Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS7341649 B2
Publication typeGrant
Application numberUS 10/292,750
Publication dateMar 11, 2008
Filing dateNov 12, 2002
Priority dateDec 1, 1998
Fee statusPaid
Also published asUS6902659, US20030006147, US20030094364
Publication number10292750, 292750, US 7341649 B2, US 7341649B2, US-B2-7341649, US7341649 B2, US7341649B2
InventorsHomayoun Talieh
Original AssigneeNovellus Systems, Inc.
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Apparatus for electroprocessing a workpiece surface
US 7341649 B2
Abstract
The present invention deposits a conductive material from an electrolyte solution to a predetermined area of a wafer. The steps that are used when making this application include applying the conductive material to the predetermined area of the wafer using an electrolyte solution disposed on a surface of the wafer, when the wafer is disposed between a cathode and an anode, and preventing accumulation of the conductive material to areas other than the predetermine area by mechanically polishing the other areas while the conductive material is being applied.
Images(6)
Previous page
Next page
Claims(11)
1. An apparatus for electroprocessing a workpiece having a conductive layer using a solution comprising:
a head adapted to hold the workpiece and configured to rotate about a first axis;
an electrode configured to allow a potential difference to be applied between the electrode and the conductive layer, the electrode having a plurality of holes therethrough and configured to rotate about a second axis perpendicular to the first axis;
a pad disposed in close proximity to the conductive layer of the workpiece, a surface of the pad being configured to polish the conductive layer while the potential difference and the solution are applied onto the conductive layer; and
a solution chamber holding a process solution, wherein the electrode is between the solution chamber and the pad and wherein the pad and electrode are configured to allow the solution to be continuously flowed from the chamber through the holes of the electrode to the conductive layer.
2. The apparatus of claim 1, wherein the pad is attached to the electrode.
3. The apparatus of claim 2, further comprising means for introducing the solution to the conductive layer of the workpiece.
4. The apparatus of claim 3, wherein the means for introducing the solution recirculates the solution.
5. The apparatus of claim 3, wherein the means for introducing the solution comprises a channel including a passage in the electrode.
6. The apparatus of claim 2, wherein a plurality of pads are attached to the electrode and positioned between the electrode and the conductive layer of the workpiece.
7. The apparatus of claim 2, wherein the conductive layer is copper.
8. The apparatus of claim 1, wherein the conductive layer is copper.
9. The apparatus of claim 1, wherein the electrode is cylindrical.
10. The apparatus of claim 1, wherein the pad is circular.
11. The apparatus of claim 1, wherein the pad is belt-shaped.
Description
RELATED APPLICATIONS

This is a continuation of U.S. Ser. No. 09/607,567 now U.S. Pat. No. 6,676,822 filed Jun. 29, 2000, which is a divisional of U.S. Ser. No. 09/201,929 filed Dec. 1, 1998, now U.S. Pat. No. 6,176,992, incorporated herein by reference.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to a Method and Apparatus for Electro Chemical Mechanical Deposition, and more particularly, to a method and apparatus that provides for both the deposition and polishing of a conductive material on a semiconductor wafer.

2. Background of the Invention

Metallization of semiconductor wafers, i.e. deposition of a layer of metal on the face of wafers over a barrier/seed layer of metal has important and broad application in the semiconductor industry. Conventionally, aluminum and other metals are deposited as one of many metal layers that make up a semiconductor chip. More recently, there is great interest in the deposition of copper for interconnects on semiconductor chips, since, as compared to aluminum, copper reduces electrical resistance and allows semiconductor chips using copper to run faster with less heat generation, resulting in a significant gain in chip capacity and efficiency.

Conformal thin film deposition of copper into deep submicron via holes and trenches is becoming more difficult in ULSI chip processing, especially when the feature sizes are decreasing below the 0.25 μm with aspect rations of greater that 5 to 1. Common chemical vapor deposition and electroplating techniques have been used to fill these deep cavities etched into silicon substrates. These processes so far have yielded a very high cost and defect density for developing and integrating local interconnects for ULSI technology.

