and at a sufficient temperature. However, it is highly desirable to return the well back to production as quickly as possible and waiting for the viscosity of a servicing fluid to naturally decrease over time is generally unacceptable.

SUMMARY OF THE INVENTION

The present invention relates to methods and compositions for treating subterranean well formations, and more specifically, to improved methods and compositions for reducing the viscosity of subterranean servicing fluids where the servicing fluid has been cross-linked to increase its viscosity.

One embodiment of the present invention provides a method of reducing the pH of a servicing fluid comprising the steps of providing a crosslinked, viscous servicing fluid; adding an acid-releasing degradable material to the servicing fluid; allowing the acid-releasing degradable material to produce an acid; and allowing the servicing fluid's pH to reduce.

Another embodiment of the present invention provides a servicing fluid composition comprising a crosslinked, viscous fracturing fluid and an acid-releasing degradable material.

The objects, features and advantages of the present invention will be readily apparent to those skilled in the art upon a reading of the description of the preferred embodiments which follows.

DESCRIPTION OF PREFERRED EMBODIMENTS

The present invention relates to methods and compositions for treating subterranean well formations, and more specifically, to improved methods and compositions for reducing the viscosity of subterranean servicing fluids where the servicing fluid has been cross-linked to increase its viscosity.

The compositions of the present invention comprise acid-releasing degradable materials that react over time to produce an acid. In certain embodiments, the acid-releasing degradable materials of the present invention are added to a cross-linked servicing fluid that undergoes a reduction in viscosity when its pH is lowered. Moreover, in some embodiments the acid-releasing degradable materials act at a delayed rate to produce an acid and, in turn, cause a controlled reduction of the viscosity of the servicing fluid.

Any cross-linked servicing fluid that experiences a reduction in viscosity when its pH is lowered is suitable for use in the methods of the present invention, including aqueous gels and emulsions. Suitable aqueous gels are generally comprised of water and one or more gelling agents, while suitable emulsions are generally comprised of two immiscible liquids such as an aqueous gelled liquid and a liquefied, normally gaseous, fluid such as nitrogen.

A variety of viscosifying agents can be used, including hydratable polymers that contain one or more functional groups such as hydroxyl, cis-hydroxyl, carboxyl, sulfate, sulfonate, amino or amide. Particularly useful are polysaccharides and derivatives thereof that contain one or more of the monosaccharide units galactose, mannose, glucoside, glucose, xylose, arabinose, fructose, glucuronic acid or pyranosyl sulfate. Examples of natural hydratable polymers containing the foregoing functional groups and units that are particularly useful in accordance with the present invention include guar gum and derivatives thereof such as hydroxypropyl guar and cellulose derivatives, such as hydroxyethyl cellulose. Hydratable synthetic polymers and copolymers that contain the above-mentioned functional groups can also be used. Examples of such synthetic polymers include, but are not limited to, polyacrylate, polymethacrylate, polyacrylamide, polyvinyl alcohol and polyvinylpyrrolidone. The viscosifying agent used is generally combined with the water in the fracturing fluid in an amount in the range of from about 0.01% to about 2% by weight of the water.

Cross-linking agents may be used to further increase the viscosity of a servicing fluid. Examples of such cross-linking agents include but are not limited to alkali metal borates, borax, boric acid, and compounds that are capable of releasing multivalent metal ions in aqueous solutions. Examples of the multivalent metal ions are chromium, zirconium, antimony, titanium, iron, zinc or aluminum. When used, the cross-linking agent is generally added to the gelled water in an amount in the range of from about 0.01% to about 5% by weight of the water.

When the acid-releasing degradable materials of the present invention are used with servicing fluids that are de-linked in the presence of acid, such as those described in U.S. application Ser. No. 10/254,268, the relevant disclosure of which is herein incorporated by reference, the treating fluid becomes non-crosslinked below a defined pH and yet the acetal linkages which form the crosslinking sites are stable and can be re-crosslinked. In that case, not only can the servicing fluid be recovered from a treated subterranean formation by lowering its pH in accordance with the present invention, it can later be reused. Examples of crosslinkers that break down under reduced pH conditions include, but are not limited to, boric acid, disodium octaborate tetrahydrate, sodium diborate and pentaborates, ulexite and colemanite, compounds that can supply zirconium IV ions (such as, for example, zirconium lactate, zirconium lactate triethanolamine, zirconium carbonate, zirconium acetylacetonate, and zirconium diisoproplyamine lactate), and compounds that can supply titanium IV ions (such as, for example, titanium ammonium lactate, titanium triethanolamine, titanium acetylacetonate), aluminum compounds that can supply aluminum ions (such as, for example, alumimum citrate or aluminum lactate). In some embodiments of the present invention, a pH of less than about 9 is sufficiently low to cause the servicing fluid to become non-crosslinked and thus effect a reduction in the fluid's viscosity.

