Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS7521307 B2
Publication typeGrant
Application numberUS 11/380,695
Publication dateApr 21, 2009
Filing dateApr 28, 2006
Priority dateApr 28, 2006
Fee statusLapsed
Also published asCN100527421C, CN101064310A, US20070252214, US20070252230, US20090194819
Publication number11380695, 380695, US 7521307 B2, US 7521307B2, US-B2-7521307, US7521307 B2, US7521307B2
InventorsHuilong Zhu, Daewon Yang
Original AssigneeInternational Business Machines Corporation
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
CMOS structures and methods using self-aligned dual stressed layers
US 7521307 B2
Abstract
A CMOS structure and methods for fabricating the CMOS structure provide that a first stressed layer located over a first transistor and a second stressed layer located over a second transistor abut but do not overlap. Such an abutment absent overlap provides for enhanced manufacturing flexibility when forming a contact to a silicide layer upon a source/drain region within one of the first transistor and the second transistor.
Images(10)
Previous page
Next page
Claims(6)
1. A method for fabricating a CMOS structure comprising:
forming a first transistor of a first polarity laterally separated from a second transistor of a second polarity different than the first polarity over a semiconductor substrate;
forming a first stressed layer having a first stress located over the first transistor and a second stressed layer having a second stress different from the first stress located over the second transistor, where the first stressed layer and the second stressed layer abut and overlap;
forming a blanket layer over the first stressed layer and the second stressed layer that abut and overlap;
further masking the blanket layer over the first stressed layer and the second stressed layer to leave uncovered at least the portion of the first stressed layer and the second stressed layer that abut and overlap; and
etching the blanket layer and at least one of the first stressed layer and the second stressed layer so that the first stressed layer and the second stressed layer abut and do not overlap.
2. The method of claim 1 further comprising forming a blocking layer over the first stressed layer and the second stressed layer prior to further masking has been deleted.
3. The method of claim 1 wherein the forming the first transistor and the second transistor uses a hybrid orientation substrate that provides a different crystallographic orientation channel for each of the first transistor and the second transistor.
4. The method of claim 1 wherein each of the first stressed layer and the second stressed layer comprises a nitride material.
5. The method of claim 1 wherein:
the first stress is a tensile stress and the first transistor is an nFET; and
the second stress is a compressive stress and the second transistor in a pFET.
6. The method of claim 1 wherein the etching provides that the first stressed layer and the second stressed layer abut but do not overlap over a source/drain region within one of the first transistor and the second transistor.
Description
BACKGROUND

1. Field of the Invention

The invention relates generally to mechanical stress within complementary metal oxide semiconductor (CMOS) structures. More particularly, the invention relates to structures and methods that provide mechanical stress within CMOS structures to enhance device performance and improve chip yield.

2. Description of the Related Art

CMOS structures comprise complementary mated pairs of field effect transistors of differing conductivity type. Due to the use of complementary mated pairs of differing conductivity type, CMOS structures also provide for reduced energy or power consumption.

A trend within CMOS fabrication is the use of stressed layers as a means to produce a mechanical stress or strain field within a channel region of a CMOS transistor. Certain types of mechanical stresses are desirable insofar as they introduce a stress into a semiconductor channel. Such a stress generally provides for enhanced charge carrier mobilities within a CMOS transistor. Complementary types of channel stress (i.e., tensile or compressive stress or strain in the direction of electrical current) enhance complementary types of charge carrier mobility (i.e., electron or hole) within complementary types of CMOS transistors (i.e., nFET or pFET).

Since mechanical stress is a significant factor that may considerably improve field effect transistor performance, CMOS structures and methods that provide for enhanced levels of mechanical stress within CMOS transistor channels are desirable.

Methods for improving charge carrier mobility within CMOS structures that include pFET and nFET devices are known in the semiconductor fabrication art. For example, En et al, in U.S. Pat. No. 6,573,172 teaches the use of a tensile stressed layer over a pFET device to provide a compressive stress of a pFET channel therein and a compressive stressed layer over an nFET device to cause a tensile stress of an nFET channel therein.

Since use of mechanical stress as a means to enhance charge carrier mobility is likely to continue within future generations of CMOS transistors, desirable are additional CMOS structures and methods for fabrication thereof that provide for charge carrier mobility enhancement incident to use of mechanical stress effects.

SUMMARY OF THE INVENTION

The invention provides CMOS structures and methods for fabrication thereof wherein complementary transistors are covered with appropriate complementary stressed layers for purposes of providing a mechanical stress effect and enhancing a charge carrier mobility. The complementary stressed layers abut, but do not overlap at a location interposed between a pair of complementary transistors within the CMOS structure. In particular, the complementary stressed layers abut, and neither overlap, nor underlap, at a location over a source/drain region where a contact via is intended to be formed. When a silicide layer is located upon the source/drain region, absence of underlap or overlap of the complementary stressed layers provides for an enhanced manufacturing process window or improved chip yield, while avoiding overetching into the silicide layer or underetching into the complementary stressed layers.

The invention also provides an etching method for fabricating the CMOS structure. Within the etching method, at least one of a first stressed layer and a second stressed layer different from the first stressed layer that overlap and abut interposed between a first transistor and a second transistor is etched so that the first stressed layer and the second stressed layer abut, but do not overlap.

A CMOS structure in accordance with the invention includes a first transistor of a first polarity located laterally separated from a second transistor of a second polarity different from the first polarity over a semiconductor substrate. The CMOS structure also includes a first stressed layer having a first stress located over the first transistor and a second stressed layer having a second stress different from the first stress located over the second transistor. Within the CMOS structure, the first stressed layer and the second stressed layer abut and do not overlap.

A particular method for fabricating a CMOS structure in accordance with the invention includes forming a first transistor of a first polarity laterally separated from a second transistor of a second polarity different from the first polarity over a semiconductor substrate. The particular method also includes forming a first stressed layer having a first stress located over the first transistor and a second stressed layer having a second stress different from the first stress located over the second transistor. Within this particular method, the first stressed layer and the second stressed layer abut and overlap. This particular method also includes etching at least one of the first stressed layer and the second stressed layer so that the first stressed layer and the second stressed layer abut and do not overlap.

