Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS7316701 B2
Publication typeGrant
Application numberUS 10/664,001
Publication dateJan 8, 2008
Filing dateSep 16, 2003
Priority dateApr 20, 1995
Fee statusPaid
Also published asCA2412486A1, EP1292234A2, US6638291, US20050090855, WO2001093937A2, WO2001093937A3
Publication number10664001, 664001, US 7316701 B2, US 7316701B2, US-B2-7316701, US7316701 B2, US7316701B2
InventorsDavid A. Ferrera, Daniel Kurz, Peter Wilson, Crystal K. Sein-Lwyn, Lok A. Lei, Joseph A. Horton
Original AssigneeMicrus Endovascular Corporation
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Three dimensional, low friction vasoocclusive coil, and method of manufacture
US 7316701 B2
Abstract
The three dimensional, low friction vasoocclusive coil has a portion that is three dimensionally box or cubed shaped. The three dimensional box or cubed shaped portion will form a basket for filling the anatomical cavity at the site in the vasculature to be treated. The vasoocclusive device is formed from at least one strand of a flexible material formed to have a first inoperable, substantially linear configuration for insertion into and through a catheter or cannula to a desired portion of the vasculature to be treated, and a second operable, three dimensional configuration for occluding the desired portion of the vasculature to be treated. The vasoocclusive coil may optionally include a portion that is substantially J-shaped or helically shaped, for filling and reinforcing the three dimensional portion.
Images(8)
Previous page
Next page
Claims(12)
1. A vasoocclusive device that is adapted to be inserted into a portion of a vasculature for occluding a portion of the vasculature for use in interventional therapy and vascular surgery, comprising:
at least one strand of a flexible material formed to have a first portion with a first inoperable, substantially linear configuration for insertion into and through a catheter to a desired portion of the vasculature to be treated, and a second operable, three dimensional substantially cube shaped orthogonal configuration for occluding the desired part of the vasculature to be treated; and
a second portion including a plurality of helical loops, said plurality of helical loops of said second portion having an end connected to said first portion and a free end, said plurality of helical loops having a first inoperable, substantially linear configuration for insertion into and through a catheter to a desired portion of the vasculature to be treated, and a second operable, elongated configuration with a substantially helical coil shape with said free end of said plurality of helical loops extending outwardly from the first portion in its second configuration, and said second portion in said second operable, elongated configuration filling and reinforcing the three dimensional shaped portion when the vasoocclusive device is implanted at the site in the vasculature to be treated.
2. The vasoocclusive device of claim 1, wherein said vasoocclusive device is formed from at least one flexible strand of a resilient radiopaque material to provide a radiopaque marker of the deployed configuration of a device made of the strand during vascular surgery.
3. The vasoocclusive device of claim 2, wherein said radiopaque strand comprises at least one centrally, axially disposed radiopaque wire.
4. The vasoocclusive device of claim 2, wherein said radiopaque strand is made of platinum.
5. The vasoocclusive device of claim 2, wherein said radiopaque strand is made of tungsten.
6. The vasoocclusive device of claim 2, wherein said radiopaque strand is made of gold.
7. The vasoocclusive device of claim 1, wherein said at least one strand comprises a super-elastic material.
8. The vasoocclusive device of claim 7, wherein said super-elastic material comprises a nickel titanium alloy.
9. The vasoocclusive device of claim 1, wherein said at least one strand comprises a shape memory material.
10. The vasoocclusive device of claim 9, wherein said shape memory material comprises a nickel-titanium alloy.
11. The vasoocclusive device of claim 10, wherein said shape memory nickel-titanium alloy is heat treated such that the alloy is highly flexible at a temperature appropriate for introduction into the body via a catheter, and after placement, the device will take on the operable configuration.
12. The vasoocclusive device of claim 1, wherein said strand of flexible material is further formed into a helical shape which is the form of the first, inoperable, substantially linear configuration of the strand.
Description
RELATED APPLICATIONS

This is a Continuation of Ser. No. 09/590,794 filed Jun. 8, 2000, now U.S. Pat. No. 6,638,291, which is a continuation-in-part of Ser. No. 09/140,495 filed Aug. 27, 1998 now U.S. Pat. No. 6,171,326, and Ser. No. 09/089,328 filed Jun. 2, 1998 now U.S. Pat. No. 6,090,125, which was a continuation of Ser. No. 08/799,439 filed Feb. 13, 1997, now U.S. Pat. No. 5,766,219, which is a continuation of Ser. No. 08/425,106 filed Apr. 20, 1995, now U.S. Pat. No. 5,645,558.

BACKGROUND OF THE INVENTION

1. Field of the Invention

This invention relates generally to vasoocclusive devices, and more particularly concerns a vasoocclusive device that has a first elongated, reduced friction configuration in which the vasoocclusive device may be deployed through a catheter or cannula to an anatomical cavity at a site in the vasculature to be treated, and that has a three dimensional second configuration assumed by the vasoocclusive device at the site to be treated for filling the anatomical cavity.

2. Description of Related Art

The art and science of interventional therapy and surgery has continually progressed towards treatment of internal defects and diseases by use of ever smaller incisions or access through the vasculature or body openings in order to reduce the trauma to tissue surrounding the treatment site. One important aspect of such treatments involves the use of catheters to place therapeutic devices at a treatment site by access through the vasculature. Examples of such procedures include transluminal angioplasty, placement of stents to reinforce the walls of a blood vessel or the like and the use of vasoocclusion devices to treat defects in the vasculature. There is a constant drive by those practicing in the art to develop new and more capable systems for such applications. When coupled with developments in biological treatment capabilities, there is an expanding need for technologies that enhance the performance of interventional therapeutic devices and systems.

One specific field of interventional therapy that has been able to advantageously use recent developments in technology is the treatment of neurovascular defects. More specifically, as smaller and more capable structures and materials have been developed, treatment of vascular defects in the human brain which were previously untreatable or represented unacceptable risks via conventional surgery have become amenable to treatment. One type of non-surgical therapy that has become advantageous for the treatment of defects in the neurovasculature has been the placement by way of a catheter of vasoocclusive devices in a damaged portion of a vein or artery.