Acid-releasing degradable materials that may be used in conjunction with the present invention are those materials that are substantially water insoluble such that they degrade over time, rather than instantaneously, in an aqueous environment to produce an acid. Examples of suitable acid-releasing degradable materials include lactides, poly(lactides) and substituted poly (lactides) wherein the substituents include hydrogen, alkyl, aryl, alkylaryl, acetyl, heteroatoms and mixtures thereof, glycolides; poly(glycolides); substantially water insoluble anhydrides; and poly(anhydrides).

Materials suitable for use as an acid-releasing degradable material of the present invention may be considered degradable if the degradation is due, inter alia, to chemical and/or radical process such as hydrolysis, oxidation, or enzymatic decomposition. The degradability of a material depends at least in part on its molecular structure, type of repetitive unit, composition, sequence, length, molecular geometry, molecular weight, morphology (e.g., crystallinity, size of spherulites, and orientation), hydrophilicity, hydrophobicity, surface area, and additives. Also, the environment to which the material is subjected may affect how it degrades, e.g., temperature, presence of water, oxygen, microorganisms, enzymes, pH, and the like.

Blends of certain acid-releasing degradable materials may also be suitable. One example of a suitable blend of materials includes a blend of lactide and poly(lactic acid).

In choosing the appropriate acid-releasing degradable material, one should consider the degradation products that will result. Also, these degradation products should not adversely affect other operations or components. The choice of degradable material also can depend, at least in part, on the conditions of the well, e.g., well bore temperature. For instance, lactides have been found to be suitable for lower temperature wells, including those within the range of 60° F. to 150° F., and polylactide have been found to be suitable for well bore temperatures above this range. Generally, smaller molecule acid-releasing degradable materials are suitable for use in lower temperature application and larger molecule acid-releasing degradable materials are suitable for use in higher-temperature applications. It is within the ability of one skilled in the art, with the benefit of this disclosure, to select a suitable acid-releasing degradable material.

The acid-releasing degradable materials suitable for use in the present invention may be added directly to the servicing fluid or, alternatively, they may be dissolved into a separate solvent before combination with a servicing fluid. In some embodiments of the present invention, particularly those involving subterranean formations having temperatures above about 250° F., it may be desirable to combine the acid-releasing degradable material with a solvent. Suitable such solvents include, but are not limited to acetone, propylene carbonate, dipropylglycolmethylether, methylene chloride, isopropyl alcohol, and combinations thereof.

When used in the present invention, a preferable result is achieved if the degradable material degrades slowly over time as opposed to instantaneously. Even more preferable results have been obtained when the degradable material does not begin to degrade until after the subterranean treatment, such as a fracturing operation, has been substantially completed.

It is within the ability of one skilled in the art, with the benefit of this disclosure, to consider the cross-linking agent used to increase the servicing fluid's viscosity and the acid-releasing degradable material chosen and determine the amount of acid-releasing degradable material needed to substantially de-link the servicing fluid.

In some embodiments of methods of the present invention, an acid-releasing degradable material that releases an acid over time is combined with a fracturing fluid that is used to fracture a subterranean formation. After a desired degree of fracturing, the pH of the fracturing fluid is reduced to a level that causes a reduction in the viscosity of the fracturing fluid.

In other embodiments of methods of the present invention, an acid-releasing degradable material that releasing an acid over time is combined with a gravel pack transport fluid that is used to deliver gravel particles into a well bore to create a gravel pack. After the gravel pack is substantially in place, the pH of the delivery fluid is reduced to a level that causes a reduction in the viscosity of the delivery fluid.

