Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS7282137 B2
Publication typeGrant
Application numberUS 10/678,689
Publication dateOct 16, 2007
Filing dateOct 3, 2003
Priority dateOct 8, 2002
Fee statusPaid
Also published asCA2501044A1, CA2501044C, CN1703496A, CN1703497A, CN1703498A, CN100378202C, CN100532516C, CN100564491C, EP1551942A2, US20040108249, WO2004033597A2, WO2004033597A3
Publication number10678689, 678689, US 7282137 B2, US 7282137B2, US-B2-7282137, US7282137 B2, US7282137B2
InventorsIan A. Cody, William J. Murphy, Sylvain Hantzer, David W. Larkin, John E. Gallagher, Jr., Jeenok T. Kim
Original AssigneeExxonmobil Research And Engineering Company
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Process for preparing basestocks having high VI
US 7282137 B2
Abstract
A process for preparing high VI lubricating oil basestocks comprising hydrotreating, hydrodewaxing and optionally hydrofinishing. The hydrotreating step is under conditions such that the amount of conversion to 343 C. minus is less than 5 wt. % of the feedstock and the VI increase is less than 4 VI over the feedstock. Hydrodewaxing uses a low alpha catalyst and hydrofinishing is accomplished with a catalyst based on the M41S family.
Images(2)
Previous page
Next page
Claims(26)
1. A process for preparing a lubricating oil basestock having a VI of at least about 135 which comprises:
(1) hydrotreating a lubricating oil feedstock having a wax content of at least about 60 wt. %, based on feedstock, with a hydrotreating catalyst under effective hydrotreating conditions such that less than 5 wt. % of the feedstock is converted to 650 F. (343 C.) minus products to produce a hydrotreated feedstock whose VI increase is less than 3 greater than the VI of the feedstock;
(2) stripping the hydrotreated feedstock to separate gaseous from liquid product; and
(3) hydrodewaxing the liquid product with a dewaxing catalyst which is ZSM-48 under catalytically effective hydrodewaxing conditions wherein the dewaxing catalyst contains at least one of Pt or Pd and hydrodewaxing produces a dewaxed product having a pour point of −17 C. or less.
2. The process of claim 1 wherein the hydrotreating catalyst contains at least one Group 6, Group 9 or Group 10 metal.
3. The process of claim 1 wherein the hydrotreating conditions include a temperature of from 150-400 C., a pressure of from 1480-20786 kPa, a liquid hourly space velocity from 0.1-10 hr−1 and a hydrogen treat rate of 89-1780 m3/m3.
4. The process of claim 1 wherein hydrodewaxing conditions include a temperature of from 250-400 C., a pressure of from 791-20786 kPa, a liquid hourly space vejocity from 0.1-10 hr−1 and a hydrogen treat rate of 45-1780 m3/m3.
5. The process of claim 1 wherein the dewaxing catalyst is sulfided, reduced, or sulfided and reduced.
6. The process of claim 1 wherein hydrodewaxed liquid product from step (3) is hydrofinished under effective hydrofinishing conditions.
7. The process of claim 6 wherein the hydrofinishing includes a hydrofinishing catalyst containing at least one Group 6, Group 9 or Group 10 metal.
8. The process of claim 6 wherein the hydrofinishing includes a hydrofinishing catalyst which is a mesoporous catalyst from the M41S family.
9. The process of claim 8 wherein the hydrofinishing catalyst contains at least one noble metal.
10. A process for preparing a lubricating oil basestock having a VI of at least about 125 which comprises:
(1) hydrotreating a lubricating oil feedstock having a wax content of at least about 50 wt. %, based on feedstock, with a hydrotreating catalyst under effective hydrotreating conditions such that less than 5 wt. % of the feedstock is converted to 650 F. (343 C.) minus products to produce a hydrotreated feedstock to produce a hydrotreated feedstock whose VI increase is less than 3 greater than the VI of the feedstock;
(2) stripping the hydrotreated feedstock to separate gaseous from liquid product;
(3) hydrodewaxing the liquid product with a dewaxing catalyst which is ZSM-48 under catalytically effective hydrodewaxing conditions wherein the dewaxing catalyst contains at least one of Pt or Pd and hydrodewaxing produces a dewaxed product having a pour point of −17 C. or less; and
(4) hydrofinishing the product from step (3) with a mesoporous hydrofinishing catalyst from the M41S family under hydrofinishing conditions.
11. The process of claim 10 wherein the hydrotreating conditions include a temperature of from 150-400 C., a pressure of from 1480-20186 kPa, a liquid hourly space velocity from 0.1-10 hr−1 and a hydrogen treat rate of 89-1780 m3/m3.
12. The process of claim 10 wherein hydrodewaxing conditions include a temperature of from 250-400 C., a pressure of from 91-20786 kPa, a liquid hourly space velocity from 0.1-10hr−1 and a hydrogen treat rate of 45-1780 m3/m3.
13. The process of claim 10 wherein the M418 family includes MCM-41, MCM-48 and MCM-50.
14. The process of claim 13 wherein the M41S family is MCM-41.
15. The process of claim 10 wherein hydrofinishing conditions include a temperature of from 150-350 C., a pressure of from 2889-20786 kPa, a liquid hourly space velocity from 0.1-5 hr−1 and a hydrogen treat rate of 45-1780 m3/m3.
16. The process of claim 10 wherein the dewaxing catalyst is sulfided, reduced, or sulfided and reduced.
17. The process of claim 10 wherein the hydrotreating catalyst contains at least one Group 6, Group 9 or Group 10 metal.
18. The process of claim 10 wherein the hydrofinishing catalyst contains at least one noble metal.
19. The process of claim 18 wherein the noble metal is at least one of Pt or Pd.
20. A process for preparing a lubricating oil basestock having a VI of at least about 135 which comprises:
(1) hydrotreating a lubricating oil feedstock having a wax content of at least about 60 wt. %, based on feedstock, with a hydrotreating catalyst under effective hydrotreating conditions such that less than 5 wt. % of the feedstock is converted to 650 F. (343 C.) minus products to produce a hydrotreated feedstock to produce a hydrotreated feedstock whose VI increase is less than 3 greater than the VI of the feedstock;
(2) stripping the hydrotreated feedstock to separate gaseous from liquid product;
(3) hydrodewaxing the liquid product with a dewaxing catalyst which is ZSM-48 under catalytically effective hydrodewaxing conditions wherein the dewaxing catalyst contains at least one of Pt or Pd wherein hydrodewaxing produces a 370 C.+dewaxed product in a yield of greater than 50 wt. % based on feed to the hydrodewaxing and having a pour point of −17 C. or less, and
(4) hydrofinishing the product from step (3) with MCM-41 under hydrofinishing conditions wherein hydrofinished product has an aromatics content of about zero.
21. The process of claim 20 wherein the hydrotreating conditions include a temperature of from 150-400 C. a pressure of from 1480-20786 kPa, a liquid hourly space velocity from 0.1-10 hr−1 and a hydrogen treat rate of 89-1780 m3/m3.
22. The process of claim 20 wherein the dewaxing catalyst is sulfided, reduced, or sulfided and reduced.
23. The process of claim 20 wherein hydrodewaxing conditions include a temperature of from 250-400 C., a pressure of from 791-20786 kPa, a liquid hourly space velocity from 0.1-10 hr−1 and a hydrogen treat rate of 45-1780 m3/m3.
24. The process of claim 20 wherein hydrofinishing conditions include a temperature of from 150-350 C., a pressure of from 2889-20786 kPa, a liquid hourly space velocity from 0.1-5 hr−1 and a hydrogen treat raze of 45-1780 m3/m3.
25. The process of claim 20 wherein the feedstock wax content is at least about 75 wt. %.
26. The process of claim 20 wherein MCM-41 contains at least one of Pt or Pd.
Description
CROSS-REFERENCE TO RELATED APPLICATION

This patent application claims benefit of U.S. Provisional Patent Application Ser. No. 60/416,865 filed Oct. 8, 2002.