Another method for fabricating a CMOS structure includes forming a first transistor of a first polarity laterally separated from a second transistor of a second polarity different than the first polarity over a semiconductor substrate. This other method also includes forming a first stressed layer having a first stress located over the first transistor and a second stressed layer having a second stress different from the first stress located over the second transistor. Within this other method, the first stressed layer and the second stressed layer abut and overlap. This other method also includes further masking at least one of the first transistor and the second transistor to leave exposed at least the portion of the first stressed layer and the second stressed layer that abut and overlap. This other method also includes etching at least one of the first stressed layer and the second stressed layer so that the first stressed layer and the second stressed layer abut and do not overlap.

Within the disclosed invention the phrase abut and do not overlap is intended to describe a disposition and location of a first stressed layer and a second stressed layer that contact completely at end portions thereof. In addition, no portion of either the first stressed layer or the second stressed layer lies above the other of the first stressed layer or the second stressed layer.

BRIEF DESCRIPTION OF THE DRAWINGS

The objects, features and advantages of the invention are understood within the context of the Description of the Preferred Embodiments, as set forth below. The Description of the Preferred Embodiments is understood within the context of the accompanying drawings, which form a material part of this disclosure, wherein:

FIG. 1 to FIG. 9 show a series of schematic cross-sectional diagrams illustrating the results of progressive stages in fabricating a CMOS structure in accordance with an embodiment of the invention.

FIG. 10 to FIG. 12 show a series of schematic cross-sectional diagrams illustrating the results of progressive stages in fabricating a CMOS structure in accordance with another embodiment of the invention.

FIG. 13 to FIG. 15 show a series of schematic cross-sectional diagrams illustrating the results of progressive stages in fabricating a CMOS structure in accordance with yet another embodiment of the invention.

FIG. 16 to FIG. 18 show a series of schematic cross-sectional diagrams illustrating the results of progressive stages in fabricating a CMOS structure in accordance with still yet another embodiment of the invention.

DESCRIPTION OF THE PREFERRED EMBODIMENT

The invention, which provides CMOS structures and methods for fabrication thereof that include complementary stressed layers that abut and do not overlap, is described in further detail within the context of the description below. The description below is understood within the context of the drawings described above. Since the drawings are intended for illustrative purposes, they are not necessarily drawn to scale.

FIG. 1 to FIG. 9 show a series of schematic cross-sectional diagrams illustrating the results of progressive stages in fabricating a CMOS structure in accordance with an embodiment of the invention.

FIG. 1 shows a semiconductor substrate 10 that comprises active regions separated by an isolation region 12. A first transistor T1 is located upon one active region and a second transistor T2 is located upon an adjacent active region. Transistors T1 and T2 are of different polarity (i.e., conductivity type) and thus the doping type in each of active regions is different. The transistors T1 and T2 comprise gate dielectrics 14 located upon the active regions of the semiconductor substrate 10. Gate electrodes 16 are aligned upon gate dielectrics 14, although such alignment is not a requirement of the invention. Two part spacer layers 18 (i.e. L or inverted L portions adjoining gate electrodes 16 and spacer shaped portions nested therein) adjoin gate electrodes 16 and are illustrated as mirrored spacer 18 components although they are single components that surround each individual gate 16. Source/drain regions 20 are located within the active regions of the semiconductor substrate and separated by channel regions located beneath the gate electrodes 16. Silicide layers 22 are located upon source/drain regions 20 and gate electrodes 16.

Each of the foregoing semiconductor substrate 10, layers and structures may comprise materials and have dimensions that are conventional in the semiconductor fabrication art. Each of the foregoing semiconductor substrate 10, layers and structures may be formed using methods that are conventional in the semiconductor fabrication art.

The semiconductor substrate 10 comprises a semiconductor material. Non-limiting examples of semiconductor materials from which may be comprised the semiconductor substrate 10 include silicon, germanium, silicon-germanium alloy, silicon carbide, silicon-germanium carbide alloy and compound semiconductor materials. Non-limiting examples of compound semiconductor materials include gallium arsenide, indium arsenide and indium phosphide semiconductor materials.

The embodiments and the invention contemplate that the semiconductor substrate 10 may comprise a bulk semiconductor substrate. Alternatively, the embodiment and the invention also contemplates that the semiconductor substrate 10 may comprise a semiconductor-on-insulator substrate. As a further alternative, the embodiments and the invention also contemplate that the semiconductor substrate may comprise a hybrid orientation substrate.

A semiconductor-on-insulator substrate comprises a base semiconductor substrate, a buried dielectric layer located thereupon and a surface semiconductor layer located further thereupon. A hybrid orientation substrate comprises a semiconductor substrate having multiple crystallographic orientations that may provide different crystallographic orientation channel regions for each transistor within a CMOS structure.

Semiconductor-on-insulator substrates and hybrid orientation substrates may be formed using any of several layer lamination methods and layer transfer methods. The foregoing substrates may also be formed using separation by implantation of oxygen (SIMOX) methods.

The isolation region 12 comprises a dielectric isolation material. The embodiments and the invention contemplate that isolation regions may comprise shallow trench isolation regions, deep trench isolation regions and, to a lesser extent, local oxidation of silicon isolation regions. The dielectric isolation material from which is comprised the isolation region 12 may comprise an oxide, a nitride and/or an oxynitride of silicon. Oxides, nitrides and oxynitrides of other elements are not excluded as dielectric isolation materials. Dielectric isolation materials may be formed using methods including, but not limited to: thermal or plasma oxidation or nitridation methods, chemical vapor deposition methods and physical vapor deposition methods. Typically, the isolation region 12 is formed at least in part from a silicon oxide dielectric isolation material that has a thickness from about 100 to about 50000 angstroms, where the thickness is highly dependent upon the use of a SOI or a bulk semiconductor substrate.