Vasoocclusion devices are therapeutic devices that are placed within the vasculature of the human body, typically via a catheter, either to block the flow of blood through a vessel making up that portion of the vasculature through the formation of an embolus or to form such an embolus within an aneurysm stemming from the vessel. The vasoocclusive devices can take a variety of configurations, and are generally formed of one or more elements that are larger in the deployed configuration than when they are within the delivery catheter prior to placement. One widely used vasoocclusive device is a helical wire coil having a deployed configuration which may be dimensioned to engage the walls of the vessels.

The delivery of such vasoocclusive devices can be accomplished by a variety of means, including via a catheter in which the device is pushed through the catheter by a pusher to deploy the device. The vasoocclusive devices, which can have a primary shape of a coil of wire that is then formed into a more complex secondary shape, can be produced in such a way that they will pass through the lumen of a catheter in a linear shape and take on a complex shape as originally formed after being deployed into the area of interest, such as an aneurysm. A variety of detachment mechanisms to release the device from a pusher have been developed and are known in the art.

For treatment of areas of the small diameter vasculature such as a small artery or vein in the brain, for example, and for treatment of aneurysms and the like, micro-coils formed of very small diameter wire are used in order to restrict, reinforce, or to occlude such small diameter areas of the vasculature. A variety of materials have been suggested for use in such micro-coils, including nickel-titanium alloys, copper, stainless steel, platinum, tungsten, various plastics or the like, each of which offers certain benefits in various applications. Nickel-titanium alloys are particularly advantageous for the fabrication of such micro coils, in that they can have super-elastic or shape memory properties, and thus can be manufactured to easily fit into a linear portion of a catheter, but attain their originally formed, more complex shape when deployed.

One conventional vasoocclusive coil is known, for example, that has a three dimensional in-filling coil configuration, formed by winding a wire into a helix, and then winding the helix into a secondary form which forms a generally spherical shape, by winding the primary coil about poles placed on winding mandrel. The secondary wound coil is then annealed on the winding mandrel, and the coil is then removed from the winding mandrel and loaded into a carrier for introduction into a delivery catheter. Another similar type of vasoocclusive device is known that can be formed from one or more strands, and can be wound to form a generally spherical or ovoid shape when released and relaxed at the site to be treated. Another implantable vasoocclusive device having multiple secondary layers of primary windings has a final shape that is a generally spherical coil formed of linear or helical primary coils that are wound into a secondary form having three layers. The inner winding is wound and then the second layer formed by winding in the opposite direction of the first layer. The final configuration is a chunky or stepped shape approximately a sphere, ovoid, or egg. Yet another conventional implant for vessel occlusion is made from helical elements of metal or synthetic material by twisting or coiling the elements and forming them into a secondary shape such as a rosette or double rosette for implantation using a catheter, and another vasoocclusive device is known that has a final conical shape. However, due to the tendency of such three dimensional shaped coils to transform into their expanded, final forms when introduced into a catheter in the body, they are inherently more difficult than a helical coil or a straight wire or micro-cable to push through such a catheter for delivery to a site in the vasculature to be treated, due to friction between the coil and the catheter through which it is delivered to the site to be treated, which can even result in misalignment of the coil within the catheter during delivery.

There thus remains a need for a vasoocclusive device that has a three dimensional final form that can be used to fill an anatomical cavity at a site in the vasculature to be treated, reduces friction between the coil and the catheter through which it is delivered to the site to be treated, and ultimately helps to prevent coil misalignment. The present invention meets these and other needs.

SUMMARY OF THE INVENTION

Briefly, and in general terms, the present invention provides for an improved vasoocclusive coil, that has a three dimensional box or cube-shaped portion, and a method of making the coil. The three dimensional portion will form a basket for filling the anatomical cavity at the site in the vasculature to be treated. The three dimensional portion of the vasoocclusive coil comprises at least one strand of a flexible material formed to have an a first inoperable, substantially linear configuration for insertion into and through a catheter or cannula to a desired portion of the vasculature to be treated, and a second operable, three dimensional box or cube-shaped configuration for occluding the desired portion of the vasculature to be treated. This substantially linear configuration allows for reduction of friction of the coil within a catheter or cannula being used to deliver the vasoocclusive coil to the site in the vasculature to be treated, and ultimately helps prevent coil realignment or misalignment. The ultimate coil volume that otherwise might be limited due to frictional constraints of three dimensional coils will not be compromised with the device of the present invention. The vasoocclusive coil may optionally also include a portion having a first inoperable, substantially linear configuration for insertion into and through a catheter or cannula to a desired portion of the vasculature to be treated, and a second operable configuration that is substantially J-shaped or helically shaped, for filling and reinforcing the three dimensional box or cube-shaped basket portion, for occluding the desired portion of the vasculature to be treated, in order to combine the best qualities of a three dimensional coil and a J-shaped or helical coil.

The present invention accordingly provides for a vasoocclusive device that is adapted to be inserted into a portion of a vasculature for occluding the portion of the vasculature for use in interventional therapy and vascular surgery. The vasoocclusive device comprises at least one strand of a flexible material formed to have a first inoperable, substantially linear configuration for insertion into and through a catheter or cannula to a desired portion of the vasculature to be treated, and a second operable, three dimensional configuration for occluding the desired portion of the vasculature to be treated. The vasoocclusive device advantageously has a portion having a second operable, three dimensional box or cube shape for filling the anatomical cavity at the site in the vasculature to be treated, and may optionally include a portion having a second operable, substantially J-shape or helical shape for filling and reinforcing the distal, three dimensional box or cube shaped portion when it is implanted at the site in the vasculature to be treated.