FIELD OF THE INVENTION

This invention relates to a process for preparing lubricating oil basestocks having a high viscosity index (VI) from wax containing feeds. More particularly, a wax containing feedstock is hydrotreated under mild conditions, catalytically hydrodewaxed and hydrofinished.

BACKGROUND OF THE INVENTION

Historically, lubricating oil products for use in applications such as automotive engine oils have used additives to improve specific properties of the basestocks used to prepare the finished products. With the advent of increased environmental concerns, the performance requirements for the basestocks themselves have increased. American Petroleum Institute (API) requirements for Group II basestocks include a saturates content of at least 90%, a sulfur content of 0.03 wt. % or less and a viscosity index (VI) between 80 and 120. The requirements for Group III basestocks are those of Group II basestocks except that the VI is at least 120.

Conventional techniques for preparing basestocks such as hydrocracking or solvent extraction require severe operating conditions such as high pressure and temperature or high solvent:oil ratios and high extraction temperatures to reach these higher basestock qualities. Either alternative involves expensive operating conditions and low yields.

Hydrocracking has been combined with hydrotreating as a preliminary step. However, this combination also results in decreased yields of lubricating oils due to the conversion to distillates that typically accompany the hydrocracking process.

It would be desirable to have a economical process for preparing Group III basestocks in high yields by minimizing conversion to low boiling distillates while at the same time producing a product having excellent low temperature properties, high VI and high stability.

SUMMARY OF THE INVENTION

The present invention is directed to a process for preparing a lubricating oil basestock having a VI of at least about 135 which comprises:

    • (1) hydrotreating a lubricating oil feedstock having a wax content of at least about 60 wt. %, based on feedstock, with a hydrotreating catalyst under effective hydrotreating conditions such that less than 5 wt. % of the feedstock is converted to 650 F. (343 C.) minus products to produce a hydrotreated feedstock whose VI increase is less than 4 greater than the VI of the feedstock;
    • (2) stripping the hydrotreated feedstock to separate gaseous from liquid product; and
    • (3) hydrodewaxing the liquid product with a dewaxing catalyst which is at least one of ZSM-48, ZSM-57, ZSM-23, ZSM-22, ZSM-35, ferrierite, ECR-42, ITQ-13, MCM-71, MCM-68, beta, fluorided alumina, silica-alumina or fluorided silica alumina under catalytically effective hydrodewaxing conditions wherein the dewaxing catalyst contains at least one Group 9 or Group 10 noble metal.

Another embodiment relates to a process for preparing a lubricating oil basestock having a VI of at least about 125 which comprises:

    • (1) hydrotreating a lubricating oil feedstock having a wax content of at least about 50 wt. %, based on feedstock, with a hydrotreating catalyst under effective hydrotreating conditions such that less than 5 wt. % of the feedstock is converted to 650 F. (343 C.) minus products to produce a hydrotreated feedstock to produce a hydrotreated feedstock whose VI increase is less than 4 greater than the VI of the feedstock;
    • (2) stripping the hydrotreated feedstock to separate gaseous from liquid product;
    • (3) hydrodewaxing the liquid product with a dewaxing catalyst which is at least one of ZSM-22, ZSM-23, ZSM-35, ferrierite, ZSM-48, ZSM-57, ECR-42, ITQ-13, MCM-68, MCM-71, beta, fluorided alumina, silica-alumina or fluorided silica-alumina under catalytically effective hydrodewaxing conditions wherein the dewaxing catalyst contains at least one Group 9 or 10 noble metal; and
    • (4) hydrofinishing the product from step (3) with a mesoporous hydrofinishing catalyst from the M41S family under hydrofinishing conditions.

Another embodiment relates to a process for preparing a lubricating oil basestock having a VI of at least about 135 which comprises:

    • (1) hydrotreating a lubricating oil feedstock having a wax content of at least about 60 wt. %, based on feedstock, with a hydrotreating catalyst under effective hydrotreating conditions such that less than 5 wt. % of the feedstock is converted to 650 F. (343 C.) minus products to produce a hydrotreated feedstock to produce a hydrotreated feedstock whose VI increase is less than 4 greater than the VI of the feedstock;
    • (2) stripping the hydrotreated feedstock to separate gaseous from liquid product;
    • (3) hydrodewaxing the liquid product with a dewaxing catalyst which is ZSM-48 under catalytically effective hydrodewaxing conditions wherein the dewaxing catalyst contains at least one Group 9 or 10 noble metal; and
    • (4) hydrofinishing the product from step (3) with MCM-41 under hydrofinishing conditions.

The basestocks according to the invention meet the requirements of a Group III basestock and can be prepared in high yields while at the same time possessing excellent properties such as high VI and low pour point.

BRIEF DESCRIPTION OF THE DRAWINGS

The FIGURE is a schematic flow diagram of the process.

DETAILED DESCRIPTION OF THE INVENTION

Feedstocks

The feedstock used in the process of the invention are wax-containing feeds that boil in the lubricating oil range, typically having a 10% distillation point greater than 650 F. (343 C.), measured by ASTM D 86 or ASTM 2887, and are derived from mineral or synthetic sources. The wax content of the feedstock is at least about 50 wt. %, based on feedstock and can range up to 100 wt. % wax. The wax content of a feed may be determined by nuclear magnetic resonance spectroscopy (ASTM D5292), by correlative ndM methods (ASTM D3238) or by solvent means (ASTM D3235). The waxy feeds may be derived from a number of sources such as oils derived from solvent refining processes such as raffinates, partially solvent dewaxed oils, deasphalted oils, distillates, vacuum gas oils, coker gas oils, slack waxes, foots oils and the like, and Fischer-Tropsch waxes. Preferred feeds are slack waxes and Fischer-Tropsch waxes. Slack waxes are typically derived from hydrocarbon feeds by solvent or propane dewaxing. Slack waxes contain some residual oil and are typically deoiled. Foots oils are derived from deoiled slack waxes. Fischer-Tropsch waxes are prepared by the Fischer-Tropsch synthetic process.

