Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS7436105 B2
Publication typeGrant
Application numberUS 11/354,182
Publication dateOct 14, 2008
Filing dateFeb 15, 2006
Priority dateMar 3, 2005
Fee statusPaid
Also published asUS8191228, US8513862, US20060207915, US20080016665, US20120206871
Publication number11354182, 354182, US 7436105 B2, US 7436105B2, US-B2-7436105, US7436105 B2, US7436105B2
InventorsYuichi Takebayashi
Original AssigneeSeiko Epson Corporation
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Package structure for surface acoustic wave device, and surface acoustic wave device
US 7436105 B2
Abstract
A package structure realizing a size and/or thickness reduction and suitable for packaging a surface acoustic wave element is provided. The package structure for solving the above challenge includes a base having a thick floor 16 b on which to place a surface acoustic wave element 12 and a thin floor 16 a on which to place an electronic component 14, the surface acoustic wave element and the electronic component being mounted close to each other on the plane coordinate system. In addition, in the package structure described above, the difference in height between the thin floor 16 a and the thick floor 16 b is the same as, or larger than, the thickness of the electronic component mounted on the thin floor 16 a.
Images(5)
Previous page
Next page
Claims(6)
1. A package structure for a surface acoustic wave device that includes a surface acoustic wave element and an electronic component, the package structure comprising:
a base defining first and second areas, the surface acoustic wave element being disposed at the first area and the electronic component being disposed at the second area, the first and second areas being adjacent relative to a first plane, the base having a greater thickness at at least a portion of the first area than at the second area relative to a second plane that is perpendicular to the first plane.
2. The package structure for a surface acoustic wave device according to claim 1, a difference in thickness of the base between the at least a portion of the first area and the second area in the second plane being the same as, or larger than, a thickness of the electronic component in the second plane.
3. A surface acoustic wave device, comprising:
a surface acoustic wave element;
an electronic component; and
a package for packaging the surface acoustic wave element and the electronic component, the package including a base defining first and second areas, the surface acoustic wave element being disposed at the first area and the electronic component being disposed at the second area, the first and second areas being adjacent relative to a first plane, the base having a greater thickness at at least a portion of the first area than at the second area relative to a second plane that is perpendicular to the first plane.
4. The surface acoustic wave device according to claim 3, a difference in thickness of the base between the at least a portion of the first area and the second area in the second plane being the same as, or larger than, a thickness of the electronic component in the second plane.
5. The surface acoustic wave device according to claim 3, the electronic component including packaging terminals, the surface acoustic wave element and the electronic component being disposed such that the surface acoustic wave element does not overlap the packaging terminals of the electronic component.
6. The surface acoustic wave device according to claim 4, the electronic component including packaging terminals, the surface acoustic wave element and the electronic component being disposed such that the surface acoustic wave element does not overlap the packaging terminals of the electronic component.
Description
CROSS-REFERENCE TO RELATED APPLICATION

This application claims priority from Japanese Patent Application No. 2005-58616, filed in the Japanese Patent Office on Mar. 3, 2005, the entire disclosure of which is hereby incorporated by reference.

TECHNICAL FIELD

The present invention relates to a package structure for a surface acoustic wave device and a surface acoustic wave device, and more particularly to a package structure for a surface acoustic wave device and a surface acoustic wave device that are suitable for reduction of a packaged surface.

BACKGROUND

There are strong demands for reduction of the size and/or the thickness of piezoelectric devices used in information-communication equipments and other equipments. The developing side has responded to such demands through development of various sorts of piezoelectric devices that are intended for reduction of the size and/or the thickness.

Basically, a piezoelectric device is composed of a piezoelectric resonator element, an electronic component such as an integrated circuit (IC) that performs temperature compensation, resonance control and/or other operations for the piezoelectric resonator element, and a package in which the piezoelectric resonator element and the IC are packaged.

As shown in FIG. 3, a common structure of a piezoelectric device that is intended for a reduction of the size includes an IC 3 placed on the floor of a package 4 that is formed in tiers and a piezoelectric resonator element 2 placed on a tier over the IC 3. In such a structure, however, it is necessary to provide a resonating space for the piezoelectric resonator element 2, while also providing a clearance between wires 5 for wire-bonding to package the IC 3 and the piezoelectric resonator element 2. This causes a major problem in reducing the thickness of a piezoelectric device 1 having the structure described above.

On the other hand, among piezoelectric devices that are intended for reduction of the thickness is one disclosed in Patent Document 1. As shown in FIG. 4, in the piezoelectric device disclosed in the document, supporting portions (protrusions in Patent Document 1) 6 are formed inside the package 4 to serve as supporting portions for the piezoelectric resonator element 2, and the piezoelectric resonator element 2 is placed side by side with the IC 3. Such a structure of a piezoelectric device allows a height-lowering of the device by precluding the necessity to allow for a vertical clearance between the piezoelectric resonator element 2 and the IC 3.