The gate dielectrics 14 may comprise generally conventional gate dielectric materials having a dielectric constant from about 4 to about 20, measured in vacuum. Such generally conventional gate dielectric materials may include, but are not limited to: oxides, nitrides and oxynitrides of silicon. They may be formed using methods analogous or identical to those disclosed above with respect to forming the isolation region 12. Alternatively, the gate dielectrics 14 may also comprise generally higher dielectric constant dielectric materials having a dielectric constant from about 20 to at least about 100, also measured in a vacuum. These generally higher dielectric constant dielectric materials may include, but are not limited to: hafnium oxides, hafnium silicates, titanium oxides, lanthanum oxides, barium-strontium titantates (BSTs) and lead-zirconate titantates (PZTs). Typically, the gate dielectrics 14 comprise a thermal silicon oxide gate dielectric material having a thickness from about 5 to about 70 angstroms.

The gate electrodes 18 comprise gate electrode conductor materials. Typical gate electrode conductor materials include certain metals, metal alloys, metal nitrides and metal silicides, as well as polysilicon materials. The gate electrode conductor materials may be formed using methods including, but not limited to: plating methods, chemical vapor deposition methods (including atomic layer chemical vapor deposition methods) and physical vapor deposition methods (including sputtering methods). Typically, the gate electrodes 18 comprise a metal, metal silicide or polysilicon gate electrode conductor material having a thickness from about 500 to about 1500 angstroms.

As noted above, spacer layers 18 are intended as two component structures comprising: (1) the illustrated L or invented L: shaped portions adjoining the gate electrodes 16; in conjunction with, (2) the more traditional spacer shaped portions nested within the L shaped portions or the inverted L shaped portions. Each of the foregoing two component structures may comprise materials analogous, equivalent or identical to the materials from which are comprised the isolation region 12. The L or inverted L shaped structures are typically deposited using a conformal layer deposition method. The spacer shaped portions are formed using a blanket layer deposition and anisotropic etchback method.

The source/drain regions 20 are formed using a two step ion implantation method. A first step within the two step ion implantation method uses the gates 16, absent the spacers 18, as a mask to form extension regions into the semiconductor substrate 10. A second step within the two step ion implantation method uses the gates 16 and the spacers 18 as a mask to form conductor region portions of the source/drain regions 20 into the semiconductor substrate. Thus, the source/drain regions 20 comprise extension region components and conductor region components. Dopant concentrations within the source/drain regions 20 range from about 11020 to about 31021 dopant atoms per cubic centimeter.

The silicide layers 22 may comprise any of several metal silicide forming metals. Non-limiting examples of silicide forming metals include titanium, tungsten, nickel, cobalt, vanadium and molybdenum silicide forming metals. The silicide layers 22 are typically formed using a self-aligned silicide (i.e., salicide) method that provides for: (1) a blanket metal silicide forming metal layer deposition; (2) a subsequent thermal annealing to provide for silicide formation in contact with silicon; and (3) a subsequent excess silicide forming metal layer stripping. Typically, each of the silicide layers 22 has a thickness from about 50 to about 200 angstroms.

FIG. 2 shows a first stressed layer 24 located upon the CMOS structure of FIG. 1. FIG. 2 also shows an etch stop layer 26 located upon the first stressed layer 24.

The first stressed layer 24 comprises a material that has a first stress intended to compliment and enhance performance of the first transistor T1. When the first transistor T1 is an nFET, the first stress is preferably a tensile stress that provides a tensile stress within the channel of the first transistor T1. Under those circumstances, an electron charge carrier mobility within the first transistor T1 is enhanced. Conversely, when the first transistor is a pFET, a compressive stress of an overlying layer is desirable for purposes of generating compressive channel stress that yields an enhanced hole mobility.

Within the instant embodiment, the first transistor T1 is preferably an nFET and the first stressed layer 24 preferably comprises a tensile stressed layer.

The first stressed layer 24 may comprise any of several stressed materials. Non-limiting examples includes nitrides and oxynitrides. Nitrides are particularly common stressed layer materials insofar as different magnitudes and types of stress may be introduced into a nitride layer material by using different deposition conditions for forming the nitride layer. Particular deposition conditions that affect nitride layer stress include a changing of the ratio of a low frequency plasma to a high frequency plasma at temperature range from 200 C. to 600 C.

Typically, the first stressed layer 24 comprises a nitride material that has a thickness from about 500 to about 1000 angstroms, although the invention is not limited to stressed layers comprising only nitride materials.

The etch stop layer 26 may comprise any of several etch stop materials. Etch stop materials will typically have a different composition from the first stressed layer 24. Typically, the etch stop layer 26 comprises an oxide etch stop material when the first stressed layer 24 comprises a nitride material. Within the instant embodiment, the etch stop layer 26 typically comprises a silicon oxide etch stop material that has a thickness from about 50 to about 300 angstroms. The etch stop layer 26 may be formed using methods analogous to the methods used for forming the isolation region 12.

FIG. 3 shows a block mask 28 located upon the etch stop layer 26 and covering the first transistor T1. The block mask 28 may comprise any of several mask materials. Non-limiting examples include hard mask materials and photoresist mask materials. Photoresist mask materials are considerably more common. Non-limiting examples of photoresist mask materials include positive photoresist materials, negative photoresist materials and hybrid photoresist materials. Typically, the block mask 28 comprises a photoresist material having a thickness from about 1000 to about 5000 angstroms.

FIG. 4 shows the results of etching the etch stop layer 26 and the first stressed layer 24 to form corresponding etch stop layer 26′ and first stressed layer 24′, while using the block mask 28 as an etch mask. The foregoing etching is typically undertaken while using a plasma etchant, although neither the embodiment nor the invention is so limited. Wet chemical etchants, while generally less common, may also be used. Typically, the plasma etchant uses a fluorine containing etchant gas composition for etching each of the etch stop layer 26 and the first stressed layer 24 when forming therefrom the etch stop layer 26′ and the first stressed layer 24′. As is illustrated in FIG. 4, the etching also forms the spacers 18′ from the spacers 18.

FIG. 5 first shows the results of stripping the block mask 28 from the CMOS structure of FIG. 4. The block mask 28 may be stripped using methods and materials that are otherwise conventional in the semiconductor fabrication art. Included are wet chemical stripping methods and materials, dry plasma stripping methods and materials and aggregate stripping methods and materials thereof. Dry plasma stripping methods and materials are particularly common, but do not limit the invention.