One of the factors that contributes to the high cost is the manner in which the conductive material, and particularly copper, is applied, Specifically, it is well known to apply certain contaminants, known as leveling agents, in the electrolyte solution that prevent or slow down the rate of deposition of the metal to the surface of the wafer substrate. Since these contaminants have a large size in comparison to the size of the typical vie that needs to be filled, deposition of the metal on the surface of the wafer is, in part, prevented. This prevention, however, is achieved at the expense of adding contaminants to the electrolytic solution, which results, in part, in vias that do not have the desired conductive characteristics. In particular, the grain size of the deposited conductor, due to the use of such contaminants, is not as large as desired, which thereby results in quality problems for the resulting device, as well as increased expense due to significant annealing times that are subsequently required.

Further, the cost of achieving the desired structure, in which the conductive material exists in the via, but not on the substrate surface, still required separate deposition and polishing steps. After the conventional deposition of the metal using an anode, a cathode and electrolytic solution containing metal as is known, there is then required a polishing step, which polishing step is, for high performance devices at the present time, typically a chemical-mechanical polishing step. While chemical mechanical polishing achieves the desired result, it achieves it at considerable expense, and requires a great degree of precision in applying a slurry in order to achieve the desired high degree of polish on the conductive surface.

Accordingly, a less expensive and more accurate manner of applying a conductor to a semiconductor wafer is needed

SUMMARY OF THE INVENTION

It is an object of the present invention to provide a method and apparatus that both deposits and polishes a conductive material on a semiconductor wafer.

It is an object of the present invention to provide a method and apparatus that simultaneously deposits and polishes a conductive material on a semiconductor wafer.

It is an object of the present invention to provide a method and apparatus that simultaneously deposits a conductive material in deep cavities of a semiconductor wafer and polishes/starves electrolytic solution from the top surface area of the semiconductor wafer.

It is a further object of the present invention to provide a method and apparatus that recirculates the electrolytic solution used in depositing the conductive material on the semiconductor wafer.

These and other object of the present invention are obtained by depositing a conductive material form an electrolyte solution to a predetermined area of a wafer. The steps that are used when making this application include applying the conductive material to the predetermined area of the wafer using an electrolyte solution disposed on a surface of the wafer when the wafer is disposed in proximity to an anode, and preventing accumulation of the conductive material to areas other than the predetermined area by mechanically polishing, protecting, or reducing form electrolyte contact to the other areas while the conductive material is being deposited.

An apparatus that performs this method includes an anode capable of receiving a first potential upon application of power, A cathode or the wafer is spaced from the anode and is capable of receiving a second potential opposite the first potential upon application of power. A pad or a multiple number of pads is/are disposed between the anode and the cathode, the pad being movable with respect to a surface of the wafer and inhibiting or reducing application of the conductive material to certain other areas when power is being supplied to the anode and the cathode. Further, a fluid chamber allows an electrolyte solution to be disposed on the surface of the wafer or the pad and the conductive material to be formed on desired areas of the wafer upon application of power.

BRIEF DESCRIPTION OF THE DRAWINGS

These and other objects and advantages of the present invention will become apparent and more readily appreciated from the following detailed description of the presently preferred exemplary embodiment of the invention taken in conjunction with the accompanying drawings, of which:

FIGS. 1A and 1B illustrate a first embodiment of the present invention;

FIG. 2 illustrates a second embodiment of the present invention;

FIG. 3 illustrates a representative via to be filled with a conductor according to the present invention; and

FIGS. 4A-4C illustrate a third embodiment of the present invention.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

The preferred embodiments of the present invention will now be described. As noted above, conventional processing uses different equipment, at different times, in order to obtain conductive material within vias or at other desired locations on the surface of a semiconductor wafer that contains many different semiconductor chips, but not have the conductive material disposed at undesired locations. Accordingly, the equipment cost needed to manufacture a high quality semiconductor integrated circuit device can be exorbitant.