Feedstocks may have high contents of nitrogen- and sulfur-contaminants. Feeds containing up to 0.2 wt. % of nitrogen, based on feed and up to 3.0 wt. % of sulfur can be processed in the present process. Feeds having a high wax content typically have high viscosity indexes of up to 200 or more. Sulfur and nitrogen contents may be measured by standard ASTM methods D5453 and D4629, respectively.

For feeds derived from solvent extraction, the high boiling petroleum fractions from atmospheric distillation are sent to a vacuum distillation unit, and the distillation fractions from this unit are solvent extracted. The residue from vacuum distillation may be deasphalted. The solvent extraction process selectively dissolves the aromatic components in an extract phase while leaving the more paraffinic components in a raffinate phase. Naphthenes are distributed between the extract and raffinate phases. Typical solvents for solvent extraction include phenol, furfural and N-methyl pyrrolidone. By controlling the solvent to oil ratio, extraction temperature and method of contacting distillate to be extracted with solvent, one can control the degree of separation between the extract and raffinate phases.

Hydrotreating

For hydrotreating, the catalysts are those effective for hydrotreating such as catalysts containing Group 6 metals (based on the IUPAC Periodic Table format having Groups from 1 to 18), Groups 8-10 metals, and mixtures thereof. Preferred metals include nickel, tungsten, molybdenum, cobalt and mixtures thereof. These metals or mixtures of metals are typically present as oxides or sulfides on refractory metal oxide supports. The mixture of metals may also be present as bulk metal catalysts wherein the amount of metal is 30 wt. % or greater, based on catalyst. Suitable metal oxide supports include oxides such as silica, alumina, silica-aluminas or titania, preferably alumina. Preferred aluminas are porous aluminas such as gamma or eta. The amount of metals, either individually or in mixtures, ranges from about 0.5 to 35 wt. %, based on the catalyst. In the case of preferred mixtures of groups 9-10 metals with group 6 metals, the groups 9-10 metals are present in amounts of from 0.5 to 5 wt. %, based on catalyst and the group 6 metals are present in amounts of from 5 to 30 wt. %. The amounts of metals may be measured by atomic absorption spectroscopy, inductively coupled plasma-atomic emission spectrometry or other methods specified by ASTM for individual metals.

The acidity of metal oxide supports can be controlled by adding promoters and/or dopants, or by controlling the nature of the metal oxide support, e.g., by controlling the amount of silica incorporated into a silica-alumina support. Examples of promoters and/or dopants include halogen, especially fluorine, phosphorus, boron, yttria, rare-earth oxides and magnesia. Promoters such as halogens generally increase the acidity of metal oxide supports while mildly basic dopants such as yttria or magnesia tend to decrease the acidity of such supports.

Hydrotreating conditions include temperatures of from 150 to 400 C., preferably 200 to 350 C., a hydrogen partial pressure of from 1480 to 20786 kPa (200 to 3000 psig), preferably 2859 to 13891 kPa (400 to 2000 psig), a space velocity of from 0.1 to 10 liquid hourly space velocity (LHSV), preferably 0.1 to 5 LHSV, and a hydrogen to feed ratio of from 89 to 1780 m3/m3 (500 to 10000 scf/B), preferably 178 to 890 m3/m3.

Hydrotreating reduces the amount of nitrogen- and sulfur-containing contaminants to levels which will not unacceptably affect the dewaxing catalyst in the subsequent dewaxing step. Also, there may be certain polynuclear aromatic species which will pass through the present mild hydrotreating step. These contaminants, if present, will be removed in a subsequent hydrofinishing step.

During hydrotreating, less than 5 wt. % of the feedstock, preferably less than 3 wt. %, more preferably less than 2 wt. %, is converted to 650 F. (343 C.) minus products to produce a hydrotreated feedstock whose VI increase is less than 4, preferably less than 3, more preferably less than 2 greater than the VI of the feedstock. The high wax contents of the present feeds results in minimal VI increase during the hydrotreating step.

The hydrotreated feedstock may be passed directly to the dewaxing step or preferably, stripped to remove gaseous contaminants such as hydrogen sulfide and ammonia prior to dewaxing. Stripping can be by conventional means such as flash drums or fractionators

Dewaxing Catalyst

The dewaxing catalyst may be either crystalline or amorphous. Crystalline materials are molecular sieves that contain at least one 10 or 12 ring channel and may be based on aluminosilicates (zeolites) or on silicoaluminophosphates (SAPOs). Zeolites used for oxygenate treatment may contain at least one 10 or 12 channel. Examples of such zeolites include ZSM-22, ZSM-23, ZSM-35, ZSM-48, ZSM-57, ferrierite, ITQ-13, MCM-68 and MCM-71. Examples of aluminophosphates containing at least one 10 ring channel include ECR-42. Examples of molecular sieves containing 12 ring channels include zeolite beta, and MCM-68. The molecular sieves are described in U.S. Pat. Nos. 5,246,566, 5,282,958, 4,975,177, 4,397,827, 4,585,747, 5,075,269 and 4,440,871. MCM-68 is described in U.S. Pat. No. 6,310,265. MCM-71 and ITQ-13 are described in PCT published applications WO 0242207 and WO 0078677. ECR-42 is disclosed in U.S. Pat. No. 6,303,534. Preferred catalysts include ZSM-48, ZSM-22 and ZSM-23. Especially preferred is ZSM-48. The molecular sieves are preferably in the hydrogen form. Reduction can occur in situ during the dewaxing step itself or can occur ex situ in another vessel.

Amorphous dewaxing catalysts include alumina, fluorided alumina, silica-alumina, fluorided silica-alumina and silica-alumina doped with Group 3 metals. Such catalysts are described for example in U.S. Pat. Nos. 4,900,707 and 6,383,366.

The dewaxing catalysts are bifunctional, i.e., they are loaded with a metal hydrogenation component, which is at least one Group 6 metal, at least one Group 8-10 metal, or mixtures thereof. Preferred metals are Groups 9-10 metals. Especially preferred are Groups 9-10 noble metals such as Pt, Pd or mixtures thereof (based on the IUPAC Periodic Table format having Groups from 1 to 18). These metals are loaded at the rate of 0.1 to 30 wt. %, based on catalyst. Catalyst preparation and metal loading methods are described for example in U.S. Pat. No. 6,294,077, and include for example ion exchange and impregnation using decomposable metal salts. Metal dispersion techniques and catalyst particle size control are described in U.S. Pat. No. 5,282,958. Catalysts with small particle size and well dispersed metal are preferred.

The molecular sieves are typically composited with binder materials which are resistant to high temperatures which may be employed under dewaxing conditions to form a finished dewaxing catalyst or may be binderless (self bound). The binder materials are usually inorganic oxides such as silica, alumina, silica-aluminas, binary combinations of silicas with other metal oxides such as titania, magnesia, thoria, zirconia and the like and tertiary combinations of these oxides such as silica-alumina-thoria and silica-alumina magnesia. The amount of molecular sieve in the finished dewaxing catalyst is from 10 to 100, preferably 35 to 100 wt. %, based on catalyst. Such catalysts are formed by methods such spray drying, extrusion and the like. The dewaxing catalyst may be used in the sulfided or unsulfided form, and is preferably in the sulfided form.