The present invention also provides for a method of making the vasoocclusive device. The method generally comprises the steps of winding at least one strand of a flexible shape memory material about a mandrel formed of a refractory material in a three dimensional configuration of the vasoocclusive coil to form a distal portion of the vasoocclusive coil; heating the at least one strand of a flexible shape memory material wound about the mandrel for a sufficient period of time to impart the form to the shape memory material included in the device to form an operable, three dimensional configuration of the vasoocclusive coil; removing the vasoocclusive coil from the mandrel; and cold working the vasoocclusive coil into a desired elongated configuration for placement into a catheter or cannula for use. In one presently preferred embodiment, the mandrel about which the at least one flexible strand forming the vasoocclusive coil is wound has a substantially orthogonal or cubical body with a plurality of posts disposed on the body. In a preferred aspect, six posts are disposed on the body aligned with the three orthogonal x, y and z axes through the body of the mandrel, for aligning and shaping the box or cube shaped portion of the vasoocclusive device as it is wound on the mandrel. In one presently preferred embodiment, one of the posts is provided with a handle that can optionally also be used as a mandrel for winding a portion of the vasoocclusive coil with a helical shape. In another preferred aspect of the method, the step of heating comprises heating the at least one strand of a flexible shape memory material wound about the mandrel at a temperature of about 1100° F. for at least about 4 hours to impart the form to the shape memory material included in the device to form an operable, three dimensional configuration of the distal portion of the vasoocclusive coil.

These and other aspects and advantages of the invention will become apparent from the following detailed description and the accompanying drawings, which illustrate by way of example the features of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a cross section of a vascular member with an aneurysm illustrating the approach of a vasoocclusive coil towards the aneurysm.

FIG. 2 is a side elevational view showing a first embodiment of a second operable, three dimensional configuration of the vasoocclusive coil of the invention.

FIG. 3A is a side elevational view showing a first option of the first embodiment of FIG. 2, including a two-dimensional substantially J-shaped portion.

FIG. 3B is a side elevational view showing a second option of the first embodiment of FIG. 2, including a helically shaped portion.

FIG. 4 is a perspective view of a radiopaque microstrand cable used in forming the vasoocclusive coil according to the invention.

FIG. 5 is a cross-section at 5-5 of FIG. 4.

FIG. 6 is an alternate preferred embodiment of the invention including a plurality of radiopaque strands within the cable.

FIG. 7 is an alternate preferred embodiment of the present invention wherein strands of the cable are arranged within an exterior binding consisting of multiple straps about the cable.

FIG. 8 is a perspective view of the embodiment of FIG. 7.

FIG. 9 is an alternative embodiment to the embodiment of FIG. 8 wherein the external binding of the cable represents a sheath wound about the cable.

FIGS. 10 a and 10 b are perspectives of alternative embodiments of the embodiment of FIG. 9.

FIG. 11 is a cross-section of an alternative embodiment in which a plurality of multi-strand cables are included within an external sheath surrounding the cable.

FIG. 12 is a perspective view of the embodiment of FIG. 11.

FIG. 13 is a perspective view of a first embodiment of a mandrel used for making the vasoocclusive coil according to the method of the invention.

FIG. 14 is a plan view of the mandrel of FIG. 13.

FIG. 15 is a sectional view of the mandrel of FIG. 13 taken along line 15-15 of FIG. 14.

FIG. 16 is a perspective view of a second embodiment of a mandrel used for making the vasoocclusive coil according to the method of the invention.

FIG. 17 is a plan view of the mandrel of FIG. 16.

FIG. 18 is a sectional view of the mandrel of FIG. 16 taken along line 18-18 of FIG. 17.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

While conventional three dimensional and spherical vasoocclusive coils have been developed, such three dimensional shaped coils tend to transform into their expanded, final forms when introduced into a catheter in the body, making them inherently more difficult than a simple helical coil or straight wire to push through a catheter or cannula for delivery to a site in the vasculature to be treated, due to friction between the coil and the catheter through which it is delivered to the site to be treated, and that can even result in misalignment of the coil within the catheter during delivery.

As is illustrated in the drawings, the invention is accordingly embodied in a vasoocclusive device that is adapted to be inserted into a portion of a vasculature for occluding the portion of the vasculature for use in interventional therapy and vascular surgery. The vasoocclusive coil 1 is formed from at least one strand of a flexible material formed to have a first inoperable, substantially linear configuration, as illustrated in FIG. 1, for insertion through a micro-catheter 2 into a desired portion of the vasculature to be treated, such as an aneurysm, or other anatomical malformation of the vasculature to be treated, and a second operable, three dimensional configuration illustrated in FIGS. 2, 3A and 3B, for occluding the desired portion of the vasculature to be treated.

FIG. 1 illustrates a helically wound vasoocclusive coil 1 which is formed to fit within the micro-catheter for insertion into an area upon which a therapeutic procedure is to be performed. FIG. 1 further shows a catheter pusher member 3 for delivering a vasoocclusive coil 1 for insertion into an aneurysm 4 projecting laterally from a blood vessel 5. The end of the micro-catheter 2 is typically introduced into the opening of the aneurism by use of a guide wire (note shown), and the coil and pusher member are introduced into the micro-catheter to insert the vasoocclusive coil into the aneurysm. In a presently preferred embodiment, catheter pusher member to which the vasoocclusive coil is mounted is an optical fiber pusher which is attached to the coil by a collar 6 of shape memory material such as a nickel titanium super-elastic alloy, or a shape memory polymer, for example. The vasoocclusive coil is typically introduced into the aneurysm and is then pushed from the micro-catheter until the vasoocclusive coil fills the cavity.

In one presently preferred embodiment, the shape memory collar 6 is heated to a temperature which allows it to be shrunk onto the vasoocclusive coil. The collar can be attached to optical fiber pusher by an adhesive which retains high strength at temperatures beyond the shape memory material transition point. After insertion, and when an operator is satisfied that the device is properly deployed, light energy from a source of coherent light is introduced into the proximal end of the optical fiber (not shown) and propagated in the distal end 7 of the fiber to cause the shape memory material collar to return to its previous shape and release the vasoocclusive coil. Those skilled in the art will recognize that the invention can also be used with a variety of other placement catheter systems, and it is not intended that the invention be limited to the placement concepts illustrated by way of example.