To facilitate a better understanding of the present invention, the following examples of preferred embodiments are given. In no way should the following examples be read to limit the scope of the invention.

EXAMPLES Example 1

A one-liter sample of base gel was prepared by adding 155 cc of guar micropolymer concentrate to 845 cc of water. The base gel viscosity was found to be 12.65 cP at 75° F. A number of samples were prepared by mixing 250 cc of base gel, 0.7 cc of 25% NaOH solution, 120 g 20/40 fracturing sand, and 0.875 g borate crosslinker. Next, 1.25 g of lactide was added to each sample and the pH was monitored over time. The results of the test are shown in

TABLE 1
Time pH without pH with 1.25 g
(min) lactide lactide
0 9.9 9.8
30 9.8 8.8
45 9.8 8.7
70 9.8 8.5
90 9.8 8.4
180 9.8 8.1

The uncrosslinking of the fluid will occur about a pH of 8.5, thus, Table 1 shows that lactide was able to provide the needed, controlled reduction of pH to uncrosslink the gel.

Example 2

A one-liter sample gel was prepared by adding 148 cc of guar micropolymer concentrate to 852 cc of water. The base gel viscosity was found to be 11.7 cP at 75° F. A number of samples were prepared by mixing 250 cc of base gel, 0.8 cc of 25% NaOH solution, 0.75 cc borate crosslinker solution, and 1 g lactide.

TABLE 1
Time Viscosity
(min) (cP)
10 >2000
20 1270
30 810
40 610
50 190
60 105
70 55

Table 2 clearly shows that a lactide can be used to substantially lower the viscosity of the fracturing fluid in a relatively short amount of time.

