Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS7578614 B2
Publication typeGrant
Application numberUS 11/625,288
Publication dateAug 25, 2009
Filing dateJan 20, 2007
Priority dateDec 1, 2006
Fee statusPaid
Also published asCN101191779A, US20080130705
Publication number11625288, 625288, US 7578614 B2, US 7578614B2, US-B2-7578614, US7578614 B2, US7578614B2
InventorsXiao-Zhu Chen, Zhen-Xing Ye
Original AssigneeHong Fu Jin Precision Industry (Shenzhen) Co., Ltd., Hon Hai Precision Industry Co., Ltd.
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Thermal resistance measuring apparatus
US 7578614 B2
Abstract
A thermal resistance measuring apparatus for a heat sink includes a heat source, a temperature sensor, a micro control unit (MCU), a display, and a power apparatus. The heat source heats the heat sink. The temperature sensor senses temperature signals of the heat source. The MCU receives the temperature signals from the temperature sensor and processes them to calculate thermal resistance of the heat sink. The display is electrically connected to the MCU for showing the thermal resistance of the heat sink. The power apparatus supplies power to the heat source, the temperature sensor, and the MCU.
Images(4)
Previous page
Next page
Claims(14)
1. A thermal resistance measuring apparatus for a heat sink, comprising:
a heat source configured for heating the heat sink;
a temperature sensor configured for sensing temperature signals of the heat source;
micro control unit (MCU) configured for receiving the temperature signals from the temperature sensor and processing them to calculate thermal resistance of the heat sink;
a display electrically connected to the MCU for showing the thermal resistance of the heat sink; and
a power apparatus for supplying power to the heat source, the temperature sensor, and the MCU,
wherein the MCU calculates the thermal resistance of the heat sink by the following formula:

TR=(Tm−Te)/Pw
where TR is the thermal resistance of the heat sink, Tm is the maximum temperature of the heat source when the heat source works under the rated power thereof, Te is room temperature, and Pw is the rated power of the heat source.
2. The thermal resistance measuring apparatus as claimed in claim 1, further comprising:
a case, wherein the heat source, the temperature sensor, and the MCU are arranged in the case, and the display is installed on one side of the case.
3. The thermal resistance measuring apparatus as claimed in claim 2, wherein a power button and a reset button are arranged on the case, the power apparatus is connected to a power pin of the MCU via the power button, the reset button is connected to a reset pin of the MCU.
4. The thermal resistance measuring apparatus as claimed in claim 2, wherein a plurality of through holes is defined in a top side of the case.
5. The thermal resistance measuring apparatus as claimed in claim 2, wherein the power apparatus is a power connector installed on the case configured for electrically connecting an external power source.
6. The thermal resistance measuring apparatus as claimed in claim 2, wherein the power apparatus is an internal power source installed in the case.
7. The thermal resistance measuring apparatus as claimed in claim 1, wherein the heat source is an aluminum oxide ceramic heating plate.
8. The thermal resistance measuring apparatus as claimed in claim 1, wherein the temperature sensor is a programmable resolution 1-wire digital thermometer and contacts the heat source.
9. The thermal resistance measuring apparatus as claimed in claim 1, wherein the display is a liquid crystal display (LCD).
10. A thermal resistance measuring apparatus comprising:
a case;
a heat source received in the case, and configured for being supplied with power to reach a desired temperature which depends on the related power of the heat source, a heat sink attached to a surface of the heat source;
a temperature sensor contacting the heat source for sensing temperature signals thereof;
a micro control unit (MCU) connected to the temperature sensor for receiving the temperature signals and processing them to calculate thermal resistance of the heat sink;
a display electrically connected to the MCU for showing the thermal resistance of the heat sink; and
a power apparatus connected to the display, the temperature sensor, and the MCU for supplying power thereto,
where the MCU calculates the thermal resistance of the heat sink by the following formula:

TR=(Tm−Te)/Pw
where TR is the thermal resistance the heat sink, Tm is the maximum temperature of the heat source when the heat source works under the rated power thereof, Te is room temperature, and Pw is the rated power of the heat source.
11. The thermal resistance measuring apparatus as claimed in claim 10, further comprising a driving circuit electrically connected between the MCU and the display for driving the display.
12. The thermal resistance measuring apparatus as claimed in claim 10, wherein the heat source is an aluminum oxide ceramic heating plate.
13. The thermal resistance measuring apparatus as claimed in claim 10, wherein the temperature sensor is a programmable resolution 1-wire digital thermometer.
14. The thermal resistance measuring apparatus as claimed in claim 10, wherein the display is a liquid crystal display (LCD).
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to measuring apparatuses, and particularly to a measuring apparatus that can measure thermal resistances of heat sinks.