FIG. 5 also shows a second stressed layer 30 located upon the semiconductor structure of FIG. 4, subsequent to removing the block mask 28 therefrom.

The second stressed layer 30 has an appropriate stress engineered to promote enhanced performance (generally within the context of charge carrier mobility) of the second transistor T2. The second stressed layer 30 may comprise materials and have dimensions that are analogous, equivalent or identical to the materials and dimensions used for forming the first stressed layer 24 that is illustrated in FIG. 3. As is disclosed above, the first stressed layer 24 typically comprises a silicon nitride material whose stress (i.e., tensile or compressive) may be engineered incident to control of particular deposition conditions. The second stressed layer 30 thus also comprises a nitride material, but for which deposition conditions are selected to have a type of stress (i.e., tensile or compressive) typically opposite the first stressed layer 24.

Within the context of the instant embodiment, the first stressed layer 24 preferably comprises a tensile stress from about 500 MPa to about 4 GPa (when the first transistor T1 is an nFET) and the second stressed layer 30 preferably a compressive stress from about −500 MPa to about −5 GPa (when the second transistor T2 is a pFET).

FIG. 6 shows a block mask 28′ located upon the second stressed layer 30 and covering the second transistor T2. The block mask 28′ otherwise comprises materials and has dimensions analogous or equivalent to the block mask 28 that is illustrated in FIG. 3.

FIG. 7 shows the results of patterning the second stressed layer 30 to form a second stressed layer 30′, and subsequently stripping the block mask 28′ from the CMOS structure of FIG. 6.

The second stressed layer 30 may be etched to form the second stressed layer 30′ while using methods and materials analogous equivalent or identical to the methods and materials used for etching the first stressed layer 24 to from the first stressed layer 24′. The second block mask 28′ may be stripped using methods and materials analogous equivalent or identical to the methods and materials used for stripping the first block mask 28.

As is illustrated within the schematic diagram of FIG. 7, the first stressed layer 24′ and the second stressed layer 30′ abut and overlap.

FIG. 8 shows the results of etching the etch stop layer 26′, the first stressed layer 24′ and the second stressed layer 30′ so that a resulting first stressed layer 24″ and a resulting second stressed layer 30″ abut and do not overlap, rather than abut and overlap. Also resulting from this etching is etch stop layers 26″.

The foregoing etching may be undertaken using methods that are conventional in the semiconductor fabrication art. Non-limiting examples are plasma etch methods and sputter etch methods. Desirable are sputter etch methods that use argon or nitrogen sputter etchants. Such sputter etchants desirably have a tendency to etch more from top surfaces than lower surfaces of the first stressed layer 24′ and the second stressed layer 30′ when forming the first stressed layer 24″ and the second stressed layer 30″.

Within the context of the instant embodiment and the invention, the abutment of the first stressed layer 24″ with the second stressed layer 30″ absent overlap thereof provides for enhanced manufacturability. The enhanced manufacturability is desirable under circumstances where overlapped portions of the first stressed layer 24′ and the second stressed layer 30′ are located over a contact region portion of a source/drain region, particularly when the source/drain region has a silicide layer thereupon.

FIG. 9 shows the results of etching remaining portions of the etch stop layer 26″ from the CMOS structure of FIG. 8. FIG. 9 also shows a capping layer 32 located upon the CMOS structure of FIG. 8 after etching remaining portions of the etch stop layer 26″. The remaining portions of the etch stop layer 26″ may be etched using a wet chemical etchant or a dry plasma etchant.

The capping layer 30 may comprise any of several capping materials. Included are oxides, nitrides and oxynitrides of silicon, as well as oxides, nitrides and oxynitrides of other elements. The capping layer 32 preferably comprises a silicon nitride material having a thickness from about 50 to about 100 angstroms.

FIG. 9 shows a CMOS structure in accordance with a first embodiment of the invention. The CMOS structure comprises complementary first stressed layer 24″ located upon first transistor T1 and second stressed layer 30″ located upon second transistor T2. The complementary first stressed layer 24″ and second stressed layer 30″ abut, but do not overlap at a location interposed between the first transistor T1 and the second transistor T2.

Since the complementary first stressed layer 24″ and second stressed layer 30″ abut, but do not overlap, the CMOS structure that is illustrated in FIG. 9 provides for enhanced manufacturability. The enhanced manufacturability results from a nominally level surface provided by the first stressed layer 24″ and the second stressed layer 30″ so that a contact via may be efficiently etched reaching a source/drain region 20 having a silicide layer 22 thereupon while not damaging the silicide layer 22.

FIG. 10 to FIG. 12 show a series of schematic cross-sectional diagrams illustrating the results of progressive stages in fabricating a CMOS structure in accordance with another embodiment of the invention. This other embodiment of the invention comprises a second embodiment of the invention.

FIG. 10 shows a CMOS structure that derives from the CMOS structure of FIG. 7 within the first embodiment. The CMOS structure of FIG. 10 however shows a blocking layer 34 located upon the CMOS structure of FIG. 7. A block mask 36 is located upon the blocking layer 34 and covering the first transistor T1. A block mask 36′ is located upon the blocking layer 34 and covering the second transistor T2.

The blocking layer 34 preferably comprises an oxide material under circumstances where the first stressed layer 24 and the second stressed layer 30 comprise nitride materials. The blocking layer 34 may be formed using methods and materials analogous, equivalent or identical to the methods and materials used for forming the etch stop layer 26. Typically, the blocking layer 34 has a thickness from about 300 to about 500 angstroms.

The block masks 36 and 36′ may comprise any of several block mask materials that are disclosed above for the block masks 28 and 28′.

FIG. 1 shows the results of further processing of the CMOS structure of FIG. 10. FIG. 11 shows the results of etching the blocking layer 34 to form blocking layers 34′ that straddle the first transistor T1 and the second transistor T2. In so doing, an abutted and overlapped portion of the first stressed layer 24′ and the second stressed layer 30′ is exposed. FIG. 11 also shows the results of stripping the block masks 36 and 36′.

