Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS7400302 B2
Publication typeGrant
Application numberUS 11/343,167
Publication dateJul 15, 2008
Filing dateJan 30, 2006
Priority dateJan 30, 2006
Fee statusPaid
Also published asUS20070176830, WO2007090038A2, WO2007090038A3
Publication number11343167, 343167, US 7400302 B2, US 7400302B2, US-B2-7400302, US7400302 B2, US7400302B2
InventorsJames Blake Winter
Original AssigneeCenturion Wireless Technologies, Inc.
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Internal antenna for handheld mobile phones and wireless devices
US 7400302 B2
Abstract
An antenna for a foldable wireless device is provided. The foldable wireless device and antenna include a first housing and a second housing pivotally connected. A printed circuit board associated with the wireless device comprises a first PCB in the first housing and a second PCB in the second housing. The first and second PCB function as first and second radiating plates respectively. A gap, generally aligned with the pivotal connection separates the first and second PCBs. A short is provided that traverses the gap and connects the first and second PCBs. Radio frequency power is connected to the first and second PCB to supply radio frequency power.
Images(3)
Previous page
Next page
Claims(21)
1. A wireless device, the wireless device comprising,
a first housing;
a second housing pivotally connected to the first housing;
a ground plane radiator, comprising a first ground plane functioning as a first radiating plate having a first edge in the first housing and a second ground plane functioning as a second radiating plate having a second edge in the second housing such that the first ground plane and the second ground plane move relative to each other;
the ground plane radiator comprising at least one slot in at least one of the first ground plane or the second around plane;
a gap, the gap being located proximate to the first edge and the second edge and separating the first ground plane and the second ground plane by a distance; and
a short traversing gap connecting the first ground plane and the second ground plane.
2. The wireless device of claim 1 wherein the wireless device comprises a flip cellular phone.
3. The wireless device of claim 1, wherein the radiator has a radio frequency matching network.
4. The wireless device of claim 3, wherein the matching network includes a varactor diode.
5. The wireless device of claim 1, wherein the radiator receives digital television radio frequency signals.
6. The wireless device of claim 1, wherein the radiator comprises a printed circuit board.
7. The wireless device of claim 1, wherein the short connects the first ground plane and the second ground plane by connecting the first edge to the second edge.
8. The wireless device of claim 1, further comprising a pivotal connection between the first ground plane and the second ground plane to allow the the first ground plane and the second ground plane to move relative to each other wherein the gap is substantially aligned with the pivotal connection.
9. The wireless device of claim 8, wherein the pivotal connection is formed by at least one bore and at least one corresponding protrusion.
10. The wireless device of claim 1, wherein the first ground plane includes a slot.
11. The wireless device of claim 1, wherein the second ground plane includes a slot.
12. The wireless device of claim 1, further comprising a radio frequency power source wherein the radio frequency power feed is selected from a group of radio frequency power feeds consisting of: a coaxial cable, a microstrip line, or a conductive trace.
13. The wireless device of claim 1, wherein at least one metal housing attached to the ground plane radiator comprises the first ground plane and second ground plane.
14. The wireless device of claim 1, further comprising a radio frequency power source coupled to the first ground plane and the second ground plane.
15. The wireless device of claim 1, wherein the ground plane radiator comprises at least a metal housing.
16. An antenna for a wireless device, the antenna comprising:
a ground plane functioning as a radiator,
the ground plane comprising a first ground plane radiating plate connected to a second ground plane radiating plate such that the first ground plane radiating plate and the second ground plane radiating plate can move relative to each other;
the ground plane comprising at least one slot in at least one of the first ground plane or the second ground plane;
a gap separates a first edge of the first ground plane radiating plate from a second edge of the second ground plane radiating plate;
a short connecting the first ground plane radiating plate and the second ground plane radiating plate; and
a wire functioning as a center connector connecting the first ground plane radiating plate and the second ground plane plate.
17. The antenna of claim 16, wherein the ground plane comprises a printed circuit board (PCB), and the first ground plane radiating plate is a first PCB radiating plate, and the second ground plane is a second PCB radiating plate.
18. The antenna of claim 17, wherein the first PCB radiating plate is connected to the second PCB radiating plate by a short coupled to an edge of the first PCB radiating plate and an edge of the second PCB radiating plate.
19. The antenna of claim 17, wherein the wire is coupled to an edge of the first PCB radiating plate and an edge of the second PCB radiating plate.
20. The antenna of claim 17, wherein the first PCB radiating plate and the second PCB radiating plate reside in substantially the same plane during operation of the antenna.
21. The antenna of claim 16 further comprising a radio frequency power source coupled to the first ground plane radiating plane and the second ground plane radiating plate.
Description
STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH

None

CROSS-REFERENCE TO RELATED APPLICATIONS

Not related to any currently pending patent applications or issued patents.