Therefore, the present invention is well-adapted to carry out the objects and attain the ends and advantages mentioned as well as those that are inherent therein. While numerous changes may be made by those skilled in the art, such changes are encompassed within the spirit and scope of this invention as defined by the appended claims.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2238671Feb 9, 1940Apr 15, 1941Du PontMethod of treating wells
US2703316Jun 5, 1951Mar 1, 1955Du PontPolymers of high melting lactide
US3173484Sep 2, 1958Mar 16, 1965Gulf Research Development CoFracturing process employing a heterogeneous propping agent
US3195635May 23, 1963Jul 20, 1965Pan American Petroleum CorpSpacers for fracture props
US3272650Feb 21, 1963Sep 13, 1966Union Carbide CorpProcess for cleaning conduits
US3302719Jan 25, 1965Feb 7, 1967Union Oil CoMethod for treating subterranean formations
US3364995Feb 14, 1966Jan 23, 1968Dow Chemical CoHydraulic fracturing fluid-bearing earth formations
US3366178Sep 10, 1965Jan 30, 1968Halliburton CoMethod of fracturing and propping a subterranean formation
US3455390Dec 3, 1965Jul 15, 1969Union Oil CoLow fluid loss well treating composition and method
US3784585Oct 21, 1971Jan 8, 1974American Cyanamid CoWater-degradable resins containing recurring,contiguous,polymerized glycolide units and process for preparing same
US3819525Aug 21, 1972Jun 25, 1974Avon Prod IncCosmetic cleansing preparation
US3828854Oct 30, 1973Aug 13, 1974Shell Oil CoDissolving siliceous materials with self-acidifying liquid
US3868998May 15, 1974Mar 4, 1975Shell Oil CoSelf-acidifying treating fluid positioning process
US3912692Sep 24, 1974Oct 14, 1975American Cyanamid CoProcess for polymerizing a substantially pure glycolide composition
US3948672Sep 26, 1974Apr 6, 1976Texaco Inc.Diesel oil, salt water, xanthan gum
US3955993Sep 26, 1974May 11, 1976Texaco Inc.Method and composition for stabilizing incompetent oil-containing formations
US3960736Jun 3, 1974Jun 1, 1976The Dow Chemical CompanySelf-breaking viscous aqueous solutions and the use thereof in fracturing subterranean formations
US3968840May 25, 1973Jul 13, 1976Texaco Inc.Controlled rate acidization process
US3998272Apr 21, 1975Dec 21, 1976Union Oil Company Of CaliforniaMethod of acidizing wells
US3998744Apr 16, 1975Dec 21, 1976Standard Oil CompanyOil fracturing spacing agents
US4068718Oct 26, 1976Jan 17, 1978Exxon Production Research CompanyHydraulic fracturing method using sintered bauxite propping agent
US4169798Oct 25, 1977Oct 2, 1979Celanese CorporationPolygalactomannans, flow control agents
US4172066Sep 26, 1977Oct 23, 1979The Dow Chemical CompanyShear resistant thickeners, flow control agents for enhanced oil recovery
US4261421Mar 24, 1980Apr 14, 1981Union Oil Company Of CaliforniaMethod for selectively acidizing the less permeable zones of a high temperature subterranean formation
US4387769Aug 10, 1981Jun 14, 1983Exxon Production Research Co.Method for reducing the permeability of subterranean formations
US4460052Aug 10, 1981Jul 17, 1984Judith GockelPrevention of lost circulation of drilling muds
US4470915Sep 27, 1982Sep 11, 1984Halliburton CompanyMethod and compositions for fracturing subterranean formations
US4498995Jul 1, 1983Feb 12, 1985Judith GockelA sealing slurry of expanded particles of clay, slate or clay shale
US4526695Feb 4, 1983Jul 2, 1985Exxon Production Research Co.Composition for reducing the permeability of subterranean formations
US4694905May 23, 1986Sep 22, 1987Acme Resin CorporationWith phenolic andor furan resin
US4715967Dec 27, 1985Dec 29, 1987E. I. Du Pont De Nemours And CompanyComposition and method for temporarily reducing permeability of subterranean formations
US4716964Dec 10, 1986Jan 5, 1988Exxon Production Research CompanyUse of degradable ball sealers to seal casing perforations in well treatment fluid diversion
US4785884Jan 28, 1988Nov 22, 1988Acme Resin CorporationConsolidation of partially cured resin coated particulate material
US4797262Jun 3, 1987Jan 10, 1989Shell Oil CompanyDownflow fluidized catalytic cracking system
US4809783Jan 14, 1988Mar 7, 1989Halliburton ServicesMethod of dissolving organic filter cake
US4817721Dec 14, 1987Apr 4, 1989Conoco Inc.Injection of polymerizable bicyclic lactones, ortho esters, and spiro orthocarboantes