Referring to FIGS. 2, 3A and 3B, the vasoocclusive device preferably has a portion 8 having a second operable, three dimensional shape for filling the anatomical cavity at the site in the vasculature to be treated. As is illustrated in FIG. 2, in a presently preferred embodiment, the three dimensional portion of the vasoocclusive device is orthogonal, having a box or cube shape for filling the anatomical cavity at the site in the vasculature to be treated.

As is illustrated in FIG. 3A, in one presently preferred option of the embodiment of FIG. 2, the vasooclusive device may also include a portion 9 having a second operable, substantially J-shaped coil shape, for filling and reinforcing the distal, three dimensional shaped portion 8 when the vasoocclusive device is implanted at the site in the vasculature to be treated.

As is illustrated in FIG. 3B, in one presently preferred option of the embodiment of FIG. 2, the vasooclusive device may also include a portion 9′ having a second operable, substantially helical coil shape, for filling and reinforcing the distal, three dimensional shaped portion 8 when the vasoocclusive device is implanted at the site in the vasculature to be treated.

In a presently preferred aspect of the invention, the vasoocclusive coils are formed from a multi-stranded micro-cable, although the vasoocclusive coils can also be made from a single strand of a flexible material formed to have an a first inoperable, substantially linear configuration for insertion into and through a catheter or cannula to a desired portion of the vasculature to be treated, and a second operable, three dimensional configuration for occluding the desired portion of the vasculature to be treated. The multi-stranded micro-cable may be formed from a wide variety of materials, including stainless steels if some sacrifice of radiopacity may be tolerated. Very desirable materials of construction, from a mechanical point of view, are materials which maintain their shape despite being subjected to high stress. Certain “super-elastic alloys” include nickel/titanium alloys (48-58 atomic % nickel, and optionally containing modest amounts of iron); copper/zinc alloys (38-42 weight % zinc); copper/zinc alloys containing 1-10 weight % of beryllium, silicon, tin, aluminum, or gallium; or nickel/aluminum alloys (36-38 atomic % aluminum). Particularly preferred are the alloys described in U.S. Pat. Nos. 3,174,851; 3,351,463; and 3,753,700. Especially preferred is the titanium/nickel alloy known as nitinol. These are very sturdy alloys which will tolerate significant flexing without deformation even when used as a very small diameter wire. Additionally, the strand may be constructed of a polymer, such as polyvinyl alcohol foam, for example. The wire should be of sufficient diameter to provide a hoop strength to the resulting device sufficient to hold the device in place within the chosen body cavity without distending the wall of the cavity and without moving from the cavity as a result of the repetitive fluid 1pulsing found in the vascular system. Should a super-elastic alloy such as nitinol be used, the diameter of the coil wire can be significantly smaller than that used when the relatively ductile platinum or platinum/tungsten alloy is used as the material of construction.

As is illustrated in FIG. 4, the vasoocclusive coils are preferably formed from a multi-stranded micro-cable 10 that is typically approximately from 0.0021 to 0.0045 inches in diameter, and comprises a plurality of flexible strands 12 of nickel-titanium alloy, with at least one centrally, axially disposed radiopaque wire 14 which is approximately from 0.0007 to 0.0015 inches in diameter. While the above stated diameters represent those presently known to be compatible with the invention, larger or smaller diameters may be useful for particular applications.

The central radiopaque wire 14 can be formed of platinum or gold, for example, other similar suitable radiopaque metals, or other suitable types of radiopaque materials, in order to provide a radiopaque marker of the deployed configuration of a device made of the cable during vascular surgery. The radiopaque material may be a metal or a polymer. Suitable metals and alloys for the wiring include platinum group metals, especially platinum rhodium, palladium, as well as tungsten, gold, silver, tantalum, and alloys of these metals. Highly preferred is a platinum/tungsten alloy.

There are numerous benefits to the novel construction of the invention for use in interventional devices and the like. By using the stranded or micro-cable construction of the invention, a vasoocclusive device made from the micro-cable becomes virtually kink resistant compared to the single strand wires now commonly used in micro-coils. The multi-strand cable construction of the invention allows the micro-wires of the cable to slip across each other and reinforce each other rather than break or take a set. Also, by incorporating a stranded radiopaque material such as platinum, tungsten or gold into the cable construction, the device is radiopaque in sizes much smaller than with other constructions.

FIG. 5 is a cross-section of the micro-cable of FIG. 4 at 5-5 illustrating one presently preferred arrangement of the strands within the cable. In this embodiment, the exterior strands 12 are formed of a resilient material chosen to provide the characteristics desired for a specific application in interventional therapies. In a presently preferred embodiment, this material is a nickel titanium super-elastic alloy which is heat treated such that the alloy is highly flexible at a temperature appropriate for introduction into the body via a catheter or cannula. By choosing such a material for micro-coils and the like, the devices formed from the micro-cable can be relatively easily placed into the appropriate body cavity and after placement, the device will take on a shape designed to optimize the therapeutic purposes desired for the device. As illustrated in FIG. 5, such a cable can have a central core 14 of a radiopaque material such as gold or platinum, thus dramatically enhancing the radiopacity of the cable. Even a solid super-elastic wire of the same diameter as the cable would have substantially less radiopacity than the cable of the invention with the central gold or platinum wire and the construction of the invention provides numerous other highly desirable characteristics. Among these characteristics is the relative flexibility and resistance to kinking of the cable compared to an equivalent single wire and substantially greater accommodation of the cable to bending, etc., with resultant lessening of trauma to the surrounding tissue and ease of placement in a small body cavity.

While one presently preferred implementation of the micro-cable of the invention has been illustrated, those skilled in the art will appreciate that other variations of the invention may have advantages for certain purposes. FIG. 6 is an example of one such construction 40 in which radiopacity is more desirable than in other forms and for that reason a number of radiopaque strands 42, in this illustration four in number, are formed into the cable along with three resilient material strands 44. It will also be appreciated that a larger or smaller number of strands may be incorporated into a given cable and the cables may be formed of multiple cables in order to provide desired bending and strength characteristics. It will also be appreciated by those skilled in the art that the invention is adaptable to the use of a variety of materials which by themselves would not have been easily adaptable to micro devices for interventional therapies. For instance, materials such as copper are useful for intrauterine devices and the like, but copper wire, even when heavily alloyed, has certain limitations for use in such devices. By use of the present invention, composite cables incorporating one or more strands of a desired material can be configured with other strands providing strength, flexibility, shape memory, super-elasticity, radiopacity or the like for previously unavailable characteristics in micro devices.