The present invention contemplates different embodiments which allow for the same device, termed a “electro chemical mechanical deposition apparatus”, to be used to both deposit a conductive material as well as then polish or reduce the rate of deposition of that conductive material. The “electro chemical mechanical deposition apparatus” can also be used to simultaneously deposit and/or polish the conductive material. While the present invention can be used with any conductive material or any workpiece suitable for plating it is especially suited for use with copper as the conductor, and for use in the fabrication of ULSI integrated circuits having submicron features with large aspect ratios. In the various embodiments, the present invention uses conventional components, arranged in a unique manner, in order to achieve the functionalities described herein.

FIG. 3 is first referred to in order to illustrate a portion of an integrated circuit chip that includes an area in which a via is to be formed, The via, as known in the semiconductor arts, being a conductive material that electrically connects different circuit layers together. AS shown in FIG. 3, a via contains a conductor 2 that can connect a lower level conductive area 4 with an upper level conductive area 6, with insulative material 8 disposed there around. Of course, it is understood that the present invention can operate upon any metal layer of a multi-layer integrated circuit chip.

FIGS. 1A and 1B illustrate a first embodiment of the invention, which embodiment has two different modes of operation. In a first mode, a conductive metal, preferably copper, or other conductive material, is applied in vias and/or other desired areas using an electrolyte solution, while build-up of the conductive material on undesired areas is eliminated, or at least minimized, due to the mechanical polishing and/or electrolytic solution deprivation to top surface areas of the semiconductor wafer that is described hereinafter. In a second mode of operation, polishing of the wafer, using a conventional chemical mechanical polishing, can be performed using the same device, to the extent that such chemical mechanical polishing is needed. It is contemplated that according to this embodiment of the present invention that in most circumstances only the first mode of operation will be needed. The second mode of operation, and the structure corresponding thereto, are included for circumstances in which an extremely high degree of polish is desired.

FIG. 1A illustrates an overview of the electro chemical mechanical deposition apparatus 10 according to the first embodiment of the invention, illustrating in perspective view the mechanical pad assembly 12 that has a mechanical pad 32 that rotates around a first axis 14, and a wafer head assembly 16 that has a wafer that rotates around a second axis 18. As illustrated, the wafer rotates within an area that is covered by the mechanical pad 32, as will be described in further detail hereinafter, which area is within container 20 that keeps various solution disposed therein. Although shown as operating upon a single wafer, it is understood that a plurality of wafer lead assemblies 16 could be associated with each mechanical pad assembly 12, and that the apparatus 10 could include a plurality of mechanical pad assemblies 12 as well, each operating on different wafers.

FIG. 1B illustrates a side cross sectional view of the apparatus 10 taken along line A-A of FIG. 1A according to the present invention. As illustrated, the system 10 is capable of depositing thin metal films onto the wafer.

Each wafer head assembly 16 includes a nonconductive, preferably circular, head assembly 22 with a cavity that is preferably a few millimeters deep at its center and which cavity may contain a resting pad 25. The semiconductor wafer is loaded into this cavity 22, backside first, against the resting pad 25 using a conventional type of transport or vacuum mechanism to ensure that he wafer is stationary with respect to the wafer head assembly while in use. A nonconductive retaining ring 24 at the periphery of the wafer head assembly 16 includes at least one O-ring or other rubber type seal 26 and a spring loaded cathode contact electrode 28, which each push against the face of the wafer and hold the wafer in place at its very edge. A liquid-tight seal is thus obtained so that the cathode contact electrode 28 is kept isolated from the solution within the container 20, as described hereinafter, The entire back side of the wafer which pushed against resting pad 25 and the front surface areas (typically the outer 1-10 mm surface of the front surface area) which are under this retaining ring 24 will thus be protected from any and all solution, including electrolyte, as discussed hereinafter.