Dewaxing conditions include temperatures of from 250-400 C., preferably 275 to 350 C., pressures of from 791 to 20786 kPa (100 to 3000 psig), preferably 1480 to 17339 kPa (200 to 2500 psig), liquid hourly space velocities of from 0.1 to 10 hr−1, preferably 0.1 to 5 hr−1 and hydrogen treat gas rates from 45 to 1780 m3/m3 (250 to 10000 scf/B), preferably 89 to 890 m3/m3 (500 to 5000 scf/B).

Hydrofinishing

At least a portion of the product from dewaxing is passed directly to a hydrofinishing step without disengagement. It is preferred to hydrofinish the product resulting from dewaxing in order to adjust product qualities to desired specifications. Hydrofinishing is a form of mild hydrotreating directed to saturating any lube range olefins and residual aromatics as well as to removing any remaining heteroatoms and color bodies. The post dewaxing hydrofinishing is usually carried out in cascade with the dewaxing step. Generally the hydrofinishing will be carried out at temperatures from about 150 C. to 350 C., preferably 180 C. to 250 C. Total pressures are typically from 2859 to 20786 kPa (about 400 to 3000 psig). Liquid hourly space velocity is typically from 0.1 to 5 LHSV (hr−1), preferably 0.5 to 3 hr−1 and hydrogen treat gas rates of from 44.5 to 1780 m3/m3 (250 to 10,000 scf/B).

Hydrofinishing catalysts are those containing Group 6 metals (based on the IUPAC Periodic Table format having Groups from 1 to 18), Groups 8-10 metals, and mixtures thereof. Preferred metals include at least one noble metal having a strong hydrogenation function, especially platinum, palladium and mixtures thereof. The mixture of metals may also be present as bulk metal catalysts wherein the amount of metal is 30 wt. % or greater based on catalyst. Suitable metal oxide supports include low acidic oxides such as silica, alumina, silica-aluminas or titania, preferably alumina. The preferred hydrofinishing catalysts for aromatics saturation will comprise at least one metal having relatively strong hydrogenation function on a porous support. Typical support materials include amorphous or crystalline oxide materials such as alumina, silica, and silica-alumina. The metal content of the catalyst is often as high as about 20 weight percent for non-noble metals. Noble metals are usually present in amounts no greater than about 1 wt. %.

The hydrofinishing catalyst is preferably a mesoporous material belonging to the M41S class or family of catalysts. The M41S family of catalysts are mesoporous materials having high silica contents whose preparation is further described in J. Amer. Chem. Soc., 1992, 114, 10834. Examples included MCM-41, MCM-48 and MCM-50. Mesoporous refers to catalysts having pore sizes from 15 to 100 Å. A preferred member of this class is MCM-41 whose preparation is described in U.S. Pat. No. 5,098,684. MCM-41 is an inorganic, porous, non-layered phase having a hexagonal arrangement of uniformly-sized pores. The physical structure of MCM-41 is like a bundle of straws wherein the opening of the straws (the cell diameter of the pores) ranges from 15 to 100 Angstroms. MCM-48 has a cubic symmetry and is described for example is U.S. Pat. No. 5,198,203 whereas MCM-50 has a lamellar structure. MCM-41 can be made with different size pore openings in the mesoporous range. The mesoporous materials may bear a metal hydrogenation component which is at least one of Group 8, Group 9 or Group 10 metals. Preferred are noble metals, especially Group 10 noble metals, most preferably Pt, Pd or mixtures thereof.

Generally the hydrofinishing will be carried out at temperatures from about 150 C. to 350 C., preferably 180 C. to 250 C. Total pressures are typically from 2859 to 20786 kPa (about 400 to 3000 psig). Liquid hourly space velocity is typically from 0.1 to 5 LHSV (hr−1), preferably 0.5 to 3 hr−1 and hydrogen treat gas rates of from 44.5 to 1780 m3/m3 (250 to 10,000 scf/B).

The products resulting from the process according to the invention have very high viscosity indices and can be produced in high yields from waxy feeds. Thus, one may obtain lube basestocks having VIs of 145 or greater with excellent low temperature properties.

Referring now to the FIGURE, a waxy feedstock such as a slack wax is fed through line 10 to hydrotreating unit 14. Hydrogen is added to hydrotreating unit 14 through line 12. Hydrotreater 14 is loaded with a bed of hydrotreating catalyst 16. Hydrotreated feedstock is conducted through line 18 to stripper 20 and light gases are removed through line 22. Liquid product is then sent from stripper 20 through line 24 to hydrodewaxing unit 28. Additional hydrogen is added through line 26. Hydrodewaxing unit 28 is loaded with a bed of hydrodewaxing catalyst 30. Hydrodewaxed product is then sent through line 32 to hydrofinishing unit 34 which is loaded with a bed of hydrofinishing catalyst 36. Hydrofinished product is then sent through line 38 to vacuum stripper 40. Light products are removed through line 42 and remaining liquid product sent through line 44 to a vacuum distillation unit (not shown).

The invention is further illustrated by the following examples which are not intended as limiting.

EXAMPLES Example 1

This example illustrates that processing clean feeds with a sulfided hydrodewaxing catalyst can produce a high quality dewaxed oil at excellent yield. The feed is a 150 N slack wax hydrotreated at low severity of 240 C. whose properties are given in Table 1. Viscosity was measured using standard ASTM tests (D445-94 and D2270-91) using a Houillon Automated Viscometer with a repeatability of 0.5%. Pour points are determined by standard ASTM test (D 97). Sulfur and nitrogen contents may be measured by standard ASTM methods D5453 and D4629, respectively. The error limits for yield and pour points are 1 and 3, respectively.

TABLE 1
Viscosity, cSt at 100 C. 3.6
Nitrogen, Wppm 0.4
Sulfur, Wppm 120
Oil in wax, wt. % 7.0

The feed from Table 1 was hydrotreated with Akzo Nobel KF848 catalyst under the following hydrotreating conditions: 240 C., LHSV of 0.7 v/v/h, 1000 psig (6996 kPa), treat rate of 1500 scf/B H2(267 m3/m3). The hydrotreated product's 370 C.+yield was 94.4 wt. % on feed. The hydrotreated product's properties are given in Table 2.

TABLE 2
Viscosity cSt at 100 C. 3.6
Nitrogen, Wppm 0.1
Sulfur, Wppm 2

The hydrotreated product was hydrodewaxed with an ex-situ sulfided ZSM-48 catalyst at the following conditions: 1 v/v/h, 1000 psig (6996 kPa), 2500 scf/B H2 (445 m3/m3). The ZSM-48 catalyst bound with 35 wt. % alumina was loaded with 0.6 wt. % Pt as metal and was ex-situ sulfided with 400 ppm H2S in nitrogen to H2S breakthrough. The hydrodewaxed results are given in Table 3.