FIG. 12 shows the results of further processing of the CMOS structure of FIG. 11. FIG. 12 shows the results of etching the first stressed layer 24′ and the second stressed layer 30′ to yield first stressed layer 24″ and second stressed layer 30″ that are abutted and do not overlap. The etching preferably uses a nitrogen or argon sputter etching as is disclosed above within the context of the first embodiment.

For reasons disclosed above within the context of the first embodiment, abutment absent overlap of the first stressed layer 24″ and the second stressed layer 30″ provides for enhanced manufacturability of the CMOS structure of FIG. 12.

Within the second embodiment, the use of the blocking layers 34′ also assist in preserving a full initial thicknesses of the first stressed layer 24″ and the second stressed layer 30″ at locations over the first transistor T1 and the second transistor T2. Thus, a full effect of stress from the first stressed layer 24″ and the second stressed layer 30″ is transmitted into respective semiconductor channels over which they are formed.

FIG. 13 to FIG. 15 show a series of schematic cross-sectional diagrams corresponding with FIG. 10 to FIG. 12, but where the block mask 36 is located over the first transistor T1 only, and not the second transistor T2. FIG. 13 to FIG. 15 comprise a third embodiment of the invention.

FIG. 16 to FIG. 18 show a series of schematic cross-sectional diagrams corresponding with FIG. 10 to FIG. 12 or FIG. 13 to FIG. 15, but where the block mask 36′ is located over the second transistor T2 only and not the first transistor T1. FIG. 16 to FIG. 18 comprise a fourth embodiment of the invention.

The processing for either FIG. 13 to FIG. 15 or FIG. 16 to FIG. 18 follows analogously from the processing of FIG. 10 to FIG. 12. However, due to the presence of only a single block mask 36 or 36′, only one of the first stressed layer 24″ (i.e., FIG. 15) and the second stressed layer 30″ (i.e., FIG. 18) has an initial thickness after sputter etching.

In each of the second embodiment of the invention that is illustrated in FIG. 10 to FIG. 12, the third embodiment of the invention that is illustrated in FIG. 13 to FIG. 15 and the fourth embodiment of the invention that is illustrated in FIG. 16 to FIG. 18, the first stressed layer 24′ that abuts and overlaps the second stressed layer 30′ are etched to form the first stressed layer 24″ and the second stressed layer 30″ that abut, but do not overlap.

In accordance with the first embodiment of the invention, the second embodiment, the third embodiment and the fourth embodiment provide for enhanced manufacturability of a CMOS structure due to the foregoing abutment absent overlap.