FIG. 7 illustrates a cross-section of an additional presently preferred embodiment of the invention in which the strands 12, 14 of the micro-cable 10 are bundled and banded at intervals by bands 50 to produce a composite banded cable 52 in order to provide increased flexibility without unraveling or dislocation of the strands in the cable. FIG. 8 is a perspective view of the banded cable 50 of this embodiment. While the illustrated configuration shows the strands being laid parallel within the cable, it is also possible in this construction to include both twisted cables as the primary cables 10 within the outer bands 50 to form the composite cable 52. This configuration can use one or more longitudinal strands 14 which are radiopaque, thus providing a continuous indication of radiopacity within the cable. As a further alternative embodiment, it is possible for the longitudinal cable 52 to be formed of a single inner cable 10 with bands 50.

FIG. 9 illustrates a further embodiment of the invention in which longitudinal strands of cables are contained within a wound cover 56 for the purposes of providing a composite guide wire or the like 58 having improved torqueability. Such a construction has particular advantages for guide wire designs having improved radiopacity in very small diameters. It will be appreciated that in this configuration, as well as the other longitudinally arranged multi-stranded cables, the number of strands and the degree to which they extend along the cable within the sheath is a variable which can be used to provide increased stiffness, pushability and torqueability in some sections with greater flexibility in others. Additionally, composite cables according to the invention can incorporate additional elements normally not available in solid guide wires, such as optical, thermal or ultrasound imaging elements, therapeutic agent delivery catheters, and can take advantage of materials which are not readily adaptable to prior art catheter or guide wire designs incorporating a primary wire structured element. FIGS. 10 a and 10 b illustrate a further variable available because of the invention; the exterior wrapped cover 56 can be wound at greater or lesser intervals 60 along the outside to provide variations in the torqueability and stiffness of the composite cable. Also, the thickness and width of the wrapping cover 56, as well as its material composition along the composite guide wire 58, can offer further capabilities for customizing the design for various applications. These advantages can be combined with the benefits of shape memory or super-elastic alloys to create guidewires and other devices with heretofore unavailable capabilities.

FIGS. 11 and 12 illustrate a cross-section of a micro-cable according to the invention which has at least one overall exterior sheath to contain the micro-cable. The micro-cable may be made of one or more multiple strand elements which may further include twisted or longitudinal strands within their construction. The sheath may also be used to control the torqueability characteristics of the cable, and the sheath may be multi-layered with different materials in order to provide a graduated bending and stiffness characteristic over the length of the cable.

It will be appreciated that a three dimensional occlusive device adapted to be inserted into a portion of a vasculature for occluding the portion of the vasculature for use in interventional therapy and vascular surgery, can be formed as described above, from at least one multi-stranded micro-cable having a plurality of flexible strands of a resilient material, with at least one radiopaque strand to provide a radiopaque marker for the device during vascular surgery. The occlusive device is configured to have a first inoperable, substantially linear, elongated configuration for insertion into and through a catheter or cannula to a desired portion of the vasculature to be treated, and a second operable, three dimensional configuration for occluding the desired portion of the vasculature to be treated.

In the method of making the vasoocclusive coils of the invention, a mandrel is used for annealing the coils in the desired second operable, substantially orthogonal three dimensional box or cube shape. A mandrel suitable for making such second operable, three dimensional shaped occlusive devices can be formed of a refractory material, such as alumina or zirconia, for example. The mandrel forms a support for the winding and heat treatment of the micro-cable, plurality of micro-cables, or composite micro-cable occlusive device as described above, and ideally will not contaminate the occlusive device during heat treatment of the device.

In one presently preferred embodiment illustrated in FIGS. 13, 14 and 15, one or more of the flexible strands forming the vasoocclusive coil are wound around the surface of a mandrel 70 having a substantially orthogonal main body 72 with six cylindrical posts 74 having a diameter slightly smaller than that of the main body, disposed on the body and aligned with the three orthogonal x, y and z axes through the body of the mandrel, for aligning and shaping the distal portion of the vasoocclusive device as it is wound on the mandrel.

As is illustrated in FIGS. 16, 17 and 18, in a presently preferred variant of the embodiment of FIGS. 13, 14 and 15, the mandrel may optionally also include an aperture, such as a threaded aperture 78, provided in a face 80 of one of the posts 74 and coaxially aligned with the orthogonal axis the post, for receiving a corresponding end 82 of a generally cylindrical handle 84. The end 82 of the handle may also be correspondingly threaded. The handle can optionally be used as a mandrel for winding a portion of the vasoocclusive coil with a helical shape.

The surface of the mandrel may also have one or more apertures for receiving one or more ends of the strands, to assist winding into the desired form. The wound occlusive device is preferably heat treated at a suitable temperature and a sufficient period of time to impart the form to the shape memory material included in the device. While heat treatment at a temperature of about 1100° F. for approximately 4 hours or more is typically sufficient to impart the form to the occlusive device when the shape memory material is a nickel titanium super-elastic alloy, although the temperature utilized can be substantially lowered, and the duration of heat treatment adjusted accordingly, as will be appreciated by those skilled in the art. After the heat treatment, the occlusive device is removed from the mandrel, and cold worked into the desired collapsed elongated configuration for placement into a catheter or cannula for use. When the occlusive device reaches its destination in the vasculature during vascular therapy, it assumes the primary shape imparted from the heat treatment on the mandrel.