TABLE 3
Average Reactor Temp. C. 329
370 C. + Yield, wt. % on feed to 53.8
Hydrodewaxer (HDW)
370 C. + Product Properties
Viscosity at 100 C. (cSt) 3.3
VI 136
Pour Point ( C.) −21

The hydrodewaxed product was hydrofinished using a MCM-41 containing Pt/Pd as hydrofinishing catalyst. Hydrodewaxed product was hydrofinished under the following conditions: 200 C., LHSV of 2.5 v/v/h, 1000 psig H2 (6996 kPa), 2500 scf/B H2 (445 m3/m3). Hydrofinishing using the MCM-41 catalyst enabled the reduction in total aromatics to essentially zero without affecting the other properties of the dewaxed product. This is due to the high saturation activity of this catalyst at low temperatures. The dewaxed products in this and subsequent Examples were hydrofinished in this manner.

Example 2

This example illustrates that processing clean feeds with a sulfided hydrodewaxing catalyst can produce a high quality dewaxed oil at excellent yield. The feed is a 150 N slack wax whose properties are given in Table 4. The feed was hydrotreated at much higher severity of 345 C.

TABLE 4
Viscosity, cSt at 100 C. 3.6
Nitrogen, Wppm 0.4
Sulfur, Wppm 120
Oil in wax, wt. % 7.0

The feed from Table 4 was hydrotreated with Akzo Nobel KF848 catalyst under the following hydrotreating conditions: 345 C., 0.7 v/v/h, 1000 psig (6996 kPa), 1500 scf/B H2 (267 m3/m3). The hydrotreated product's 370 C.+yield was 93.2 wt. % on feed. The hydrotreated product's properties are given in Table 5.

TABLE 5
Viscosity, cSt at 100 C. 3.4
Nitrogen, Wppm 0.1
Sulfur, Wppm 0

The hydrotreated product was hydrodewaxed with an ex-situ sulfided ZSM-48 catalyst at the following conditions: 1 v/v/h, 1000 psig (6996 kPa), 2500 scf/B H2 (445 m3/m3). The ZSM-48 catalyst (Example 1) was ex-situ sulfided with 400 ppm H2S in nitrogen to H2S breakthrough. The product properties from hydrodewaxing results are given in Table 6.

TABLE 6
Average Reactor Temp. C. 329
370 C. + Yield, wt. % on feed to HDW 52.6
370 C. + Product Properties
Viscosity at 100 C. (cSt) 3.3
VI 134
Pour Point ( C.) −26

Example 3

This example illustrates that processing clean feeds over a reduced hydrodewaxed catalyst can produce a high quality dewaxed oil at excellent yield. The feed is a 150 N slack wax whose properties are given in Table 7.

TABLE 7
Viscosity, cSt at 100 C. 3.6
Nitrogen, Wppm 0.4
Sulfur, Wppm 120
Oil in wax, wt. % 7.0

The feed from Table 7 was hydrotreated with Akzo Nobel KF848 catalyst under the following hydrotreating conditions: 345 C., 0.7 v/v/h, 1000 psig (6996 kPa), 1500 scf/B H2 (267 m3/m3). The hydrotreated product's 370 C.+yield was 93.9 wt. % on feed. The hydrotreated product's properties are given in Table 8.

TABLE 8
Viscosity, cSt at 100 C. 3.4
Nitrogen, Wppm 0.1
Sulfur, Wppm 0

The hydrotreated product was hydrodewaxed with a reduced ZSM-48 catalyst at the following conditions: 1 v/v/h, 1000 psig (6996 kPa), 2500 scf/B H2 (445 m3/m3). The hydrodewaxed results are given in Table 9.

TABLE 9
Average Reactor Temp. 330 332
C.
370 C. + Yield, wt. % on 64.9 61.8
feed to HDW
370 C. + Product Properties
Viscosity at 100 C. (cSt) 3.3 3.2
VI 140 136
Pour Point ( C.) −18 −23

Example 4

This example illustrates that processing clean light feeds over a sulfided hydrodewaxed catalyst can produce a high quality dewaxed oil at excellent yield. The feed is a 150 N slack wax with higher oil content whose properties are given in Table 10.

TABLE 10
Viscosity, cSt at 100 C. 3.7
Nitrogen, Wppm 2
Sulfur, Wppm 252
Oil in wax, wt. % 13.5

The feed from Table 10 was hydrotreated with Akzo Nobel KF848 catalyst under the following hydrotreating conditions: 270 C., 0.7 v/v/h, 1000 psig (6996 kPa), 1500 scf/B H2 (267 m3/m3). The hydrotreated product's 370 C.+yield was 95.3 wt. % on feed. The hydrotreated product's properties are given in Table 11.

TABLE 11
Viscosity, cSt at 100 C. 3.7
Nitrogen, Wppm 2
Sulfur, Wppm 0.5

The hydrotreated product was hydrodewaxed with an ex-situ sulfided ZSM-48 catalyst at the following conditions: 1 v/v/h, 1000 psi (6996 kPa), 2500 scf/B H2 (445 m3/m3). The ZSM-48 catalyst (Example 1) was ex-situ sulfided with 400 ppm H2S in nitrogen to H2S breakthrough. The hydrodewaxed results are given in Table 12.

TABLE 12
Average Reactor Temp. C. 329 327
370 C. + Yield, wt. % on 52.4 56.4
feed to HDW
370 C. + Product Properties
Viscosity at 100 C. (cSt) 3.4 3.4
VI 133 136
Pour Point ( C.) −27 −20

Example 5

This example illustrates that processing clean feeds over a sulfided catalyst can produce a high quality dewaxed oil at excellent yield. The feed is a 600 N slack wax whose properties are given in Table 13.

TABLE 13
Viscosity, cSt at 100 C. 8.0
Nitrogen, Wppm 14
Sulfur, Wppm 912
Oil in wax, wt. % 16.5

The feed from Table 13 was hydrotreated with Akzo Nobel KF848 catalyst under the following hydrotreating conditions: 317 C., 0.7 v/v/h, 1000 psig (6996 kPa), 1500 scf/B H2 (267 m3/m3). The hydrotreated product's 370 C.+yield was 97.3 wt. % on feed. The hydrotreated product's properties are given in Table 14.

TABLE 14
Viscosity, cSt at 100 C. 7.5
Nitrogen, Wppm 3
Sulfur, Wppm 1

The hydrotreated product was hydrodewaxed with an ex-situ sulfided ZSM-48catalyst at the following conditions: 1 v/v/h, 1000 psig (6996 kPa), 2500 scf/B H2 (445 m3/m3). The ZSM-48 catalyst (Example 1) was ex-situ sulfided with 400 ppm H2S in nitrogen to H2S breakthrough. The hydrodewaxed results are given in Table 15.

TABLE 15
Average Reactor Temp. C. 329
370 C. + Yield, wt. % on feed to HDW 61.9
370 C. + Product Properties
Viscosity at 100 C. (cSt) 6.5
VI 145
Pour Point ( C.) −17

Example 6

This example illustrates that processing clean feeds at a higher hydrotreating temperature can produce a high quality dewaxed oil at excellent yield. The feed is a 600 N slack wax whose properties are given in Table 16.