The mechanical pad assembly 12 is disposed within container 20, which container 20 holds the various solutions that will be introduced, as described previously and hereinafter. Mechanical pad assembly 12 included an anode plate 30 that preferably has a thin flat circular shape and is made of a porous or solid conductive material such as copper and/or platinum and is mounted so that it rotates about the second axis 18, and rests upon a table and bearing support as is known. A mechanical pad 32, as is known is the art and used, as example, in chemical mechanical polishing, and preferably one that is made of a nonconductive porous type material such as polyurethane, is mounted onto the face of the anode plate 30. The mechanical pad 32 preferably has a circular shape, but may be shaped in any other form so long as it can effectively polish the wafer. The electrolyte can be fed to the pad 32 from a reservoir (not shown) located behind the anode plate 32 via a chamber 31, which chamber 31 then feeds the electrolyte up through the anode plate 30 and pad 32 using the in-channel 34. Alternatively, in-channel 44 can also be used to dispense the electrolyte directly down onto the surface of the pad 32.

The wafer head assembly 16 faces toward the mechanical pad assembly 12, and is pushed down with a controlled force. The wafer head assembly 16 rotates around axis 18 using a conventional motorized spindle 36, whereas the mechanical pad assembly 12 rotates around axis 14 using a conventional motorized spindle 38.

Proper drainage channels 40 provide a safe recycling or disposal of electrolyte. Thus, once the electrolyte is placed onto the pad 32 as described above, it can be drained via the drainage channels 40 to a resuscitating reservoir, also not shown, that can replenish and clean the electrolyte, thereby allowing re-sue and being environmentally safe.

The inlet 44 can also be used to apply deionized water when operating in the second mode of the invention, as discussed hereinafter.

In operation according to the first mode of the invention, the apparatus 10 applies, using a power source, a negative potential to the cathode contact 28 and a positive potential to the anode 30. The electrolytic solution is introduced through one or both of the in-channels 34 and 44 to the surface of the mechanical polishing pad 32. When an electric current is established between the two electrodes, molecules of metals in electrolyte are deposited on the surface of the wafer, being attracted thereto by the negative voltage applied to the cathode contact 28. While this is taking place, there is also performed a mechanical polishing using the mechanical pad assembly 12. This mechanical pad assembly 12 substantially prevents molecules of metals from becoming permanently deposited on surfaces of the wafer where such a deposit is undesired, due to the polishing or rubbing action of the mechanical pad 32. Thus, the contaminants or additives referred to above that are presently used to prevent or reduce such depositing are not needed, or alternatively can be used in much smaller percentages. Accordingly, at the conclusion of the first mode of operation, metal is deposited in vias and the like where desired, and is substantially prevented from being deposited in undesired areas.

In a second mode of operation, a number of different conventional operations can be performed, depending upon the chemicals introduced via the in-channel 44. If chemical mechanical polishing is desired, a slurry can be introduced, although this specific mode of operation is not preferred since it increases the amount of impurities introduced into the apparatus fluid chamber substantially. In the preferred second mode of operation, the apparatus 10 can be used to buff polish the seed layer or be used as an electro polisher by reversing the current polarity (cathode and anode polarity), Further, the apparatus 10 can also be purged with water if it is necessary to leave the wafer clean but wet with deionized water, and polishing using the mechanical pad 32 with the deionized water can take place. Thereafter, after lifting the wafer off the pad 32, spin drying of the wafer on the rotating wafer head assembly 16 can take place.

FIG. 2 illustrates another embodiment of the present invention. Like reference numerals are used to indicate structure that corresponds to that of FIGS. A1 and 1B described above. In this embodiment of the invention, the wafer is stationery, and electro chemical mechanical deposition apparatus 100 is disposed within a container (not shown) that collects spent solutions. The electro chemical mechanical deposition apparatus 100 corresponds in structure in large part to the wafer head assembly 16 previously described with reference to FIG. 1B. In this embodiment, however, the electro chemical mechanical deposition apparatus 100 includes a mechanical pad 32, which is rotated by the spindle shaft 36. Spindle shaft 36 is illustrated as being rotated and moved side to side and held in proper position using DC motor 102, weights 104, bearing sets 106 and 108 an springs 110, all of which are conventional.