It will be apparent from the foregoing that while particular forms of the invention have been illustrated and described, various modifications can be made without departing from the spirit and scope of the invention. Accordingly, it is not intended that the invention be limited, except as by the appended claims.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US1341052Jun 15, 1916May 25, 1920Gale Francis GChain
US1667730Jan 20, 1927May 1, 1928 of chicago
US2078182Aug 9, 1935Apr 20, 1937Sirian Wire And Contact CompanTungsten manufacture
US2549335Apr 18, 1947Apr 17, 1951Max RahthusOrnamental chain
US3334629Nov 9, 1964Aug 8, 1967Bertram D CohnOcclusive device for inferior vena cava
US3649224Apr 18, 1968Mar 14, 1972Sylvania Electric ProdMethod of making nonsag filaments for electric lamps
US3868956Jun 5, 1972Mar 4, 1975Ralph J AlfidiVessel implantable appliance and method of implanting it
US4205680Jan 13, 1978Jun 3, 1980Work Wear Corporation, Inc.Radiopaque laparatomy sponge
US4494531Dec 6, 1982Jan 22, 1985Cook, IncorporatedExpandable blood clot filter
US4512338Jan 25, 1983Apr 23, 1985Balko Alexander BProcess for restoring patency to body vessels
US4531933Dec 7, 1982Jul 30, 1985C. R. Bard, Inc.For maintaining drainage between the kidney and bladder
US4553545Sep 15, 1982Nov 19, 1985Medinvent S.A.Device for application in blood vessels or other difficultly accessible locations and its use
US4638803Nov 30, 1984Jan 27, 1987Rand Robert WMetal coated inflatable balloon
US4655771Apr 11, 1983Apr 7, 1987Shepherd Patents S.A.Prosthesis comprising an expansible or contractile tubular body
US4718907Jun 20, 1985Jan 12, 1988Atrium Medical CorporationPolytetrafluoroethylene coated polyethylene terephthalate
US4748986Jan 29, 1987Jun 7, 1988Advanced Cardiovascular Systems, Inc.Floppy guide wire with opaque tip
US4768507Aug 31, 1987Sep 6, 1988Medinnovations, Inc.Intravascular stent and percutaneous insertion catheter system for the dilation of an arterial stenosis and the prevention of arterial restenosis
US4795458Jul 2, 1987Jan 3, 1989Regan Barrie FStent for use following balloon angioplasty
US4800882Mar 13, 1987Jan 31, 1989Cook IncorporatedEndovascular stent and delivery system
US4813925Apr 21, 1987Mar 21, 1989Medical Engineering CorporationSpiral ureteral stent
US4820298Nov 20, 1987Apr 11, 1989Leveen Eric GInternal vascular prosthesis
US4830003Jun 17, 1988May 16, 1989Wolff Rodney GCompressive stent and delivery system
US4832055Jul 8, 1988May 23, 1989Palestrant Aubrey MMechanically locking blood clot filter
US4850960Jul 8, 1987Jul 25, 1989Joseph GrayzelDiagonally tapered, bevelled tip introducing catheter and sheath and method for insertion
US4856516Jan 9, 1989Aug 15, 1989Cordis CorporationEndovascular stent apparatus and method
US4907336Sep 9, 1988Mar 13, 1990Cook IncorporatedMethod of making an endovascular stent and delivery system
US4922924Apr 27, 1989May 8, 1990C. R. Bard, Inc.Catheter guidewire with varying radiopacity
US4954126Mar 28, 1989Sep 4, 1990Shepherd Patents S.A.Prosthesis comprising an expansible or contractile tubular body
US4957479Oct 17, 1988Sep 18, 1990Vance Products IncorporatedIndwelling ureteral stent placement apparatus
US4957501Dec 27, 1988Sep 18, 1990Biomat, S.A.R.L.Anti-embolic filter
US4990155May 19, 1989Feb 5, 1991Wilkoff Howard MSurgical stent method and apparatus
US4994069Nov 2, 1988Feb 19, 1991Target TherapeuticsVaso-occlusion coil and method
US5015253Jun 15, 1989May 14, 1991Cordis CorporationNon-woven endoprosthesis
US5019090Sep 1, 1988May 28, 1991Corvita CorporationRadially expandable endoprosthesis and the like
US5025799May 13, 1987Jun 25, 1991Wilson Bruce CSteerable memory alloy guide wires
US5026377Aug 17, 1990Jun 25, 1991American Medical Systems, Inc.Stent placement instrument and method
US5041084Aug 9, 1990Aug 20, 1991Dlp, Inc.Single stage venous catheter
US5064435Jun 28, 1990Nov 12, 1991Schneider (Usa) Inc.Self-expanding prosthesis having stable axial length
US5071407Apr 12, 1990Dec 10, 1991Schneider (U.S.A.) Inc.Radially expandable fixation member
US5104404Jun 20, 1991Apr 14, 1992Medtronic, Inc.Articulated stent
US5108407Jun 8, 1990Apr 28, 1992Rush-Presbyterian St. Luke's Medical CenterMethod and apparatus for placement of an embolic coil
US5122136Mar 13, 1990Jun 16, 1992The Regents Of The University Of CaliforniaEndovascular electrolytically detachable guidewire tip for the electroformation of thrombus in arteries, veins, aneurysms, vascular malformations and arteriovenous fistulas
US5133731Nov 9, 1990Jul 28, 1992Catheter Research, Inc.Embolus supply system and method
US5133732Mar 22, 1989Jul 28, 1992Medtronic, Inc.Intravascular stent
US5141502Aug 28, 1991Aug 25, 1992Macaluso Jr Joseph NUreteral stent
US5147370Jun 12, 1991Sep 15, 1992Mcnamara Thomas ONitinol stent for hollow body conduits
US5151105Oct 7, 1991Sep 29, 1992Kwan Gett CliffordCollapsible vessel sleeve implant
US5160341Nov 8, 1990Nov 3, 1992Advanced Surgical Intervention, Inc.Resorbable urethral stent and apparatus for its insertion
US5176625Oct 25, 1990Jan 5, 1993Brisson A GlenStent for ureter