TABLE 16
Viscosity, cSt at 100 C. 8.0
Nitrogen, Wppm 14
Sulfur, Wppm 912
Oil in wax, wt. % 16.5

The feed from Table 16 was hydrotreated with Akzo Nobel KF848 catalyst under the following hydrotreating conditions: 340 C., 0.7 v/v/h, 1000 psig (6996 kPa), 1500 scf/B H2 (267 m3/m3). The hydrotreated product's 370 C.+yield was 94.6 wt. % on feed. The hydrotreated product's properties are given in Table 17.

TABLE 17
Viscosity, cSt at 100 C. 7.2
Nitrogen, Wppm 5
Sulfur, Wppm 1

The hydrotreated product was hydrodewaxed with an ex-situ sulfided ZSM-48 catalyst at the following conditions: 1 v/v/h, 1000 psig (6996 kPa), 2500 scf/B H2 (445 m3/m3). The ZSM-48 catalyst (Example 1) was ex-situ sulfided with 400 ppm H2S in nitrogen to H2S breakthrough. The hydrodewaxed results are given in Table 18.

TABLE 18
Average Reactor Temp. C. 329
370 C. + Yield, wt. % on feed to HDW 60.3
370 C. + Product Properties
Viscosity at 100 C. (cSt) 6.3
VI 147
Pour Point ( C.) −21

Example 7

This process illustrates that processing clean feeds over a reduced hydrodewaxing catalyst can produce a high quality dewaxed oil at excellent yield. The feed is a 600 N slack wax whose properties are given in Table 19.

TABLE 19
Viscosity, cSt at 100 C. 7.95
Nitrogen, Wppm 14
Sulfur, Wppm 912
Oil in wax, wt. % 16.5

The feed from Table 22 was hydrotreated with Akzo Nobel KF848 catalyst under the following hydrotreating conditions: 340 C., 0.7 v/v/h, 1000 psig (6996 kPa), 1500 scf/B H2 (267 m3/m3). The hydrotreated product's 370 C.+yield was 93.9 wt. % on feed. The hydrotreated product's properties are given in Table 20.

TABLE 20
Viscosity, cSt at 100 C. 7.2
Nitrogen, Wppm 5
Sulfur, Wppm 1

The hydrotreated product was hydrodewaxed with a reduced ZSM-48 catalyst (35 wt. % alumina/0.6 wt. % Pt) at the following conditions: 1 v/v/h, 1000 psig (6996 kPa), 2500 scf/B H2 (445 m3/m3). The hydrodewaxed results are given in Table 21.

TABLE 21
Average Reactor Temp. C. 338
370 C. + Yield, wt. on feed to HDW 60.4
370 C. + Product Properties
Viscosity at 100 C. (cSt) 6.1
VI 146
Pour Point ( C.) −25

The results from Table 21 demonstrate that a very high VI product can be obtained in high yields from a waxy feed.

Example 8

This example illustrates that processing clean feeds having higher oil in wax content can produce a high quality dewaxed oil at excellent yield. The feed is a 600 N slack wax whose properties are given in Table 22.

TABLE 22
Viscosity, cSt at 100 C. 8.2
Nitrogen, Wppm 20
Sulfur, Wppm 1289
Oil in wax, wt. % 25.3

The feed from Table 22 was hydrotreated with Akzo Nobel KF848 catalyst under the following hydrotreating conditions: 340 C., 0.7 v/v/h, 1000 psig (6996 kPa), 1500 scf/B H2 (267 m3/m3). The hydrotreated product's 370 C.+yield was 95.8 wt. % on feed. The hydrotreated product's properties are given in Table 23.

TABLE 23
Viscosity, cSt at 100 C. 7.4
Nitrogen, Wppm 4
Sulfur, Wppm 1

The hydrotreated product was hydrodewaxed with an ex-situ sulfided ZSM-48 catalyst at the following conditions: 1 v/v/h, 1000 psig (6996 kPa), 2500 scf/B H2 (445 m3/m3). The ZSM-48 catalyst (Example 1) was ex-situ sulfided with 400 ppm H2S in nitrogen to H2S breakthrough. The hydrodewaxed results are given in Table 24.

TABLE 24
Average Reactor Temp. C. 329
370 C. + Yield, wt. % on feed 61
370 C. + Product Properties
Viscosity at 100 C. (cSt) 6.8
VI 142
Pour Point ( C.) −22