US4843118Jun 19, 1987Jun 27, 1989Air Products And Chemicals, Inc.Acidized fracturing fluids containing high molecular weight poly(vinylamines) for enhanced oil recovery
US4848467Feb 16, 1988Jul 18, 1989Conoco Inc.Degradation of hydroxyacetic acid condensation product
US4886354May 6, 1988Dec 12, 1989Conoco Inc.Method and apparatus for measuring crystal formation
US4957165 *Jun 19, 1989Sep 18, 1990Conoco Inc.Well treatment process
US4961466Jan 23, 1989Oct 9, 1990Halliburton CompanyMethod for effecting controlled break in polysaccharide gels
US4986353Sep 14, 1988Jan 22, 1991Conoco Inc.Incorporation in polylactone matrix which degrades in presence of water and heat
US4986354Sep 14, 1988Jan 22, 1991Conoco Inc.Continuous release from microcapsule
US4986355May 18, 1989Jan 22, 1991Conoco Inc.Process for the preparation of fluid loss additive and gel breaker
US5067566 *Jan 14, 1991Nov 26, 1991Bj Services CompanyLow temperature degradation of galactomannans
US5082056Oct 16, 1990Jan 21, 1992Marathon Oil CompanyIn situ reversible crosslinked polymer gel used in hydrocarbon recovery applications
US5142023Jan 24, 1992Aug 25, 1992Cargill, IncorporatedConcentrating lactic acid solution, polymerizing, depolymerizing to form lactide, distilling, polymerizing
US5216050Sep 6, 1990Jun 1, 1993Biopak Technology, Ltd.Blends of polyactic acid
US5224546 *Jul 20, 1992Jul 6, 1993Smith William HMethod of breaking metal-crosslinked polymers
US5247059Aug 24, 1992Sep 21, 1993Cargill, IncorporatedContinuous process for the manufacture of a purified lactide from esters of lactic acid
US5249628Sep 29, 1992Oct 5, 1993Halliburton CompanyHorizontal well completions
US5295542Oct 5, 1992Mar 22, 1994Halliburton CompanyWell gravel packing methods
US5325923Sep 30, 1993Jul 5, 1994Halliburton CompanyWell completions with expandable casing portions
US5330005Apr 5, 1993Jul 19, 1994Dowell Schlumberger IncorporatedControl of particulate flowback in subterranean wells
US5359026Jul 30, 1993Oct 25, 1994Cargill, IncorporatedPoly(lactide) copolymer and process for manufacture thereof
US5360068Apr 19, 1993Nov 1, 1994Mobil Oil CorporationCreating fracture in reservoir, initiating combustion to burn formation and harden diatomite thus increasing permeability, shattering to create in situ proppants
US5363916 *Jun 16, 1993Nov 15, 1994Halliburton CompanyUsing gel of polymer of hydroxyalkyl cellulose prepared by a redox reaction with vinyl phosphonic acid
US5373901Jul 27, 1993Dec 20, 1994Halliburton CompanyEncapsulated breakers and method for use in treating subterranean formations
US5386874Nov 8, 1993Feb 7, 1995Halliburton CompanyPerphosphate viscosity breakers in well fracture fluids
US5396957Mar 4, 1994Mar 14, 1995Halliburton CompanyWell completions with expandable casing portions
US5402846Nov 15, 1993Apr 4, 1995Mobil Oil CorporationPumping foamable thermosetting mixture into reservoir to fracture formation, igniting and combusting mixture to form porous solid which props fracture and increases conductivity of reservoir
US5439055Mar 8, 1994Aug 8, 1995Dowell, A Division Of Schlumberger Technology Corp.Control of particulate flowback in subterranean wells
US5460226May 18, 1994Oct 24, 1995Shell Oil CompanyComprising polysaccharide, borate crosslinker, oxidative breaker and precursor that hydrolyzes to lower alkalinity
US5464060Apr 12, 1994Nov 7, 1995Shell Oil CompanyMixing with Portland cement and pozzolana; applying settable filter cake on walls; activating to harden
US5475080Mar 22, 1993Dec 12, 1995Cargill, IncorporatedPaper having a melt-stable lactide polymer coating and process for manufacture thereof
US5484881Aug 23, 1993Jan 16, 1996Cargill, Inc.Biodegradable, heat resistance
US5497830Apr 6, 1995Mar 12, 1996Bj Services CompanyCoated breaker for crosslinked acid
US5499678Aug 2, 1994Mar 19, 1996Halliburton CompanyCoplanar angular jetting head for well perforating
US5505787Jan 28, 1994Apr 9, 1996Total Service Co., Inc.Applying cleaning fluid including strippable film forming polymer agent, drying, stripping film containing dirt
US5512071Feb 25, 1994Apr 30, 1996Church & Dwight Co., Inc.Sodium bicarbonate abrasive particles used to strip contaminants from solid surfaces; pollution control
US5536807Aug 23, 1993Jul 16, 1996Cargill, IncorporatedMelt-stable semi-crystalline lactide polymer film and process for manufacture thereof