The piezoelectric device disclosed in Patent Document 1 is inferior in size reduction, but superior in thickness reduction, to the one shown in FIG. 3. Furthermore, since the piezoelectric resonator element and the IC can be mounted simultaneously or serially in the package, the process of hardening the adhesive used for mounting the two components can be performed at a time as one common process, an advantage that allows an improvement in the productivity. In addition, packaged conditions of the two components can be checked by observing from the surface, even after they have been mounted.

[Patent Document 1] JP-A-H9-83248

Both the piezoelectric device shown in FIG. 3 and the one disclosed in Patent Document 1 may be very effective in reducing the size and/or the thickness of the device when an AT cut or other quartz crystal resonator element is employed as a piezoelectric resonator element.

However, generally speaking, the piezoelectric device in FIG. 3 and in Patent Document 1 are not suitable for use in cases in which a surface acoustic wave element (SAW element) is employed as a resonator element, a SAW element being thicker and heavier than an AT cut or other quartz crystal resonator element. Both of the piezoelectric devices shown in FIGS. 3 and 4 have small supporting areas for a resonator element. Therefore, when a weighty SAW element is mounted, the resonator element undergoes the risk of being deformed by its own weight. It may also be possible to draw upon the piezoelectric device shown in FIG. 4 as a guide and provide adequate supporting areas for the resonator element by placing the element and the IC on the same level. However, this tends to deform the package itself because the package floor of the piezoelectric device shown in FIG. 4 is thin. Thus, the SAW element supported by the package floor is likely to be affected by deformation of the package.

An object of the invention is to provide a package structure for a surface acoustic wave device and a surface acoustic wave device that realize a reduction in the size and/or the thickness and that is suitable for packaging a surface acoustic wave element.

DISCLOSURE OF THE INVENTION

A package structure for a surface acoustic wave device according to the invention, which is intended for achieving the above object, is the structure of a package that is packaged with a surface acoustic wave element and an electronic component, the package structure having a base that includes a thick floor on which the surface acoustic wave element is placed and a thin floor on which the electronic component is placed, and the surface acoustic wave element and the electronic component being mounted close to each other on the plane coordinate system. In other words, a package structure is provided for a surface acoustic wave device that includes a surface acoustic wave element and an electronic component. The package structure includes a base defining first and second areas, the surface acoustic wave element being disposed at the first area and the electronic component being disposed at the second area. The first and second areas are adjacent relative to a first plane. The base has a greater thickness at at least a portion of the first area than at the second area relative to a second plane that is perpendicular to the first plane.

Through such a structure, a sufficient area can be provided for mounting (bonding) the surface acoustic wave element. At the same time, the package is prevented from being easily deformed as well as conveying a deformation that occurs in it, because the floor on which the surface acoustic wave element is placed is thick. The structure also allows packaging (wire-bonding) to be performed after all the components have been die-attached, because the surface acoustic wave element and the electronic component do not vertically overlap each other. Moreover, since the wire-bonding process can be performed after all the components have been mounted, the adhesive has been hardened through heating and annealing has been performed, it is no more necessary to allow for a eutectic to occur between bonding wires and bonding pads, thus allowing annealing to be performed at an adequately high temperature. Furthermore, packaging of the components on two levels, on a thick floor and a thin floor, prevents a collet as a jig from touching adjacent components. Therefore, clearance between components in the mounting area can be reduced, thus realizing a size reduction of the device.

It is preferable that the difference in height between the thin floor and the thick floor is the same as, or larger than, the thickness of the electronic component mounted on the thin floor. Such a structure allows part of the surface acoustic wave element to overlap the electronic component. In other words, a difference in thickness of the base between the at least a portion of the first area and the second area in the second plane is the same as, or larger than, a thickness of the electronic component in the second plane.

A surface acoustic wave device according to the invention, which is intended for achieving the above object, includes a surface acoustic wave element and an electronic component that are packaged inside its package, the device having a base that includes a thick floor and a thin floor, the surface acoustic wave element and the electronic component being placed close to each other on the plane coordinate system, the surface acoustic wave element being mounted on the thick floor and the electronic component being mounted on the thin floor. In other words, a surface acoustic wave device is provided that includes a surface acoustic wave element; an electronic component; and a package for packaging the surface acoustic wave element and the electronic component. The package includes a base defining first and second areas. The surface acoustic wave element is disposed at the first area the electronic component is disposed at the second area. The first and second areas are adjacent relative to a first plane. The base has a greater thickness at at least a portion of the first area than at a second area relative to a second plane that is perpendicular to the first plane.