FIELD OF THE INVENTION

The present invention relates to antenna for wireless devices and, more particularly, to an antenna capable of receiving digital television signals.

BACKGROUND OF THE INVENTION

Cellular phones, PDAs, BLACKBERRYs® from Research in Motion, wireless computers, handheld computers and the like are becoming increasingly prevalent in today's society. The uses for such devices include both business uses as well as personal uses. Only a few years ago, wireless devices were relatively limited in use, but today a single wireless device may incorporate features to allow functions such as, for example, cellular communication, internet access, text messaging, credit purchases, bank account access, television viewing, computing, video gaming, navigation information, and the like.

With the increase in consumer use of wireless devices over multiple functions, the need for those devices to operate over multiple radio frequency bandwidths also has increased. Thus, it is not uncommon for wireless devices to incorporate antennas for various frequency bands such as ISM band, Bluetooth band, GPS band, 802.11 band, other cellular bands and the like.

While users of wireless devices are demanding that wireless devices be more versatile and perform more functions, they are concurrently demanding that the wireless devices become lighter, smaller, and generally more compact. Decreasing the size of the wireless device while increasing the number of functions is increasingly difficult. Moreover, to accommodate the increase in electronic components, the manufacturers are increasingly restricting the space available for radio frequency antennas. Thus, it would be desirous to develop improved antennas for one or more of the various wireless functions associated with today's wireless devices.

SUMMARY OF THE INVENTION

To attain the advantages of and in accordance with the purpose of the present invention, a planar antenna for a foldable wireless device is provided. The foldable wireless device and antenna include a first housing and a second housing pivotally connected. A ground plane, which may be a printed circuit board, associated with the wireless device comprises a first ground plane in the first housing and a second ground plane in the second housing. The first and second ground plane function as first and second radiating plates respectively. A gap, generally aligned with the pivotal connection separates the first and second ground planes. A short is provided that traverses the gap and connects the first and second ground planes.

The foregoing and other features, utilities and advantages of the invention will be apparent from the following more particular description of a preferred embodiment of the invention as illustrated in the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

The above and other objects and advantages of the present invention will be apparent upon consideration of the following detailed description, taken in conjunction with the accompanying drawings, in which like reference characters refer to like parts throughout, and in which:

FIG. 1 is a side elevation view of a flip style wireless device;

FIG. 2 is a top elevation view of a radiator associated with the flip style wireless device;

DETAILED DESCRIPTION

The improved antenna for a flip style wireless device will be described with references to the figures. For convenience the antenna is shown and described in relation to a flip style cellular telephone. However, one of ordinary skill in the art on reading the disclosure will now recognize that alternative flip style wireless devices could benefit from the antenna described. Other wireless devices include, for example, laptop computers, portable televisions, PDAs, BLACKBERRYs®, handheld computers, pagers, and the like.

Referring first to FIG. 1, a side elevation view of a wireless flip device 100 is shown. In this case, device 100 is a cellular telephone, but may be any type of wireless device including those indicated above. Device 100 includes a first (or lower) housing 102 and a second (or upper) housing 104. Upper and lower are relative terms used to distinguish the two parts and should not be construed to limit the orientation of the device. First housing 102 is connected to second housing 104 by a pivotal connection 106. While any number of connections are possible, the pivotal connection shown includes a bore 108, which may be a detent, a through hole, or the like, and a pin 110, which may be an axle or one or more protrusions. Pin 110 acts as an axle to allow second housing 104 to move from a closed position 112 to an open position 114, both shown in phantom. Second housing 104 may have numerous other positions between closed position 112 and open position 114. Also and optionally, open position 114 may be such that a top surface 116 of first housing 102 and a top surface 118 of second housing 104 are substantially coplanar. Alternatively and optionally, top surface 116 and top surface 118 may form an angle 120.