The electrolyte solution is introduced using in passage 34, and it flows to the desired surface of the wafer through the porous anode 30 and mechanical pad 32. It is expelled through out-channel 40.

Operation of the FIG. 2 embodiment is very similar to that of the first mode described with respect to FIGS. 1A and 1B. Specifically, deposition of a conductive material using an electrolyte, such as described previously, in desired vias and/or other areas, is obtained at the same time that mechanical polishing of the surface of the wafer using rotating pad 32, which may be the shape of a rectangle, a circle, or a pie or the like, takes place.

The electro chemical mechanical deposition apparatus according to the present embodiment also reduces the need for pulse generating power supplies because the mechanical pulsing that is generated from the movement of the pad creates sufficient pulsing. This mechanical pulsing is created as a result of the wafer being in contact with the pad as it is moved in relation to the wafer. The benefit of the mechanical pulsing is that it improves grain size and copper film integrity without the need for power supplies with pulsing capabilities.

FIGS. 4A-4C illustrate yet another preferred embodiment of the present invention. Like reference numerals are used to indicate structure that corresponds to that of FIGS. 1A, 1B, and 2 described above, In this embodiment of the invention, the electro chemical mechanical deposition apparatus 200 contains a mechanical pad assembly 210 that corresponds to the mechanical pad assembly 12 and a wafer head assembly 240 that corresponds to the wafer head assembly 16. In this embodiment, the electro chemical mechanical deposition apparatus 200 includes a circular or square mechanical pad 212 mounted on a cylindrical anode 214 that rotates abut a first axis 216 as illustrated in FIGS. 4A and 4C, whereas the wafer rotates abut a second axis 242 as illustrated in FIG. 4B.

The mechanical pad 212 can have a size that either polishes the entire usable portion of the wafer, or only a section of the wafer at any given time. If only a portion of the wafer is polished at any given time, a drive assembly (not shown) must also be included in order to move the anode 214, and thereby the mechanical pad 212, so that it is in contact with the portion of the wafer that needs to be acted upon at that moment in time.

In operation, it will be appreciated that the belt-shaped mechanical pad 212 polishes the wafer similar to the manner in which a roller paintbrush paints a wall. While operating, the electrolyte or other solution is introduced to the mechanical pad 212 from a reservoir (not shown) located in proximity to the anode 214. In one specific embodiment, the anode 214 contains an in-channel 224 that includes a passageway 226 within anode 214 and holes 228 that are made in the anode 214, which together provide a path for the solution to be fed to the mechanical pad 212. Alternatively, the electrolyte solution can be dispensed directly onto the pad 212 through a channel 213 in accordance with the methods described earlier herein. The solution will be contained with a non-conductive chamber 230 that is created around the wafer head assembly 240, and an nonconductive solution containment housing 250, which housing contains an out-channel 252. O-rings and other conventional structures, as described earlier herein, to seal the solution within the solution containment housing 250 may be used in this embodiment.

Again, the electro chemical mechanical deposition apparatus according to the present invention reduces the need for pulse generating power supplies because the mechanical pulsing that is generated from the rotating movement of the pad and wafer creates sufficient pulsing.

According to the present invention, in any of the embodiments, since mechanical action is used to prevent undesired build-up of a conductor on undesired areas of a wafer surface, leveling agents are not typically needed, or needed in a much smaller percentage than conventionally used. Further a polished smooth and shiny conductive surface can be obtained.