US5591700Dec 22, 1994Jan 7, 1997Halliburton CompanyFracturing fluid with encapsulated breaker
US5594095Jul 27, 1994Jan 14, 1997Cargill, IncorporatedViscosity-modified lactide polymer composition and process for manufacture thereof
US5604186Feb 15, 1995Feb 18, 1997Halliburton CompanyIntroducing aqueous fracturing fluid into contact with enzyme breaker comprising particulate cellulose substrate coated with enzyme solution and encapsulated by membrane of partially hydrolyzed crosslinked acrylic polymer
US5607905Mar 15, 1994Mar 4, 1997Texas United Chemical Company, Llc.Alkaline water well drilling fluids and gorming filter cakes from bore holes in subterranean formations
US5670473Jun 6, 1995Sep 23, 1997Sunburst Chemicals, Inc.Solid cleaning compositions based on hydrated salts
US5698322Dec 2, 1996Dec 16, 1997Kimberly-Clark Worldwide, Inc.Multicomponent fiber
US5765642Dec 23, 1996Jun 16, 1998Halliburton Energy Services, Inc.Subterranean formation fracturing methods
US5791415Mar 13, 1997Aug 11, 1998Halliburton Energy Services, Inc.Injecting hardenable resin into portion of formation, creating fracture, depoisting hardenable resin coated proppant in fracture and hardening; prevents migration of formation sand with fluids
US5813466 *Jun 6, 1995Sep 29, 1998Cleansorb LimitedDelayed acid for gel breaking
US5833000Feb 18, 1997Nov 10, 1998Halliburton Energy Services, Inc.Control of particulate flowback in subterranean wells
US5849401May 3, 1996Dec 15, 1998Cargill, IncorporatedCompostable multilayer structures, methods for manufacture, and articles prepared therefrom
US5853048Apr 21, 1998Dec 29, 1998Halliburton Energy Services, Inc.Control of fine particulate flowback in subterranean wells
US5893416Nov 28, 1997Apr 13, 1999Aea Technology PlcPorous ceramic beads; tubular filter inhibiting corrosion and sclae formation
US5908073Jun 26, 1997Jun 1, 1999Halliburton Energy Services, Inc.Method of propping a fracture in a subterranean zone
US5924488Jun 11, 1997Jul 20, 1999Halliburton Energy Services, Inc.Methods of preventing well fracture proppant flow-back
US5964291Feb 28, 1996Oct 12, 1999Aea Technology PlcFracturing using high pressure fluid and proppant particles
US6004400Jul 9, 1997Dec 21, 1999Phillip W. BishopCarbon dioxide cleaning process
US6024170Jun 3, 1998Feb 15, 2000Halliburton Energy Services, Inc.Polygalactomannan gelling agent; hydrocarbon oil, organophilic clay, buffer and dispersant; treating well bores
US6028113Sep 27, 1995Feb 22, 2000Sunburst Chemicals, Inc.Solid sanitizers and cleaner disinfectants
US6047772Nov 9, 1998Apr 11, 2000Halliburton Energy Services, Inc.Control of particulate flowback in subterranean wells
US6114410Aug 4, 1998Sep 5, 2000Technisand, Inc.Proppant containing bondable particles and removable particles
US6123965Aug 18, 1998Sep 26, 2000Brown University Research FoundationMethods and compositions for enhancing the bioadhesive properties of polymers
US6131661Aug 3, 1998Oct 17, 2000Tetra Technologies Inc.Drilling the borehole with fluid to form an oxidation degradable filtercake; adding soluble organic hydroperoxide fluid thermoactivatable at the downhole temperature; allowing oxidizing agent to form, degrade filtercake; flushing
US6135987Dec 22, 1999Oct 24, 2000Kimberly-Clark Worldwide, Inc.Melt blending a thermoplastic resin made from a polylactone and polycarboxylic acid and crystallizing, the acid providing lubrication and nucleation; thermal dimentional stability; reduced crystal size; nonwoven webs; absorbants; disposable
US6143698Dec 4, 1998Nov 7, 2000Tetra Technologies, Inc.Drilling borehole while circulating mud which comprises a polysaccharide and finely divided solids dispersed to form a filtercake on surfaces of borehole essentially free of oxidants and bromine; introducing filtercake removal fluid
US6162766May 29, 1998Dec 19, 20003M Innovative Properties CompanyReducing viscosity and hydrolytic polymers
US6169058Jun 5, 1997Jan 2, 2001Bj Services CompanySubterranean formation is treated by introducing a fracturing treatment composition comprising a polymer treatment fluid containing a dispersion of hydrophilic water swellable particles into the formation
US6172011Mar 8, 1996Jan 9, 2001Schlumberger Technolgy CorporationPumping fibers downhole with proppant to form porous pack that inhibits flow of solid particulates from well