US5176661Oct 15, 1991Jan 5, 1993Advanced Cardiovascular Systems, Inc.Composite vascular catheter
US5183085Sep 27, 1991Feb 2, 1993Hans TimmermansMethod and apparatus for compressing a stent prior to insertion
US5186992May 27, 1992Feb 16, 1993The Bentley-Harris Manufacturing CompanyBraided product and method of making same
US5203772Apr 8, 1992Apr 20, 1993Pilot Cardiovascular Systems, Inc.Steerable medical device
US5217484Jun 7, 1991Jun 8, 1993Marks Michael PRetractable-wire catheter device and method
US5221269Oct 15, 1990Jun 22, 1993Cook IncorporatedGuide for localizing a nonpalpable breast lesion
US5222969Mar 16, 1992Jun 29, 1993Rolando GillisIntravascular stent for cardiovascular intervention
US5226911Oct 2, 1991Jul 13, 1993Target TherapeuticsVasoocclusion coil with attached fibrous element(s)
US5228453Sep 28, 1992Jul 20, 1993Target Therapeutics, Inc.Catheter guide wire
US5234456May 7, 1992Aug 10, 1993Pfizer Hospital Products Group, Inc.Hydrophilic stent
US5238004Sep 30, 1992Aug 24, 1993Boston Scientific CorporationSuperelastic alloy
US5250071Sep 22, 1992Oct 5, 1993Target Therapeutics, Inc.Detachable embolic coil assembly using interlocking clasps and method of use
US5251640Mar 31, 1992Oct 12, 1993Cook, IncorporatedComposite wire guide shaft
US5256146Oct 11, 1991Oct 26, 1993W. D. EnsmingerVascular catheterization system with catheter anchoring feature
US5261916Dec 12, 1991Nov 16, 1993Target TherapeuticsDetachable pusher-vasoocclusive coil assembly with interlocking ball and keyway coupling
US5304194Oct 2, 1992Apr 19, 1994Target TherapeuticsVasoocclusion coil with attached fibrous element(s)
US5304195Jan 21, 1993Apr 19, 1994Target Therapeutics, Inc.Detachable pusher-vasoocclusive coil assembly with interlocking coupling
US5312415Sep 22, 1992May 17, 1994Target Therapeutics, Inc.Assembly for placement of embolic coils using frictional placement
US5314472Oct 1, 1991May 24, 1994Cook IncorporatedVascular stent
US5334210Apr 9, 1993Aug 2, 1994Cook IncorporatedVascular occlusion assembly
US5336205Feb 25, 1993Aug 9, 1994Target Therapeutics, Inc.Flow directed catheter
US5342387Jun 18, 1992Aug 30, 1994American Biomed, Inc.Artificial support for a blood vessel
US5350397Nov 13, 1992Sep 27, 1994Target Therapeutics, Inc.For use in occluding a selected site within a vessel
US5350398May 28, 1993Sep 27, 1994Dusan PavcnikSelf-expanding filter for percutaneous insertion
US5354295Feb 24, 1992Oct 11, 1994Target Therapeutics, Inc.In an endovascular electrolytically detachable wire and tip for the formation of thrombus in arteries, veins, aneurysms, vascular malformations and arteriovenous fistulas
US5370683Feb 4, 1994Dec 6, 1994Cook IncorporatedVascular stent
US5382259Oct 26, 1992Jan 17, 1995Target Therapeutics, Inc.Vasoocclusion coil with attached tubular woven or braided fibrous covering
US5383887Dec 28, 1993Jan 24, 1995Celsa LgDevice for selectively forming a temporary blood filter
US5395390Dec 16, 1993Mar 7, 1995The Beth Israel Hospital AssociationMetal wire stent
US5405377Feb 21, 1992Apr 11, 1995Endotech Ltd.Intraluminal stent
US5423829Nov 3, 1993Jun 13, 1995Target Therapeutics, Inc.Electrolytically severable joint for endovascular embolic devices
US5423849Jan 15, 1993Jun 13, 1995Target Therapeutics, Inc.Vasoocclusion device containing radiopaque fibers
US5441516Mar 3, 1994Aug 15, 1995Scimed Lifesystems Inc.Temporary stent
US5443478Sep 2, 1992Aug 22, 1995Board Of Regents, The University Of Texas SystemMulti-element intravascular occlusion device
US5454795Jun 27, 1994Oct 3, 1995Target Therapeutics, Inc.Kink-free spiral-wound catheter
US5514176Jan 20, 1995May 7, 1996Vance Products Inc.Pull apart coil stent
US5522822Oct 17, 1994Jun 4, 1996Target Therapeutics, Inc.Vasoocclusion coil with attached tubular woven or braided fibrous covering
US5522836Jun 27, 1994Jun 4, 1996Target Therapeutics, Inc.Electrolytically severable coil assembly with movable detachment point
US5527338Dec 9, 1993Jun 18, 1996Board Of Regents, The University Of Texas SystemIntravascular device
US5527354Mar 22, 1994Jun 18, 1996Cook IncorporatedStent formed of half-round wire
US5536274Feb 12, 1992Jul 16, 1996pfm Produkterfur Die MedizinSpiral implant for organ pathways
US5549624Jun 24, 1994Aug 27, 1996Target Therapeutics, Inc.Fibered vasooclusion coils
US5562641May 20, 1994Oct 8, 1996A Bromberg & Co. Ltd.Two way shape memory alloy medical stent
US5562698Nov 8, 1994Oct 8, 1996Cook IncorporatedIntravascular treatment system
US5569245Oct 17, 1994Oct 29, 1996The Regents Of The University Of CaliforniaDetachable endovascular occlusion device activated by alternating electric current
US5582619Jun 30, 1995Dec 10, 1996Target Therapeutics, Inc.Stretch resistant vaso-occlusive coils
US5601593Aug 18, 1995Feb 11, 1997Willy Rusch AgStent for placement in a body tube
US5607445Jun 16, 1993Mar 4, 1997American Biomed, Inc.Stent for supporting a blood vessel
US5624449Apr 28, 1995Apr 29, 1997Target TherapeuticsElectrolytically severable joint for endovascular embolic devices