Although only the above embodiments have been described in detail above, those skilled in the art will readily appreciate that many modification of the exemplary embodiment are possible without materially departing from the novel teachings and advantages of this invention.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2965556 *Apr 15, 1959Dec 20, 1960Struers Chemiske Lab HApparatus for the electro-mechanical polishing of surfaces
US3448023 *Jan 20, 1966Jun 3, 1969Hammond Machinery Builders IncBelt type electro-chemical (or electrolytic) grinding machine
US3619383 *May 4, 1970Nov 9, 1971Norton CoContinuous process of electrodeposition
US3637468 *Apr 25, 1969Jan 25, 1972Dalic SaElectrodes for electrolytic processes
US3779887Mar 14, 1972Dec 18, 1973Sifco Ind IncVibratory applicator for electroplating solutions
US3959089Dec 30, 1974May 25, 1976Watts John DawsonSurface finishing and plating method
US4024029Oct 16, 1975May 17, 1977National Research Development CorporationSemi-conductor
US4391684 *Jul 2, 1981Jul 5, 1983Rolls-Royce LimitedMethod of manufacture of an article having internal passages
US4431501 *Jul 22, 1981Feb 14, 1984Outokumpu OyApparatus for electrolytic polishing
US4466864 *Dec 16, 1983Aug 21, 1984At&T Technologies, Inc.Methods of and apparatus for electroplating preselected surface regions of electrical articles
US4610772Jul 22, 1985Sep 9, 1986The Carolinch CompanyElectrolytic plating apparatus
US5024735Feb 15, 1989Jun 18, 1991Kadija Igor VApplying electrolytes to image substrate, contacting with electrically conductive brush, vibration
US5171412Aug 23, 1991Dec 15, 1992Applied Materials, Inc.Forming two layers by two steps, first step includes a collimated low temperature sputtering and second step utilizes high temperature/high power sputtering of aluminum to fill voids and grooves of substrate surface and planarize it
US5429733May 4, 1993Jul 4, 1995Electroplating Engineers Of Japan, Ltd.Plating device for wafer
US5558568Nov 2, 1994Sep 24, 1996Ontrak Systems, Inc.Wafer polishing machine with fluid bearings
US5567300Sep 2, 1994Oct 22, 1996Ibm CorporationMultilayer copper connectors in thin films modules
US5692947Dec 3, 1996Dec 2, 1997Ontrak Systems, Inc.Linear polisher and method for semiconductor wafer planarization
US5700366Sep 3, 1996Dec 23, 1997Metal Technology, Inc.Electrolytic process for cleaning and coating electrically conducting surfaces
US5755859Aug 24, 1995May 26, 1998International Business Machines CorporationSolution comprising cobalt salt plus tin salt, complexing agent, phosphorus-bearing reducing agent, and buffer
US5807165Mar 26, 1997Sep 15, 1998International Business Machines CorporationMethod of electrochemical mechanical planarization
US5816900 *Jul 17, 1997Oct 6, 1998Lsi Logic CorporationApparatus for polishing a substrate at radially varying polish rates
US5833820Jun 19, 1997Nov 10, 1998Advanced Micro Devices, Inc.Gas shielding to prevent metal plating on contacts; reduces particle contamination and increases thickness uniformity
US5862605May 22, 1997Jan 26, 1999Ebara CorporationVaporizer apparatus
US5863412Oct 17, 1996Jan 26, 1999Canon Kabushiki KaishaEtching method and process for producing a semiconductor element using said etching method
US5911619 *Mar 26, 1997Jun 15, 1999International Business Machines CorporationApparatus for electrochemical mechanical planarization
US5930669Apr 3, 1997Jul 27, 1999International Business Machines CorporationContinuous highly conductive metal wiring structures and method for fabricating the same