The preferred embodiments of the invention are illustrative of the invention rather than limiting of the invention. Revisions and modifications may be made to methods, materials, structures and dimensions of a CMOS structure or method for fabrication thereof in accordance with the preferred embodiments of the invention while still providing a CMOS structure in accordance with the invention, further in accordance with the accompanying claims.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US3602841Jun 18, 1970Aug 31, 1971IbmHigh frequency bulk semiconductor amplifiers and oscillators
US4665415Apr 24, 1985May 12, 1987International Business Machines CorporationSemiconductor device with hole conduction via strained lattice
US4853076Jul 9, 1987Aug 1, 1989Massachusetts Institute Of TechnologySemiconductor thin films
US4855245Oct 4, 1988Aug 8, 1989Siemens AktiengesellschaftMethod of manufacturing integrated circuit containing bipolar and complementary MOS transistors on a common substrate
US4952524May 5, 1989Aug 28, 1990At&T Bell LaboratoriesSemiconductor device manufacture including trench formation
US4958213Jun 12, 1989Sep 18, 1990Texas Instruments IncorporatedMethod for forming a transistor base region under thick oxide
US5006913Nov 2, 1989Apr 9, 1991Mitsubishi Denki Kabushiki KaishaStacked type semiconductor device
US5060030Jul 18, 1990Oct 22, 1991Raytheon CompanyPseudomorphic HEMT having strained compensation layer
US5081513Feb 28, 1991Jan 14, 1992Xerox CorporationElectronic device with recovery layer proximate to active layer
US5108843Nov 27, 1989Apr 28, 1992Ricoh Company, Ltd.Thin film semiconductor and process for producing the same
US5134085Nov 21, 1991Jul 28, 1992Micron Technology, Inc.Reduced-mask, split-polysilicon CMOS process, incorporating stacked-capacitor cells, for fabricating multi-megabit dynamic random access memories
US5310446Jul 13, 1992May 10, 1994Ricoh Company, Ltd.Method for producing semiconductor film
US5354695Apr 8, 1992Oct 11, 1994Leedy Glenn JMembrane dielectric isolation IC fabrication
US5371399Aug 9, 1993Dec 6, 1994International Business Machines CorporationCompound semiconductor having metallic inclusions and devices fabricated therefrom
US5391510Apr 7, 1994Feb 21, 1995International Business Machines CorporationFormation of self-aligned metal gate FETs using a benignant removable gate material during high temperature steps
US5459346Nov 17, 1994Oct 17, 1995Ricoh Co., Ltd.Semiconductor substrate with electrical contact in groove
US5471948May 11, 1994Dec 5, 1995International Business Machines CorporationMethod of making a compound semiconductor having metallic inclusions
US5557122May 12, 1995Sep 17, 1996Alliance Semiconductors CorporationSemiconductor electrode having improved grain structure and oxide growth properties
US5561302Sep 26, 1994Oct 1, 1996Motorola, Inc.Enhanced mobility MOSFET device and method
US5565697Jun 2, 1995Oct 15, 1996Ricoh Company, Ltd.Semiconductor structure having island forming grooves
US5571741Jun 7, 1995Nov 5, 1996Leedy; Glenn J.Membrane dielectric isolation IC fabrication
US5592007Jun 7, 1995Jan 7, 1997Leedy; Glenn J.Membrane dielectric isolation transistor fabrication
US5592018Jun 7, 1995Jan 7, 1997Leedy; Glenn J.Membrane dielectric isolation IC fabrication
US5670798Mar 29, 1995Sep 23, 1997North Carolina State UniversityIntegrated heterostructures of Group III-V nitride semiconductor materials including epitaxial ohmic contact non-nitride buffer layer and methods of fabricating same
US5679965Nov 9, 1995Oct 21, 1997North Carolina State UniversityIntegrated heterostructures of Group III-V nitride semiconductor materials including epitaxial ohmic contact, non-nitride buffer layer and methods of fabricating same
US5683934May 3, 1996Nov 4, 1997Motorola, Inc.Enhanced mobility MOSFET device and method
US5840593Mar 10, 1997Nov 24, 1998Elm Technology CorporationMembrane dielectric isolation IC fabrication
US5861651Feb 28, 1997Jan 19, 1999Lucent Technologies Inc.Field effect devices and capacitors with improved thin film dielectrics and method for making same
US5880040Apr 15, 1996Mar 9, 1999Macronix International Co., Ltd.Gate dielectric based on oxynitride grown in N.sub.2 O and annealed in NO
US5940716Mar 14, 1997Aug 17, 1999Samsung Electronics Co., Ltd.Methods of forming trench isolation regions using repatterned trench masks
US5940736Mar 11, 1997Aug 17, 1999Lucent Technologies Inc.Method for forming a high quality ultrathin gate oxide layer
US5946559Jun 7, 1995Aug 31, 1999Elm Technology CorporationMembrane dielectric isolation IC fabrication
US5960297Jul 2, 1997Sep 28, 1999Kabushiki Kaisha ToshibaShallow trench isolation structure and method of forming the same
US5989978Jul 16, 1998Nov 23, 1999Chartered Semiconductor Manufacturing, Ltd.Shallow trench isolation of MOSFETS with reduced corner parasitic currents
US6008126Feb 23, 1998Dec 28, 1999Elm Technology CorporationMembrane dielectric isolation IC fabrication
US6025280Apr 28, 1997Feb 15, 2000Lucent Technologies Inc.Use of SiD.sub.4 for deposition of ultra thin and controllable oxides
US6046464Aug 13, 1997Apr 4, 2000North Carolina State UniversityIntegrated heterostructures of group III-V nitride semiconductor materials including epitaxial ohmic contact comprising multiple quantum well
US6066545Dec 7, 1998May 23, 2000Texas Instruments IncorporatedBirdsbeak encroachment using combination of wet and dry etch for isolation nitride
US6090684Jul 29, 1999Jul 18, 2000Hitachi, Ltd.Method for manufacturing semiconductor device
US6107143Sep 10, 1998Aug 22, 2000Samsung Electronics Co., Ltd.Method for forming a trench isolation structure in an integrated circuit
US6117722Feb 18, 1999Sep 12, 2000Taiwan Semiconductor Manufacturing CompanySRAM layout for relaxing mechanical stress in shallow trench isolation technology and method of manufacture thereof
US6133071Oct 15, 1998Oct 17, 2000Nec CorporationSemiconductor device with plate heat sink free from cracks due to thermal stress and process for assembling it with package
US6165383Oct 15, 1998Dec 26, 2000Organic Display TechnologyUseful precursors for organic electroluminescent materials and devices made from such materials
US6221735Feb 15, 2000Apr 24, 2001Philips Semiconductors, Inc.Method for eliminating stress induced dislocations in CMOS devices
US6228694Jun 28, 1999May 8, 2001Intel CorporationMethod of increasing the mobility of MOS transistors by use of localized stress regions
US6246095Sep 3, 1998Jun 12, 2001Agere Systems Guardian Corp.System and method for forming a uniform thin gate oxide layer
US6255169Feb 22, 1999Jul 3, 2001Advanced Micro Devices, Inc.Process for fabricating a high-endurance non-volatile memory device