US5624461Jun 6, 1995Apr 29, 1997Target Therapeutics, Inc.Three dimensional in-filling vaso-occlusive coils
US6322576 *Feb 4, 1998Nov 27, 2001Target Therapeutics, Inc.Stable coil designs
US6638291 *Jun 8, 2000Oct 28, 2003Micrus CorporationThree dimensional, low friction vasoocclusive coil, and method of manufacture
Non-Patent Citations
Reference
1"A New Imporoved Coil for Tapered-Tip Catheter for Arterial Occlusion" by Vincent P. Chuang, M.D., et al., May 1980, pp. 507-509.
2"Mechanical Devices for Arterial Occlusion" by C. Gianturco, M.D., et al., Jul. 1975, pp. 428-435.
3"'Mini' Gianturco Stainless Steel Coils for Transcatheter Vascular Occlusion" by James H. Anderson, et al., From the Department of Diagnostic Radiology at the University of Texas System Cancer Center, Aug. 1978, pp. 301-303.
4"Retrievable Gianturco-Coil Introducer" by Jeffrey Hawkins, Ronald G. Quislin, MD, J. Parker Mickle, MD, Irvin F. Hawkins, MD, From the Department of Radiology at the University of Florida Medical Center and Hawk Prototype Equipment 1986.
5"Therapeutic Vascular Occlusion Utilizing Steel Coil Technique: Clinical Applications" by Sidney Wallace, et al., Am J. Roentgenol (1976); pp. 381-387.
6"Transcatheter Intravascular Coil Occlusion of Experimental Arteriovenous Fistulas", by James H. Anderson, et al., Am. J. Roentgenol, Nov. 1977, pp. 795-798.
7Alex Berenstein, M.D. and Irvin I. Kricheff, M.D., "Catheter and Material Selection for Transarterial Embolization: Technical Considerations" Radiology, Sep. 1979; pp. 631-639.
8Ashok J. Kumar, et al., Journal of Neuroradiology (1982) "Preoperative Embolization of Hypervascular Head and Neck Neoplasms Using Microfibrillar Collagen", pp. 163-168.
9Christos A. Athanasoulis, M.D., The New England Journal of Medicine, May 15, 1980, "Therapeutic Applications of Angiography" pp. 1117-1125 (1 of 2).
10Christos A. Athanasoulis, M.D., The New England Journal of Medicine, May 22, 1980, "Therapeutic Applications of Angiography" pp. 1174-1179 (2 of 2).
11Glenn H. Roberson, et al., American Journal of Radiology, Oct. 1979, "Therapeutic Embolization of Juvenile Angiofibroma" pp. 657-663.
12Mc Graw Hill Encyclopedia of Engineering, Second Edition, "Shape Memory Alloys," pp. 1095-1096.
13O.A. Battista, et al. Journal of Applied Polymer Science 1967 "Colloidal Macromolecular Phenomena. Part II. Novel Microcrystals of Polymers" pp. 481-498.
14Richard E. Latchaw, M.D. et al., Radiology (1979) "Polyvinyl Foam Embolization of Vascular and Neoplastic Lesions of the Head, Neck and Spine" pp. 669-679.
15Sadek K. Hilal, M.D. et al. Journal of Neurological Surgery "Therapeutic Percutaneous Embolization for Extra-Axial Vascular Lesions of the Head, Neck and Spine" Sep. 1975; pp. 275-287.
16Sidney Wallace, M.D. et al., Cancer, Oct. 1979, "Arterial Occlusion of Pelvic Bone Tumors"; pp. 322-325 & 661-663.
17Stephen L. Kaufman, M.D. et al. Investigative Radiology, May-Jun. 1978, "Transcatheter Embolization with Microfibrillar Collagen in Swine"; pp. 200-204.
18Stewart R. Reuter, M.D. et al. American Journal of Radiology, Sep. 1975, "Selective Arterial Embolization for Control of Massive Upper Gastrointestinal Bleeding" pp. 119-126.
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US7879064Sep 22, 2004Feb 1, 2011Micro Therapeutics, Inc.Medical implant
US8663301 *Jan 22, 2010Mar 4, 2014Cornell UniversityMethod and apparatus for restricting flow through an opening in the side wall of a body lumen, and/or for reinforcing a weakness in the side wall of a body lumen, while still maintaining substantially normal flow through the body lumen
US8728141 *Dec 11, 2008May 20, 2014Cornell UniversityMethod and apparatus for sealing an opening in the side wall of a body lumen, and/or for reinforcing a weakness in the side wall of a body lumen, while maintaining substantially normal flow through the body lumen
US20090264914 *Dec 11, 2008Oct 22, 2009Howard RiinaMethod and apparatus for sealing an opening in the side wall of a body lumen, and/or for reinforcing a weakness in the side wall of a body lumen, while maintaining substantially normal flow through the body lumen
US20100268260 *Jan 22, 2010Oct 21, 2010Howard RiinaMethod and apparatus for restricting flow through an opening in the side wall of a body lumen, and/or for reinforcing a weakness in the side wall of a body lumen, while still maintaining substantially normal flow through the body lumen
Classifications
U.S. Classification606/191, 606/200
International ClassificationA61B17/00, A61F2/82, A61F2/01, A61L31/02, A61L31/06, A61L31/04, A61M29/00, A61B17/12, A61F2/00, B29C53/82, B29C53/76, B29C61/00
Cooperative ClassificationA61F2002/30092, A61L31/048, A61F2/01, A61B17/12022, A61L31/022, A61B2017/00867, A61F2210/0014, B29K2029/00, A61B17/12145, B29C61/00, B29L2031/7734, A61B17/12113, B29L2031/753, B29C53/821, A61L31/06, B29C53/76, A61B2017/00526
European ClassificationA61L31/04H, A61L31/06, A61B17/12P7C1, A61B17/12P5B1, A61L31/02B, A61B17/12P, B29C61/00, B29C53/76, B29C53/82B
Legal Events
DateCodeEventDescription
Jun 8, 2011FPAYFee payment
Year of fee payment: 4