US5933753Dec 16, 1996Aug 3, 1999International Business Machines CorporationOpen-bottomed via liner structure and method for fabricating same
US6004880Feb 20, 1998Dec 21, 1999Lsi Logic CorporationPolishing integrated circuit while concurrently applying voltage; electrolysis
US6074546Aug 21, 1997Jun 13, 2000Rodel Holdings, Inc.Method for photoelectrochemical polishing of silicon wafers
US6143155Jun 11, 1998Nov 7, 2000Speedfam Ipec Corp.Method for simultaneous non-contact electrochemical plating and planarizing of semiconductor wafers using a bipiolar electrode assembly
US6176992Dec 1, 1998Jan 23, 2001Nutool, Inc.Method and apparatus for electro-chemical mechanical deposition
US6210554Dec 21, 1999Apr 3, 2001Mitsubishi Denki Kabushiki KaishaSupplying plating solution onto plating surface of wafer so solution flows from center of plating surface of wafer toward periphery; generating electric field between wafer and annular anode to obtain non-uniformly distributed coating that
US6251235Mar 30, 1999Jun 26, 2001Nutool, Inc.Apparatus for forming an electrical contact with a semiconductor substrate
US6270647Aug 31, 1999Aug 7, 2001Semitool, Inc.Electroplating system having auxiliary electrode exterior to main reactor chamber for contact cleaning operations
US6346479Jun 14, 2000Feb 12, 2002Advanced Micro Devices, Inc.Creating aperture in dielectric layer; electrodepositing copper from plating solution designed for non-conformal filling; conformal filling; planarization
US6353623Jan 4, 1999Mar 5, 2002Uniphase Telecommunications Products, Inc.Temperature-corrected wavelength monitoring and control apparatus
US6402925Dec 14, 2000Jun 11, 2002Nutool, Inc.Prevent accumulation by polishing
US6440295Feb 4, 2000Aug 27, 2002Acm Research, Inc.Method for electropolishing metal on semiconductor devices
US6471847Jun 7, 2001Oct 29, 2002Nutool, Inc.Plating a surface of a semiconductor workpiece (wafer, flat panel, magnetic films) using a liquid conductor such as mercury
US6482656Jun 4, 2001Nov 19, 2002Advanced Micro Devices, Inc.Method of electrochemical formation of high Tc superconducting damascene interconnect for integrated circuit
US6497800Oct 11, 2000Dec 24, 2002Nutool Inc.Device providing electrical contact to the surface of a semiconductor workpiece during metal plating
US6506103Jul 21, 2000Jan 14, 2003RikenELID centerless grinding apparatus
US6534116Dec 18, 2000Mar 18, 2003Nutool, Inc.Plating method and apparatus that creates a differential between additive disposed on a top surface and a cavity surface of a workpiece using an external influence
US6600229May 1, 2001Jul 29, 2003Honeywell International Inc.Planarizers for spin etch planarization of electronic components
US6610190Jan 17, 2001Aug 26, 2003Nutool, Inc.Anode, a shaping plate, a liquid electrolyte, and electrical contact members
US6630059 *Jan 14, 2000Oct 7, 2003Nutool, Inc.Workpeice proximity plating apparatus
US6653226Jan 9, 2001Nov 25, 2003Novellus Systems, Inc.Method for electrochemical planarization of metal surfaces
US6676822Jun 29, 2000Jan 13, 2004Nutool, Inc.Method for electro chemical mechanical deposition
US6833063Dec 21, 2001Dec 21, 2004Nutool, Inc.Electrochemical edge and bevel cleaning process and system
US6848970Sep 16, 2002Feb 1, 2005Applied Materials, Inc.Process control in electrochemically assisted planarization
US6867136Jul 22, 2002Mar 15, 2005Nutool, Inc.Method for electrochemically processing a workpiece
US6902659Sep 9, 2002Jun 7, 2005Asm Nutool, Inc.Deposition and polishing of a conductive material on a semiconductor wafer