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2250410Apr 28, 1939Jul 22, 1941Shell DevCatalytic treatment of hydrocarbons
US3711399Dec 24, 1970Jan 16, 1973Texaco IncSelective hydrocracking and isomerization of paraffin hydrocarbons
US4097364Mar 24, 1976Jun 27, 1978Chevron Research CompanyHydrocracking in the presence of water and a low hydrogen partial pressure
US4181597May 1, 1978Jan 1, 1980Mobil Oil CorporationMethod of stabilizing lube oils
US4335019Jan 13, 1981Jun 15, 1982Mobil Oil CorporationPreparation of natural ferrierite hydrocracking catalyst and hydrocarbon conversion with catalyst
US4377469Sep 30, 1981Mar 22, 1983Mobil Oil CorporationMaintaining catalytic activity of sodium aluminosilicates
US4388177Mar 8, 1982Jun 14, 1983Mobil Oil CorporationPreparation of natural ferrierite hydrocracking catalyst and hydrocarbon conversion with catalyst
US4397827Sep 17, 1981Aug 9, 1983Mobil Oil CorporationSilico-crystal method of preparing same and catalytic conversion therewith
US4402866Dec 16, 1981Sep 6, 1983Mobil Oil CorporationAging resistance shape selective catalyst with enhanced activity
US4431516Nov 13, 1981Feb 14, 1984Standard Oil Company (Indiana)Hydrocracking process
US4431517Nov 13, 1981Feb 14, 1984Standard Oil Company (Indiana)Process for mild hydrocracking of hydrocarbon feeds
US4431519Oct 13, 1982Feb 14, 1984Mobil Oil CorporationMethod for catalytically dewaxing oils
US4431527Nov 13, 1981Feb 14, 1984Standard Oil Company (Indiana)Process for hydrogen treating high nitrogen content hydrocarbon feeds
US4436614Oct 8, 1982Mar 13, 1984Chevron Research CompanyProcess for dewaxing and desulfurizing oils
US4440871Jul 26, 1982Apr 3, 1984Union Carbide CorporationCrystalline silicoaluminophosphates
US4460698Nov 13, 1981Jul 17, 1984Standard Oil Company (Indiana)Hydrocarbon conversion catalyst
US4483764Oct 27, 1983Nov 20, 1984Standard Oil Company (Indiana)Hydrocarbon conversion process
US4490242Jan 13, 1984Dec 25, 1984Mobil Oil CorporationTwo-stage hydrocarbon dewaxing hydrotreating process
US4510045Mar 16, 1984Apr 9, 1985Mobil Oil CorporationHydrocarbon dewaxing process using steam-activated alkali metal zeolite catalyst
US4568449Feb 11, 1985Feb 4, 1986Union Oil Company Of CaliforniaHydrotreating catalyst and process
US4585747Jun 27, 1984Apr 29, 1986Mobil Oil CorporationSynthesis of crystalline silicate ZSM-48
US4594146Dec 21, 1984Jun 10, 1986Mobil Oil CorporationConversion with zeolite catalysts prepared by steam treatment
US4599162Dec 21, 1984Jul 8, 1986Mobil Oil CorporationCascade hydrodewaxing process
US4601993Oct 17, 1984Jul 22, 1986Mobil Oil CorporationCatalyst composition dewaxing of lubricating oils
US4610778Jun 3, 1985Sep 9, 1986Mobil Oil CorporationTwo-stage hydrocarbon dewaxing process
US4622130Dec 9, 1985Nov 11, 1986Shell Oil CompanyEconomic combinative solvent and catalytic dewaxing process employing methylisopropyl ketone as the solvent and a silicate-based catalyst
US4636299Dec 24, 1984Jan 13, 1987Standard Oil Company (Indiana)Process for the manufacture of lubricating oils
US4684756May 1, 1986Aug 4, 1987Mobil Oil CorporationProcess for upgrading wax from Fischer-Tropsch synthesis
US4784747Jul 8, 1987Nov 15, 1988Mobil Oil CorporationCatalysts over steam activated zeolite catalyst
US4810357Mar 16, 1988Mar 7, 1989Mobil Oil CorporationCatalytic dewaxing of light and heavy oils in dual parallel reactors
US4900707Dec 13, 1988Feb 13, 1990Exxon Research And Engineering CompanyMethod for producing a wax isomerization catalyst
US4906350 *Oct 17, 1988Mar 6, 1990Shell Oil CompanyProcess for the preparation of a lubricating base oil
US4911821Feb 8, 1989Mar 27, 1990Mobil Oil CorporationLubricant production process employing sequential dewaxing and solvent extraction
US4919788Oct 21, 1988Apr 24, 1990Mobil Oil CorporationLubricant production process
US4975177Jul 17, 1989Dec 4, 1990Mobil Oil CorporationHigh viscosity index lubricants
US5017535Jun 20, 1990May 21, 1991Akzo N.V.Process for the preparation of a presulfided and sulfided catalyst
US5037528Apr 30, 1990Aug 6, 1991Mobil Oil CorporationLubricant production process with product viscosity control
US5059299May 11, 1990Oct 22, 1991Exxon Research And Engineering CompanyMethod for isomerizing wax to lube base oils
US5075269Feb 26, 1990Dec 24, 1991Mobil Oil Corp.Production of high viscosity index lubricating oil stock
US5082988Jul 6, 1989Jan 21, 1992Chevron CorporationIsomerization catalyst and process for its use
US5098684Dec 10, 1990Mar 24, 1992Mobil Oil Corp.Synthetic mesoporous crystaline material
US5146022Aug 23, 1990Sep 8, 1992Mobil Oil CorporationHigh VI synthetic lubricants from cracked slack wax
US5198203Jul 24, 1991Mar 30, 1993Mobil Oil Corp.Synthetic mesoporous crystalline material
US5208403Apr 28, 1992May 4, 1993Mobil Oil CorporationHigh VI lubricant blends from slack wax
US5227353Aug 13, 1992Jul 13, 1993Mobil Oil CorporationHydroprocessing catalyst composition
US5232579Jun 14, 1991Aug 3, 1993Mobil Oil CorporationCatalytic cracking process utilizing a zeolite beta catalyst synthesized with a chelating agent
US5246566Jun 29, 1992Sep 21, 1993Chevron Research And Technology CompanyWax isomerization using catalyst of specific pore geometry
US5264641Dec 14, 1992Nov 23, 1993Mobil Oil Corp.Aromatics saturation with catalysts comprising crystalline ultra-large pore oxide materials
US5275719Jun 8, 1992Jan 4, 1994Mobil Oil CorporationProduction of high viscosity index lubricants
US5276229Jun 24, 1992Jan 4, 1994Mobil Oil Corp.High VI synthetic lubricants from thermally cracked slack wax
US5282958Jul 20, 1990Feb 1, 1994Chevron Research And Technology CompanyUse of modified 5-7 a pore molecular sieves for isomerization of hydrocarbons
US5288395Jul 24, 1991Feb 22, 1994Mobil Oil CorporationProduction of high viscosity index lubricants
US5292983May 6, 1992Mar 8, 1994Shell Oil CompanyProcess for the production of isoparaffins
US5358628Jun 15, 1992Oct 25, 1994Mobil Oil CorporationProduction of high viscosity index lubricants
US5447623May 2, 1994Sep 5, 1995UopHydrocracking catalyst and process
US5498821Oct 13, 1994Mar 12, 1996Exxon Research And Engineering CompanyCarbon dioxide addition in hydrocracking/hydroisomerization processes to control methane production
US5516736Sep 15, 1994May 14, 1996Mobil Oil Corp.Selectivating zeolites with organosiliceous agents
US5573657Sep 20, 1994Nov 12, 1996Mobil Oil CorporationHydrogenation process
US5643440Dec 7, 1994Jul 1, 1997Mobil Oil CorporationProduction of high viscosity index lubricants
US5689031Oct 17, 1995Nov 18, 1997Exxon Research & Engineering CompanySynthetic diesel fuel and process for its production
US5730858Mar 18, 1997Mar 24, 1998Fina Research, S.A.Process for converting wax-containing hydrocarbon feedstocks into high-grade middle distillate products
US5837639 *Jul 24, 1991Nov 17, 1998Mobil Oil CorporationHydroprocessing catalyst
US5911874Dec 17, 1996Jun 15, 1999Exxon Research And Engineering Co.Raffinate hydroconversion process