Referring now to FIG. 2, a ground plane 200 is shown. For convenience, ground plane 200 is shown as a printed circuit board (PCB), having the device electronics, for wireless device 100. While PCBs are typical ground planes, one or ordinary skill in the art or reading the disclosure will now recognize that the ground plane can be any conventional ground plane having the arranged as described including, the PCB, a metal housing, or the like. For convenience, ground plane and PCB are used interchangeably in the description. PCB 200 includes a first PCB 202 and a second PCB 204. First PCB 202 is housed in first housing 102 and second PCB 202 is housed in second housing 104. A gap 206 resides between first PCB 202 and second PCB 204. Gap 206 generally coincides with pivotal connection 106 such that first PCB 202 and second PCB 204 move in a generally pivotal relation with respect to each other. First PCB 202 has at least a first edge 208 proximate gap 206 and second PCB 204 has at least a second edge 210 proximate gap 206. First PCB 202 and second PCB 204 are electrically connected by a short 212 extending between first edge 208 and second edge 210. The two PCBs, besides functioning as the ground plane and signal routing for the device, form radiators of the device.

In most instances, the antenna transmits and receives simultaneously. In an embodiment of the present device, the antenna receives only. Radio frequency power is supplied or received through a power feed 214 to first PCB 202 at power point 216 on first edge 208 and to second PCB 204 at power point 218 on second edge 208. A wire 217 connects power point 216 and power point 218. Power feed 214 could be any number of radio frequency power transmission structures, such as, for example, a microstrip line, a coaxial cable (as shown), a solder connection, a conductive strip on a circuit board or the like.

Wire 217 connects the two power points and functions as the center conductor of a transmission line formed by edges 208 and 210. The transmission line formed by edges wire 217, edge 208, and edge 210 also forms a portion of the radiator in addition to transforming the impedance between power points 216 and 218. Without wire 217, a short forms at lower operating frequencies between edges 208 and 210, which inhibits operation at lower frequency bands.

RF power may be supplied to power points 216 and 218 by any conventional power source 220 located on first PCB 202. Conventional power source 220 may include signal generators, amplifiers, and modulators. However, as the device can be receive only, the power source is optional.

Radiator 200 can be tuned to particular operating frequencies by varying a length L and width W of the first and second PCBs 202 and 204 as well as increasing or decreasing the size D of gap 206. Moreover, altering a length of wire 217 can be used to tune radiator 200. Moreover, each PCB could have one or more slots (such as slot 222 shown in phantom on PCB 204) to quasi-partition the PCB, but such slots are optional and likely not necessary. While first PCB 202 and second PCB 204 are shown having identical lengths L and widths W, the lengths and widths of each part may vary.

Digital television signals conventionally operate at relatively low frequencies such as 440 MHz to 470 MHz. Radiator 200 is especially useful in receiving digital television signals. For example, if wireless device 100 were a flip cellular phone, a PCB ground plane 200, which coincides with the radiator, becomes a linear inverted-F antenna with a very tall radiating element in nearly the same plane as the ground plane. The above design, while useful in many applications, is especially useful for reception of the low frequency digital television signals. The device can also be configured to operate at the higher digital TV frequencies in the L-band near 1300 MHz.

While useful for receiving digital television signals, the low frequency of the signals and the size of the radiator may require the use of a matching network 224. While any conventional matching network is possible, matching network 224 is shown and includes a varactor diode.