US6936154Dec 7, 2001Aug 30, 2005Asm Nutool, Inc.Planarity detection methods and apparatus for electrochemical mechanical processing systems
US6942780Jun 11, 2003Sep 13, 2005Asm Nutool, Inc.Method and apparatus for processing a substrate with minimal edge exclusion
US6958114Mar 5, 2002Oct 25, 2005Asm Nutool, Inc.For electroplating a metal on a semiconductor substrate; for forming electrical contacts on the semiconductor substrate using a liquid conductor
US20020074238Sep 28, 2001Jun 20, 2002Mayer Steven T.For planarizing metal surfaces having low aspect ratio recesses or trenches as well as raised regions; fluid exchange rate changes with elevation
US20030054729Aug 29, 2002Mar 20, 2003Whonchee LeeMethods and apparatus for electromechanically and/or electrochemically-mechanically removing conductive material from a microelectronic substrate
US20030226764Mar 4, 2002Dec 11, 2003Moore Scott E.Methods and apparatus for electrochemical-mechanical processing of microelectronic workpieces
DE2008664A1Feb 25, 1970Sep 9, 1971Licentia GmbhGalvanically or chemically assisted mechanic
DE4324330A1Jul 20, 1993Feb 3, 1994Atotech Deutschland GmbhVerfahren zum elektrolytischen Behandeln von insbesondere flachem Behandlungsgut, sowie Anordnung, insbesondere zur Durchführung des Verfahrens
JP2000208443A Title not available
WO2001032362A1Oct 2, 2000May 10, 2001Koninkl Philips Electronics NvMethod and apparatus for deposition on and polishing of a semiconductor surface
Non-Patent Citations
Reference
1Contolini, R.C., et al., "Electrochemical Planarization for Multilevel Metallization", Sep. 1994, pp. 2503-2510.
2Madore, C., et al., "Blocking Inhibitors in Catholic Leveling," I. Theoretical Analysis, Dec. 1996, pp. 3927-3942.
3Reid, Jon, et al., Factors influencing damascene feature fill using copper PVD and electroplating, Solid State Technology, Jul. 2000, 7 pages.
4Rubinstein, M., et al., "Tampongalvanisieren in der Praxis, Teil 1, " Galvanotechnik, vol. 79, No. 10, 1998, pp. 3263-3270.
5Steigerwald, J.M., et al., "Pattern Geometry Effects in the Chemical-Mechanical Polishing of Inlaid Copper Structures", Oct. 1994, pp. 2842-2848.
6West, A.C., et al., "Pulse Reverse Copper Electrodeposition in High Aspect Ratio Trenches and Vias", Sep. 1998, pp. 3070-3073.
Classifications
U.S. Classification204/212, 257/E21.304, 204/242, 205/93, 204/199, 205/663, 204/224.00M, 257/E21.175
International ClassificationH01L21/321, C25F7/00, B24B37/04, C25D5/06, H01L21/288, B23H3/04, C25D5/22, C25D17/00, C25D5/02, C25D7/12, B23H5/06
Cooperative ClassificationC25D5/02, B24B37/20, H01L21/3212, C25D5/06, C25D5/22, H01L21/2885
European ClassificationB24B37/20, C25D5/22, H01L21/288E, C25D5/06, C25D5/02, H01L21/321P2
Legal Events
DateCodeEventDescription
Sep 12, 2011FPAYFee payment
Year of fee payment: 4
Mar 12, 2007ASAssignment
Owner name: NOVELLUS SYSTEMS, INC., CALIFORNIA
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ASM NUTOOL, INC.;REEL/FRAME:019000/0080
Effective date: 20061204
Owner name: NOVELLUS SYSTEMS, INC.,CALIFORNIA
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ASM NUTOOL, INC.;US-ASSIGNMENT DATABASE UPDATED:20100225;REEL/FRAME:19000/80
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ASM NUTOOL, INC.;REEL/FRAME:19000/80
May 27, 2005ASAssignment
Owner name: ASM NUTOOL, INC., CALIFORNIA
Free format text: CHANGE OF NAME;ASSIGNOR:NUTOOL, INC.;REEL/FRAME:016285/0313
Effective date: 20040729
Nov 12, 2002ASAssignment
Owner name: NUTOOL, INC., CALIFORNIA
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:TALIEH;REEL/FRAME:013485/0806
Effective date: 19990713