US6261964Dec 4, 1998Jul 17, 2001Micron Technology, Inc.Material removal method for forming a structure
US6265317Jan 9, 2001Jul 24, 2001Taiwan Semiconductor Manufacturing CompanyTop corner rounding for shallow trench isolation
US6274444Aug 10, 1999Aug 14, 2001United Microelectronics Corp.Method for forming mosfet
US6281532Jun 28, 1999Aug 28, 2001Intel CorporationTechnique to obtain increased channel mobilities in NMOS transistors by gate electrode engineering
US6284623Oct 25, 1999Sep 4, 2001Peng-Fei ZhangMethod of fabricating semiconductor devices using shallow trench isolation with reduced narrow channel effect
US6284626Apr 6, 1999Sep 4, 2001Vantis CorporationAngled nitrogen ion implantation for minimizing mechanical stress on side walls of an isolation trench
US6319794Oct 14, 1998Nov 20, 2001International Business Machines CorporationStructure and method for producing low leakage isolation devices
US6361885Nov 19, 1998Mar 26, 2002Organic Display TechnologyOrganic electroluminescent materials and device made from such materials
US6362082Jun 28, 1999Mar 26, 2002Intel CorporationMethodology for control of short channel effects in MOS transistors
US6368931Mar 27, 2000Apr 9, 2002Intel CorporationThin tensile layers in shallow trench isolation and method of making same
US6403486Apr 30, 2001Jun 11, 2002Taiwan Semiconductor Manufacturing CompanyMethod for forming a shallow trench isolation
US6403975Apr 8, 1997Jun 11, 2002Max-Planck Gesellschaft Zur Forderung Der WissenschafteneevSemiconductor components, in particular photodetectors, light emitting diodes, optical modulators and waveguides with multilayer structures grown on silicon substrates
US6406973Jun 29, 2000Jun 18, 2002Hyundai Electronics Industries Co., Ltd.Transistor in a semiconductor device and method of manufacturing the same
US6461936Jan 4, 2002Oct 8, 2002Infineon Technologies AgDouble pullback method of filling an isolation trench
US6476462Dec 7, 2000Nov 5, 2002Texas Instruments IncorporatedMOS-type semiconductor device and method for making same
US6483171Aug 13, 1999Nov 19, 2002Micron Technology, Inc.Vertical sub-micron CMOS transistors on (110), (111), (311), (511), and higher order surfaces of bulk, SOI and thin film structures and method of forming same
US6493497Sep 26, 2000Dec 10, 2002Motorola, Inc.Electro-optic structure and process for fabricating same
US6498358Jul 20, 2001Dec 24, 2002Motorola, Inc.Structure and method for fabricating an electro-optic system having an electrochromic diffraction grating
US6501121Nov 15, 2000Dec 31, 2002Motorola, Inc.Semiconductor structure
US6506652Dec 9, 1999Jan 14, 2003Intel CorporationMethod of recessing spacers to improved salicide resistance on polysilicon gates
US6509618Jan 4, 2000Jan 21, 2003Intel CorporationDevice having thin first spacers and partially recessed thick second spacers for improved salicide resistance on polysilicon gates
US6521964Aug 30, 1999Feb 18, 2003Intel CorporationDevice having spacers for improved salicide resistance on polysilicon gates
US6531369Feb 14, 2002Mar 11, 2003Applied Micro Circuits CorporationHeterojunction bipolar transistor (HBT) fabrication using a selectively deposited silicon germanium (SiGe)
US6531740Jul 17, 2001Mar 11, 2003Motorola, Inc.Integrated impedance matching and stability network
US6621392Apr 25, 2002Sep 16, 2003International Business Machines CorporationMicro electromechanical switch having self-aligned spacers
US6635506Nov 7, 2001Oct 21, 2003International Business Machines CorporationMethod of fabricating micro-electromechanical switches on CMOS compatible substrates
US6717216Dec 12, 2002Apr 6, 2004International Business Machines CorporationSOI based field effect transistor having a compressive film in undercut area under the channel and a method of making the device
US6825529Dec 12, 2002Nov 30, 2004International Business Machines CorporationStress inducing spacers
US6831292Sep 20, 2002Dec 14, 2004Amberwave Systems CorporationSemiconductor structures employing strained material layers with defined impurity gradients and methods for fabricating same
US6974981Dec 12, 2002Dec 13, 2005International Business Machines CorporationIsolation structures for imposing stress patterns
US6977194Oct 30, 2003Dec 20, 2005International Business Machines CorporationStructure and method to improve channel mobility by gate electrode stress modification
US7015082Nov 6, 2003Mar 21, 2006International Business Machines CorporationHigh mobility CMOS circuits
US7101744 *Mar 1, 2005Sep 5, 2006International Business Machines CorporationMethod for forming self-aligned, dual silicon nitride liner for CMOS devices
US7105394 *Dec 31, 2002Sep 12, 2006Renesas Technology Corp.Semiconductor device and a method of manufacturing the same
US7148559 *Jun 20, 2003Dec 12, 2006International Business Machines CorporationSubstrate engineering for optimum CMOS device performance
US7288451 *Mar 1, 2005Oct 30, 2007International Business Machines CorporationMethod and structure for forming self-aligned, dual stress liner for CMOS devices
US7297584 *Oct 7, 2005Nov 20, 2007Samsung Electronics Co., Ltd.Methods of fabricating semiconductor devices having a dual stress liner
US20010009784Feb 14, 2001Jul 26, 2001Yanjun MaStructure and method of making a sub-micron MOS transistor
US20020063292Nov 29, 2000May 30, 2002Mark ArmstrongCMOS fabrication process utilizing special transistor orientation
US20020074598Nov 9, 2001Jun 20, 2002Doyle Brian S.Methodology for control of short channel effects in MOS transistors
US20020086472Dec 29, 2000Jul 4, 2002Brian RoberdsTechnique to obtain high mobility channels in MOS transistors by forming a strain layer on an underside of a channel
US20020086497Dec 6, 2001Jul 4, 2002Kwok Siang PingBeaker shape trench with nitride pull-back for STI
US20020090791Jun 28, 1999Jul 11, 2002Brian S. DoyleMethod for reduced capacitance interconnect system using gaseous implants into the ild
US20030032261Aug 8, 2001Feb 13, 2003Ling-Yen YehMethod of preventing threshold voltage of MOS transistor from being decreased by shallow trench isolation formation
US20030040158Aug 21, 2002Feb 27, 2003Nec CorporationSemiconductor device and method of fabricating the same
US20030057184Sep 22, 2001Mar 27, 2003Shiuh-Sheng YuMethod for pull back SiN to increase rounding effect in a shallow trench isolation process
US20030067035Sep 28, 2001Apr 10, 2003Helmut TewsGate processing method with reduced gate oxide corner and edge thinning
US20040113174Dec 12, 2002Jun 17, 2004International Business Machines CorporationIsolation structures for imposing stress patterns