While the antenna has been particularly shown and described with reference to an embodiment thereof, it will be understood by those skilled in the art that various other changes in the form and details may be made without departing from the spirit and scope described herein.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US3568201Aug 12, 1969Mar 2, 1971Us NavyAir dropped antenna with deployment apparatus
US3573628Jul 15, 1968Apr 6, 1971Motorola IncAntenna for miniature radio receiver including portions of receiver housing and chassis
US4063246Jun 1, 1976Dec 13, 1977Transco Products, Inc.Coplanar stripline antenna
US4197544Sep 28, 1977Apr 8, 1980The United States Of America As Represented By The Secretary Of The NavyWindowed dual ground plane microstrip antennas
US4571595Dec 5, 1983Feb 18, 1986Motorola, Inc.Dual band transceiver antenna
US4746925Jul 25, 1986May 24, 1988Toyota Jidosha Kabushiki KaishaShielded dipole glass antenna with coaxial feed
US5081466May 4, 1990Jan 14, 1992Motorola, Inc.Tapered notch antenna
US5337061Feb 12, 1992Aug 9, 1994Shaye Communications LimitedHigh performance antenna for hand-held and portable equipment
US5386214Apr 5, 1993Jan 31, 1995Fujitsu LimitedElectronic circuit device
US5483678Mar 9, 1994Jan 9, 1996Fujitsu LimitedInternal microstrip antenna for radio telephones
US6239764Jun 9, 1999May 29, 2001Samsung Electronics Co., Ltd.Wideband microstrip dipole antenna array and method for forming such array
US6297774Mar 12, 1997Oct 2, 2001Hsin- Hsien ChungLow cost high performance portable phased array antenna system for satellite communication
US6373436Oct 29, 1999Apr 16, 2002Qualcomm IncorporatedDual strip antenna with periodic mesh pattern
US6466176Aug 28, 2000Oct 15, 2002In4Tel Ltd.Internal antennas for mobile communication devices
US7012571 *Oct 13, 2004Mar 14, 2006Kyocera Wireless Corp.Multiple ground plane section antenna systems and methods
US7109945 *Jan 20, 2004Sep 19, 2006Sony CorporationFlat antenna, antenna unit and broadcast reception terminal apparatus
US7184808 *Nov 17, 2003Feb 27, 2007Sony Ericsson Mobile Communication Japan, Inc.Portable wireless communication apparatus
US7199762 *Aug 24, 2005Apr 3, 2007Motorola Inc.Wireless device with distributed load
US20070021161 *Jul 19, 2005Jan 25, 2007Nokia CorporationHand-portable radio communications device comprising relatively movable first and second portions
WO1999054656A2Apr 9, 1999Oct 28, 1999Messer Griesheim GmbhMethod for storing low-boiling permanent gases or gas mixtures in pressurised containers
WO1999054956A2Apr 20, 1999Oct 28, 1999Allgon AbGround extension arrangement for coupling to ground means in an antenna system, and an antenna system and a mobile radio device having such ground arrangement
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US8134517 *Sep 25, 2009Mar 13, 2012Wistron Neweb Corp.Wide-band planar antenna
US8493274 *Nov 16, 2006Jul 23, 2013Nec CorporationSlot antenna and portable wireless terminal
US8681056 *Feb 4, 2011Mar 25, 2014Apple Inc.Handheld electronic device with cable grounding
US20090231215 *Nov 16, 2006Sep 17, 2009Toru TauraSlot antenna and portable wireless terminal
US20100103069 *Sep 25, 2009Apr 29, 2010Chih-Ming WangWide-band planar antenna
US20100307787 *Dec 22, 2008Dec 9, 2010Panasonic CorporationSlidable-type portable terminal
US20110227798 *Apr 30, 2010Sep 22, 2011Chi Mei Communication Systems, Inc.Wireless communication device
US20120313830 *Aug 16, 2011Dec 13, 2012Lee Cheng-JungMulti-band antenna
US20130214979 *Feb 17, 2012Aug 22, 2013Emily B. McMilinElectronic Device Antennas with Filter and Tuning Circuitry
Classifications
U.S. Classification343/702, 343/846
International ClassificationH01Q1/48, H01Q1/24
Cooperative ClassificationH01Q1/243, H01Q1/48
European ClassificationH01Q1/48, H01Q1/24A1A
Legal Events
DateCodeEventDescription
Apr 18, 2014ASAssignment
Effective date: 20130726
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:FIRST TECHNOLOGIES, LLC;REEL/FRAME:032714/0206
Owner name: SAMSUNG ELECTRONICS CO., LTD., KOREA, REPUBLIC OF
Aug 8, 2013ASAssignment
Owner name: FIRST TECHNOLOGIES, LLC, MISSOURI
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CENTURION WIRELESS TECHNOLOGIES, INC.;REEL/FRAME:030970/0544
Effective date: 20130712
Jan 16, 2012FPAYFee payment
Year of fee payment: 4
Apr 24, 2006ASAssignment
Owner name: CENTURION WIRELESS TECHNOLOGIES, INC., NEBRASKA
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:WINTER, JAMES BLAKE;REEL/FRAME:017516/0244
Effective date: 20060314