Such a structure allows the surface acoustic wave element to be mounted in a stable manner while preventing the package from being easily deformed or conveying a deformation that occurs in it, because the floor that is mounted with the surface acoustic wave element is thick. The structure also allows packaging (wire-bonding) to be performed after all the components have been die-attached, because the surface acoustic wave element and the electronic component do not vertically overlap each other. In addition, since the wire-bonding process can be performed after all the components have been mounted, the adhesive has been hardened through heating and annealing has been performed, it is no more necessary to allow for a eutectic occurring between bonding wires and bonding pads, and, thus, annealing can be performed at an adequately high temperature. Furthermore, as the components can be packaged on two levels, on a thick floor and a thin floor respectively, a collet used as a jig for mounting the components is prevented from touching adjacent components. Therefore, clearance between components in the mounting area can be reduced, thus realizing a size reduction of the device.

In a surface acoustic wave device described above, it is preferable that the difference in height made between the thin floor and the thick floor is the same as, or larger than, the thickness of the electronic component mounted on the thin floor. Such a structure allows part of the surface acoustic wave element to overlap the electronic component. In other words, a difference in thickness of the base between the at least a portion of the first area and the second area in the second plane is the same as, or larger than, a thickness of the electronic component in the second plane.

It is also preferable that the surface acoustic wave element and the electronic component are mounted in positions such that the surface acoustic wave element does not vertically overlap the electronic component. Through an adjacent placement of the surface acoustic wave element and the electronic component based on the above condition, a further reduction in size will be realized in addition to the advantageous effects described above.

BRIEF DESCRIPTION OF THE DRAWINGS

FIGS. 1A and 1B are diagrams showing the structure of a surface acoustic wave device according to the invention.

FIGS. 2A, 2B and 2C are diagrams showing the manufacturing stream for the surface acoustic wave device according to the invention.

FIGS. 3A and 3B are diagrams showing the structure of a related art piezoelectric device intended for a reduction of the size.

FIGS. 4A and 4B are diagrams showing the structure of a related art piezoelectric device intended for a reduction of the thickness.

PREFERRED EMBODIMENTS IMPLEMENTING THE INVENTION

A package structure for a surface acoustic wave device and a surface acoustic wave device according to the invention will now be described with reference to the drawings, wherein the embodiment described below only partly represents the embodiments according to the invention.

FIGS. 1A and 1B are diagrams showing a piezoelectric device according to the embodiment, wherein FIG. 1A is a plan view and FIG. 1B is a front-sectional view.

A surface acoustic wave device 10 according to the embodiment basically includes a surface acoustic wave element (SAW) 12, an electronic component 14 and a package 15 in which the SAW element 12 and the electronic component 14 are packaged.

As shown by the front-sectional view in FIG. 1B, the package 15 is composed of a base 16 on which packaged components are mounted and a lid 17 to seal the opening of the base 16.

The base 16 includes a thin floor 16 a and a thick floor 16 b that serve as surfaces on which to mount the packaged components. According to the invention, particularly, the thin floor 16 a serves as a surface on which to mount the electronic component 14 and the thick floor 16 b serves as a surface on which to mount the SAW element 12. Advantageous effects obtained with such a structure of the package 15 include the ones described below.

First, through a vertical difference made between the surfaces on which the electronic component 14 and the SAW element 12 are respectively mounted (placed), interference between the components can be avoided at the time when they are mounted. Therefore, a narrower clearance can be realized between the components than in the case where they are placed side by side on a plain floor. Thus, consideration is only necessary for a clearance between a jig (collet) for mounting the components and the frame of the base 16.

Second, through use of the thick floor 16 b to serve as a surface on which to mount the SAW element 12, rigidity increases in the package (base 16) 15, thereby making it difficult for the surface to be deformed. Moreover, since a sufficient area to match the size of the SAW element is provided for mounting the element, even the heavy SAW element is free from being deformed by its own weight.

Also, when the base 16 packaged with both the electronic component 14 and the SAW element 12 is observed from the top surface (See FIG. 1A), the packaging terminals (bonding pads) of both the electronic component 14 and the SAW element 12 can be checked. Therefore, it is allowed as a manufacturing process to simultaneously perform heating on the electronic component 14 and the SAW element 12 after they have been mounted (bonded), so as to harden adhesive 24 and perform annealing. Furthermore, packaging can be accomplished by simultaneously performing wire-bonding after finishing the processes of hardening the adhesives and annealing.

In addition, as described above, there is no risk that a eutectic occurs between the bonding wires 18 and the bonding pads 20 through a high temperature, because wire-bonding can be performed after the processes of hardening the adhesive 24 and annealing.