US20040113217Dec 12, 2002Jun 17, 2004International Business Machines CorporationStress inducing spacers
US20040238914Jan 5, 2004Dec 2, 2004International Business Machines CorporationSTI stress modification by nitrogen plasma treatment for improving performance in small width devices
US20040262784Jun 30, 2003Dec 30, 2004International Business Machines CorporationHigh performance cmos device structures and method of manufacture
US20050040460Sep 7, 2004Feb 24, 2005Dureseti ChidambarraoStress inducing spacers
US20050082634Oct 16, 2003Apr 21, 2005International Business Machines CorporationHigh performance strained cmos devices
US20050093030Oct 30, 2003May 5, 2005Doris Bruce B.Structure and method to enhance both nFET and pFET performance using different kinds of stressed layers
US20050098829Nov 6, 2003May 12, 2005Doris Bruce B.High mobility CMOS circuits
US20050106799 *Nov 14, 2003May 19, 2005International Business Machines CorporationStressed semiconductor device structures having granular semiconductor material
US20050145954Jan 5, 2004Jul 7, 2005International Business Machines CorporationStructures and methods for making strained mosfets
US20050148146Feb 18, 2005Jul 7, 2005Doris Bruce D.High performance strained CMOS devices
US20060079046 *Oct 12, 2004Apr 13, 2006International Business Machines CorporationMethod and structure for improving cmos device reliability using combinations of insulating materials
US20060228848 *Mar 31, 2005Oct 12, 2006International Business Machines CorporationDual-hybrid liner formation without exposing silicide layer to photoresist stripping chemicals
Non-Patent Citations
Reference
1A. Shimizu, et al., "Local Mechanical-Stress Control (LMC): A New Technique for CMOS-Performance Enhancement." International Electron Devices Meeting, IEEE, Mar. 2001.
2B. Doyle, et al., "Recovery of Hot-Carrier Damage in Reoxidized Nitrided Oxide MOSFETs." IEEE Electron Device Letters, vol. 13, No. 1, Jan. 1992, pp. 38-40.
3C.J. Huang, et al., "Temperature Dependence and Post-Stress Recovery of Hot Electron Degradation Effects in Bipolar Transistors." IEEE 1991 Bipolar Circuits and Technology Meeting 7.5, pp. 170-173.
4D.C. Houghton, et al., "Equilibrium Critical Thickness for SI 1-x GEx Strained Layers on (100) Si". Appl. Phys. Lett. 56 (5), Jan. 29, 1990, pp. 460-462.
5F. Ootsuka, et al., "A Highly Dense, High-Performance 130nm Node CMOS Technology for Large Scale System-on-a-Chip Application." International Electron Devices Meeting, 23.5.1, IEEE, Apr. 2000.
6G. Zhang, et al., "A New 'Mixed-Mode'Reliability Degradation Mechanism in Advanced Si and SiGe Bipolar Transistors." IEEE Transactions on Electron Devices, vol. 49, No. 12, Dec. 2002, pp. 2151-2156.
7Gregory Scott, et al., "NMOS Drive Current Reduction Caused by Transistor Layout and Trench Isolation Induced Stress." International Electron Devices Meeting, 34.4.1, IEEE, Sep. 1999.
8H. Li, et al., "Design of W-Band VCOs with High Output Power for Potential Application in 77 GHz Automotive Radar Systems." 2003 IEEE GaAs Digest, pp. 263-266.
9H. Wurzer, et al., "Annealing of Degraded npn-Transistors-Mechanisms and Modeling." IEEE Transactions on Electron Devices, vol. 41, No. 4, Apr. 1994, pp. 533-538.
10H.S. Momose, et al., "Analysis of the Temperature Dependence of Hot-Carrier-Induced Degradation in Bipolar Transistors for Bi-CMOS." IEEE Transactions on Electron Devices, vol. 41, No. 6, Jun. 1994, pp. 978-987.
11H.S. Momose, et al., "Temperature Dependence of Emitter-Base Reverse Stress Degradation and its Mechanism Analyzed by MOS Structures." Paper 6.2, pp. 140-143.
12J.C. Bean, et al., "GEx SI 1-x/Si Strained-Layer Superlattice Grown by Molecular Beam Epitaxy". J. Vac. Sci. Technol. A 2(2), Apr.-Jun. 1984, pp. 436-440.
13J.H. Van Der Merwe, "Regular Articles". Journal of Applied Physics, vol. 34, No. 1, Jan. 1963, pp. 117-122.
14J.W. Matthews, et al., "Defects in Epitaxial Multilayers". Journal of Crystal Growth 27 (1974), pp. 118-125.
15K. Ota, et al., "Novel Locally Strained Channel Technique for High Performance 55nm CMOS." International Electron Devices Meeting, 2.2.1, IEEE, Feb. 2002.
16Kern Rim, et al., "Characteristics and Device Design of Sub-100 nm Strained Si N- and PMOSFETs." 2002 Symposium on VLSI Technology Digest of Technical Papers, IEEE, pp. 98-99.
17Kern Rim, et al., "Transconductance Enhancement in Deep Submicron Strained-Si n-MOSFETs", International Electron Devices Meeting, 26,8,1, IEEE, Sep. 1998.
18M. Khater, et al., "SiGe HBT Technology with Pnax/Pt =350/300 GHz and Gate Delay Below 3.3 ps". 2004 IEEE, 4 pages.
19Q. Ouyang et al., "Two-Dimensional Bandgap Engineering in a Novel Si/SiGe pMOSFET with Enhanced Device Performance and Scalability". 2000 IEEE, pp. 151-154.
20R.H.M. Van De Leur, et al., "Critical Thickness for Pseudomorphic Growth of Si/Ge Alloys and Superlattices". J. Appl. Phys. 64 (6), Sep. 15, 1988, pp. 3043-3050.
21S.R. Sheng, et al., "Degradation and Recovery of SiGe HBTs Following Radiation and Hot-Carrier Stressing." pp. 14-15.
22Shinya Ito, et al., "Mechanical Stress Effect of Etch-Stop Nitride and its Impact on Deep Submicron Transistor Design." International Electron Devices Meeting, 10.7.1, IEEE, Apr. 2000.
23Subramanian S. Iyer, et al., "Heterojunction Bipolar Transistors Using Si-Ge Alloys". IEEE Transactions on Electron Devices, vol. 36, No. 10, Oct. 1989, pp. 2043-2064.
24Z. Yang, et al., "Avalanche Current Induced Hot Carrier Degradation in 200 GHz SiGe Heterojunction Bipolar Transistors." pp. 1-5.
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US7585720 *Jul 5, 2006Sep 8, 2009Toshiba America Electronic Components, Inc.Dual stress liner device and method
US7781844 *Oct 11, 2007Aug 24, 2010Panasonic CorporationSemiconductor device having a stressor film
US7947553 *Oct 31, 2007May 24, 2011Hynix Semiconductor Inc.Method for fabricating semiconductor device with recess gate
US8004035Aug 4, 2009Aug 23, 2011Kabushiki Kaisha ToshibaDual stress liner device and method
Classifications
U.S. Classification438/199, 257/E21.633, 438/717
International ClassificationH01L21/8238
Cooperative ClassificationH01L29/7843, H01L21/823807
European ClassificationH01L29/78R2, H01L21/8238C
Legal Events
DateCodeEventDescription
Jun 11, 2013FPExpired due to failure to pay maintenance fee
Effective date: 20130421
Apr 21, 2013LAPSLapse for failure to pay maintenance fees
Dec 3, 2012REMIMaintenance fee reminder mailed
May 5, 2006ASAssignment
Owner name: INTERNATIONAL BUSINESS MACHINES CORPORATION, NEW Y
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ZHU, HUILONG;YANG, DAEWON;REEL/FRAME:017578/0263;SIGNINGDATES FROM 20060420 TO 20060421