US6189615Dec 15, 1998Feb 20, 2001Marathon Oil CompanyGelation solution which includes an acrylamide polymer, chromium(iii) complex crosslinking agent having one or more carboxylate anions; reducing the permeability of or fluid mobility within a carbonate-containing treatment region
US6202751Jul 28, 2000Mar 20, 2001Halliburton Energy Sevices, Inc.Methods and compositions for forming permeable cement sand screens in well bores
US6209643Mar 6, 2000Apr 3, 2001Halliburton Energy Services, Inc.Method of controlling particulate flowback in subterranean wells and introducing treatment chemicals
US6209646Apr 21, 1999Apr 3, 2001Halliburton Energy Services, Inc.Causing liquid chemical additive to be absorbed into porous solid material whereby liquid chemical is encapsulated thereby and combining said encapsulated liquid chemical additive with treating fluid, introducing into well
US6214773Sep 29, 1999Apr 10, 2001Halliburton Energy Services, Inc.High temperature, low residue well treating fluids and methods
US6793018 *Jan 8, 2002Sep 21, 2004Bj Services CompanyFracturing using gel with ester delayed breaking
US20040152601 *Oct 27, 2003Aug 5, 2004Schlumberger Technology CorporationGenerating Acid Downhole in Acid Fracturing
US20050028976 *Aug 5, 2003Feb 10, 2005Nguyen Philip D.Compositions and methods for controlling the release of chemicals placed on particulates
Non-Patent Citations
Reference
1Cordes, et al., Mechanism and Catalysis for Hydrolysis of Acetals, Ketals, and Other Esters, Department of Chemistry, Indiana University, Bloomington, Indiana, Chemical Reviews, 1974, vol. 74, No. 5, pp. 581-603.
2Simmons, et al., "Poly(phenyllactide): Synthesis, Characterization, and Hydrolytic Degradation," Biomacromolecules, vol. 2, No. 3, 2001 (pp. 658-663).
3Todd, et al., A Chemical "Trigger" Useful for Oilfield Applications, Society of Petroleum Engineers, Inc., SPE 92709, Feb. 4, 2005.
4Yin, et al., "Preparation and Characterization of Substituted Polylactides," Am. Chem. Soc., vol. 32, No. 23, 1999 (pp. 7711-7718).
5Yin, et al., "Synthesis and Properties of Polymers Derived form Substituted Lactic Acids," Am. Chem. Soc., Ch. 12, 2001 (pp. 147-159).
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US7497278 *Aug 24, 2006Mar 3, 2009Halliburton Energy Services, Inc.Methods of degrading filter cakes in a subterranean formation
US7935662Jun 26, 2009May 3, 2011Schlumberger Technology CorporationSystem, method, and apparatus for injection well clean-up operations
US7998908Dec 12, 2006Aug 16, 2011Schlumberger Technology CorporationFluid loss control and well cleanup methods
US8016040Nov 26, 2008Sep 13, 2011Schlumberger Technology CorporationFluid loss control
US8153564Mar 7, 2008Apr 10, 2012Dorf Ketal Speciality Catalysts, LlcZirconium-based cross-linking composition for use with high pH polymer solutions
US8242060Dec 21, 2006Aug 14, 2012Dorf Ketal Specialty Catalysts, LLCStable solutions of zirconium hydroxyalkylethylene diamine complex and use in oil field applications
US8646528 *Dec 16, 2010Feb 11, 2014Halliburton Energy Services, Inc.Compositions and methods relating to establishing circulation in stand-alone-screens without using washpipes
US8720568 *Jun 11, 2010May 13, 2014Halliburton Energy Services, Inc.Swellable/degradable “sand” plug system for horizontal wells
US20110303411 *Jun 11, 2010Dec 15, 2011Todd Bradley LSwellable/degradable "sand" plug system for horizontal wells
US20120152538 *Dec 16, 2010Jun 21, 2012Halliburton Energy Services, Inc.Compositions and Methods Relating to Establishing Circulation in Stand-Alone-Screens Without Using Washpipes
Classifications
U.S. Classification507/260, 507/224, 166/308.1, 507/211, 507/271, 166/278, 507/230, 507/225, 507/214, 166/300, 507/216
International ClassificationC09K8/62, C09K8/60, E21B43/26, C09K8/88, C09K8/90, C09K8/68
Cooperative ClassificationC09K8/887, C09K8/90, C09K8/62, C09K8/685
European ClassificationC09K8/88C, C09K8/90, C09K8/62, C09K8/68B
Legal Events
DateCodeEventDescription
Mar 23, 2011FPAYFee payment
Year of fee payment: 4
Aug 26, 2003ASAssignment
Owner name: HALLIBURTON ENERGY SERVICES, INC., TEXAS
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:TODD, BRADLEY L.;SLABAUGH, BILLY F.;MUNOZ, TRINIDAD, JR.;REEL/FRAME:014448/0716
Effective date: 20030822