It is demonstrated through the applicant's experiments that a eutectic occurs in 30 minutes at the terminal area between the gold wires for wire-bonding and the aluminum bonding pads when the area is heated at a temperature within the range of 260 C. to 270 C. On the other hand, the surface acoustic wave device is heated at about 270 C. for 3 to 4 hours for hardening of the adhesive 24 and annealing. Thus, there is the risk that the eutectic occurring between the wires and the pads progresses and creates a serious defect for finished products. However, such a defect can be avoided for a SAW device 10 having the package 15 of the above structure.

Furthermore, a difference in height is made between the mounted surfaces of the SAW element 12 (thick floor 16 b) and the electronic component 14 (thin floor 16 a) so as to be the same as, or larger than, the thickness of the mounted electronic component. Therefore, part of the SAW element 12 can be placed so that it overlaps the electronic component 14. In this case, too, a similar effect as above can be achieved if the bonding pads 20 of the electronic component 14 can be identified by observing the base 16 from the top surface after it has been mounted with the components. In this way, the packaging area can be reduced for each component and a more compact surface acoustic wave device 10 can be realized.

The SAW element 12 described above is made of a piezoelectric material such as quartz crystal, Lithium Tantalate or Lithium Niobate, on which metal patterns are made to provide an interdigital transducer (IDT), a reflector, and so on.

The electronic component 14 refers to an integrated circuit (IC) for controlling the oscillation of the SAW element 12, but mounting also a condenser, and/or the like, (not illustrated) besides the IC does not constitute any deviation from the present embodiment.

A SAW device 10 according to the embodiment, which includes the above components, is manufactured by a process illustrated in FIG. 2.

First, a base 16 of a package 15 is formed by sintering, or another method of the sort. Commonly, the base 16 is made by depositing and then sintering multiple substrates, but it may also be formed by another method. It is preferable that internal patterns 22 are provided inside the base 16 at the stage of formation (See FIG. 2A).

Next, adhesive 24 is applied to a thin floor 16 a of the package, onto which an IC 14, being held by suction by means of a collet, is bonded. Then, the adhesive 24 is applied to a thick floor 16 b, onto which an SAW element 12, being held by suction by means of a collet, is bonded. When the SAW element 12 is bonded, the package size can be reduced if the SAW element and packaging terminals (bonding pads) 20 of the IC 14 are placed close to one another to the extent that they do not overlap. After the IC 14 and the SAW element 12 have been bonded to the base 16, they are heated together with the base 16 so that the adhesive 24 is hardened and annealing is performed on the SAW element 12 (See FIG. 2B).

After the heating process is over, the IC 14 and the SAW element 12 are packaged on the base 16 through wire-bonding (See FIG. 2C).

After the above processes have been finished, the opening of the base 16 is sealed with a lid 26 to complete the SAW device.

In FIG. 1 and FIG. 2, the thin floor represents only the surface on which to mount the IC as an electronic component (including the clearance area for the collet as a jig), but it may also represent all except for the thick floor on which to mount the SAW element represents the thin floor.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US4471259 *Aug 26, 1982Sep 11, 1984Motorola Inc.Crystal package for a high-G environment
US6734605 *Feb 6, 2002May 11, 2004Seiko Epson CorporationSurface acoustic wave device and manufacturing method thereof
US7157836 *Oct 18, 2005Jan 2, 2007Seiko Epson CorporationPiezoelectric device
US20020084858 *Dec 29, 2000Jul 4, 2002Marlin LuffTemperature compensated crystal oscillator assembled on crystal base
US20050151240 *Mar 11, 2005Jul 14, 2005Hitachi, Ltd.Radio frequency module
JP2000114874A Title not available
JP2000323927A Title not available
JP2001102870A * Title not available
JP2004343398A Title not available
JP2006013681A * Title not available
JPH0983248A Title not available
JPH07147298A Title not available
JPH09148375A Title not available
JPH10150273A * Title not available
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US8421543May 25, 2011Apr 16, 2013Industrial Technology Research InstituteCrystal oscillator and method for manufacturing the same
US8513862 *Apr 20, 2012Aug 20, 2013Seiko Epson CorporationSurface acoustic wave device with reduced size and thickness
US20120206871 *Apr 20, 2012Aug 16, 2012Seiko Epson CorporationPackage structure for surface acoustic wave device, and surface acoustic wave device
Classifications
U.S. Classification310/348, 310/313.00R
International ClassificationH01L41/053
Cooperative ClassificationH03H9/1071, H03H9/0547
European ClassificationH03H9/10S1, H03H9/05B2
Legal Events
DateCodeEventDescription
Mar 14, 2012FPAYFee payment
Year of fee payment: 4
May 11, 2006ASAssignment
Owner name: SEIKO EPSON CORPORATION, JAPAN
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:TAKEBAYASHI, YUICHI;REEL/FRAME:017617/0942
Effective date: 20060419