US5935417Feb 13, 1998Aug 10, 1999Exxon Research And Engineering Co.Hydroconversion process for making lubricating oil basestocks
US5951848Oct 29, 1997Sep 14, 1999Mobil Oil CorporationProcess for highly shape selective dewaxing which retards catalyst aging
US5993644Jun 26, 1997Nov 30, 1999Chevron U.S.A. Inc.Base stock lube oil manufacturing process
US6013171Feb 3, 1998Jan 11, 2000Exxon Research And Engineering Co.Catalytic dewaxing with trivalent rare earth metal ion exchanged ferrierite
US6051129Jul 24, 1998Apr 18, 2000Chevron U.S.A. Inc.Process for reducing haze point in bright stock
US6068757Nov 3, 1995May 30, 2000Coastal Eagle Point Oil CompanyHydrodewaxing process
US6080301Sep 4, 1998Jun 27, 2000Exxonmobil Research And Engineering CompanyPremium synthetic lubricant base stock having at least 95% non-cyclic isoparaffins
US6090989Oct 13, 1998Jul 18, 2000Mobil Oil CorporationIsoparaffinic lube basestock compositions
US6096189Dec 17, 1996Aug 1, 2000Exxon Research And Engineering Co.Hydroconversion process for making lubricating oil basestocks
US6099719Feb 13, 1998Aug 8, 2000Exxon Research And Engineering CompanyHydroconversion process for making lubicating oil basestocks
US6103101Jun 9, 1997Aug 15, 2000Petroleo Brasileiro S.A.-PetrobrasProcess for producing lube base oils of high viscosity index and diesel oil of high cetaned number
US6136181Jun 26, 1997Oct 24, 2000Chevron U.S.A. Inc.Hydroconversion sulfur-containing lube feedstock using a sulfur resistant catalyst
US6179994Sep 4, 1998Jan 30, 2001Exxon Research And Engineering CompanyIsoparaffinic base stocks by dewaxing fischer-tropsch wax hydroisomerate over Pt/H-mordenite
US6190532Nov 15, 1999Feb 20, 2001Mobil Oil CorporationProduction of high viscosity index lubricants
US6231749Nov 15, 1999May 15, 2001Mobil Oil CorporationProduction of high viscosity index lubricants
US6264826 *Sep 7, 1999Jul 24, 2001Chevron U.S.A Inc.Base stock lube oil manufacturing process
US6294077Feb 2, 2000Sep 25, 2001Mobil Oil CorporationProduction of high viscosity lubricating oil stock with improved ZSM-5 catalyst
US6303534May 20, 1999Oct 16, 2001Exxonmobil Chemical Patents Inc.Silicoaluminophosphates having an AEL structure, and their preparation
US6310265Nov 1, 1999Oct 30, 2001Exxonmobil Chemical Patents Inc.Isomerization of paraffins
US6322692Mar 21, 2000Nov 27, 2001Exxonmobil Research And Engineering CompanyHydroconversion process for making lubricating oil basestocks
US6337010Aug 2, 1999Jan 8, 2002Chevron U.S.A. Inc.Process scheme for producing lubricating base oil with low pressure dewaxing and high pressure hydrofinishing
US6383366Feb 12, 1998May 7, 2002Exxon Research And Engineering CompanyWax hydroisomerization process
US6399845May 28, 1998Jun 4, 2002Fortum Oil & Gas OyProcess for producing high grade diesel fuel
US6420618Apr 28, 2000Jul 16, 2002Exxonmobil Research And Engineering CompanyPremium synthetic lubricant base stock (Law734) having at least 95% noncyclic isoparaffins
US6663768Jun 30, 1998Dec 16, 2003Chevron U.S.A. Inc.Preparing a HGH viscosity index, low branch index dewaxed
US20010004972Jan 11, 2001Jun 28, 2001Miller Stephen J.Process for making a lube base stock from a lower molecular weight feedstock using at least two oligomerization zones
US20010006154Jan 11, 2001Jul 5, 2001Krug Russell R.Process for making a lube base stockfrom a lower molecular weight feedstockin a catalystic distillation unit
US20020003102Jan 11, 2001Jan 10, 2002O'rear Dennis J.Process for making a lube base stockform a lower molecular weight feedstock
US20030168379Apr 26, 2001Sep 11, 2003Degnan Thomas F.Process for isomerization dewaxing of hydrocarbon streams
EP0140468A1Jun 28, 1984May 8, 1985Mobil Oil CorporationCombination process for making improved lubricating oils from marginal crudes
EP0147873A1Aug 30, 1984Jul 10, 1985Shell Internationale Research Maatschappij B.V.Process for the preparation of middle distillates
EP0635557A1Jul 8, 1994Jan 25, 1995Exxon Research And Engineering CompanyDistillate fuel production
EP0707057A1Aug 16, 1995Apr 17, 1996Exxon Research And Engineering CompanyCarbon dioxide addition in hydrocracking/hydroisomerization processes to control methane production
EP0776959A2Nov 28, 1996Jun 4, 1997Shell Internationale Research Maatschappij B.V.Process for producing lubricating base oils
EP0909304A1Jul 4, 1997Apr 21, 1999Shell Internationale Research Maatschappij B.V.Process for the preparation of lubricating base oils
FR2805543A1 Title not available
WO1999041336A1Feb 12, 1999Aug 19, 1999Exxon Research Engineering CoProduction of lubricating oils by a combination catalyst system
WO2001018156A1Sep 7, 2000Mar 15, 2001Olivier BertomeuNovel hydrocarbon base oil for lubricants with very high viscosity index
WO2002048283A1Nov 16, 2001Jun 20, 2002Exxonmobil Res & Eng CoHydroconversion process for making lubricating oil basestocks
Non-Patent Citations
Reference
1J.S. Beck, et al.: "A New Family of Mesoporous Molecular Sieves Prepared With Liquid Crystal Templates", J. Amer. Chem. Soc., 1992, vol. 114, p. 10834-843.
2N.Y. Chen, et al.: "TMA-Offretite, Relationship Between Structural and Catalytic Properties", J. Catalysis, 1984, vol. 86, p. 24-31.
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US7510674 *Dec 1, 2004Mar 31, 2009Chevron U.S.A. Inc.Dielectric fluids and processes for making same
US8585889Aug 7, 2008Nov 19, 2013Sk Lubricants Co., Ltd.Process for manufacturing high quality naphthenic base oils
US8853474Jul 15, 2010Oct 7, 2014Exxonmobil Research And Engineering CompanyHydroprocessing of biocomponent feedstocks with low purity hydrogen-containing streams
WO2009154324A1 *Aug 7, 2008Dec 23, 2009Sk Lubricants Co., Ltd.Process for manufacturing high quality naphthenic base oils
WO2011082142A1Dec 28, 2010Jul 7, 2011Exxonmobil Research And Engineering CompanyHydroprocessing of biocomponent feedstocks with low purity hydrogen-containing streams
WO2012009516A2Jul 14, 2011Jan 19, 2012Exxonmobil Research And Engineering CompanyHydroprocessing of biocomponent feeds with low pressure hydrogen-containing streams
Classifications
U.S. Classification208/89, 208/143, 208/251.00H, 208/212, 208/209, 208/254.00H
International ClassificationC10G45/62, C10G45/08, B01J29/74, C10G45/12, C10M171/02, B01J29/04, C10G45/64, C10G69/00, C10G65/04, C10G45/00
Cooperative ClassificationC10M2205/173, B01J29/041, C10M2203/1006, C10N2230/02, C10N2220/022, C10M171/02, C10G45/12, B01J29/74, C10G65/043, C10N2220/13, C10N2230/74, C10G45/08, C10N2230/54, C10G45/62, C10G45/64, C10N2240/10, C10G69/00, C10N2260/02
European ClassificationC10G45/08, C10G45/64, C10G45/12, C10M171/02, C10G45/62, C10G65/04D, C10G69/00
Legal Events
DateCodeEventDescription
Mar 25, 2015FPAYFee payment
Year of fee payment: 8
Mar 23, 2011FPAYFee payment
Year of fee payment: 4
Feb 18, 2004ASAssignment
Owner name: EXXONMOBIL RESEARCH & ENGINEERING CO., NEW JERSEY
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CODY, IAN A.;HANTZER, SYLVAIN;GALLAGHER, JOHN E.;AND OTHERS;REEL/FRAME:014348/0380;SIGNING DATES FROM 20031028 TO 20031106