2. Description of Related Art

With the increase in heat emission from microelectronic devices and the reduction in overall form factors, thermal management becomes a more and more important element of electronic product design. Heat sinks are used to dissipate heat from a hot surface, usually an enclosure of a heat generating component and thermal resistance is an important factor for determining heat dissipating performance of a heat sink. Thermal resistance data is usually supplied by heat sink manufactures.

However, measuring conditions adapted by the manufacturers are often different from measuring conditions adapted by the designers. Therefore, thermal resistance data supplied by the manufacturers are not useful for designers to design an optimal heat dissipation configuration for a computer system. Oftentimes, designers must retest the thermal resistances of heat sinks before designing a computer system incorporating them.

What is desired, therefore, is to provide a measuring apparatus which can conveniently measure thermal resistance of a heat sink.

SUMMARY OF THE INVENTION

An exemplary thermal resistance measuring apparatus for a heat sink includes a heat source, a temperature sensor, a micro control unit (MCU), a display, and a power apparatus. The heat source heats the heat sink. The temperature sensor senses temperature of the heat source. The MCU receives temperature signals from the temperature sensor and processes them to calculate thermal resistance of the heat sink. The display is electrically connected to the MCU for showing the thermal resistance of the heat sink. The power apparatus supplies power to the heat source, the temperature sensor, and the MCU.

Other advantages and novel features will become more apparent from the following detailed description when taken in conjunction with the accompanying drawings, in which:

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is an isometric view of a thermal resistance measuring apparatus in accordance with a preferred embodiment of the present invention;

FIG. 2 is a block diagram of FIG. 1; and

FIG. 3 is an isometric view of the thermal resistance measuring apparatus of FIG. 1, with a heat sink attached thereinto.

DETAILED DESCRIPTION OF THE INVENTION

Referring to FIGS. 1 and 2, a thermal resistance measuring apparatus in accordance with a preferred embodiment of the present invention is shown. The measuring apparatus includes a cubic-shaped case 10. The case 10 is typically hollow, and a heat source 11, a temperature sensor 12, and a circuit board (not shown) are installed on a bottom of the case 10. The circuit board includes a micro control unit (MCU) 110 and a driving circuit 120. One side of the case 10 has a hatch 13. Another side of the case 10 has a power apparatus such as a power connector 14, a power button 15, a reset button 16, and a display 17 thereon. A top side of the case 10 defines a plurality of through holes 18 therein for dissipation of heat.

In this embodiment, the heat source 11 is an aluminum oxide ceramic heating plate. The temperature sensor 12 is a programmable resolution 1-wire digital thermometer. The display 17 is a liquid crystal display (LCD).

The heat source 11 is electrically connected to an input terminal of the MCU 110 via the temperature sensor 12. An output terminal of the MCU 110 is electrically connected to the display 17 via the driving circuit 120. The power connector 14 is connected to a power pin of the heat source 11, a power pin of the temperature sensor 12, and a power pin of the driving circuit 120 via the power button 15 for supplying power. The power connector 14 is also connected to a power pin of the MCU 110 via the power button 15. The reset button 16 is connected to a reset pin of the MCU 110. According to a thermal resistance formula, a corresponding program of the MCU is set therein. The thermal resistance formula is:
TR=(Tm−Te)/Pw
Where TR is the thermal resistance of a heat sink 20 (FIG. 3) mounted on the top surface of the heat source 11, Tm is the maximum temperature of a top surface of the heat source 11 when it works under the rated power thereof, Te is room temperature, and Pw is the rated power of the heat source 11 (Pw is usually supplied by the product specification of the heat source 11).

Referring also to FIG. 3, the heat sink 20 is put into the case 10 and attached to the top surface of the heat source 11. A power connector of the heat sink 20 and the power connecter 14 are connected to an external power source (not shown). After pressing the power button 15, the heat source 11 reaches the heated temperature Tm. The temperature sensor 12 senses temperature of the heat source 11, and transmits them to the MCU 110 (the room temperature Te is an initial temperature of the heat source 11). The MCU 110 processes data of the temperature signals and calculates the thermal resistance TR of the heat sink 20 according to the aforesaid thermal resistance formula, and then the MCU 110 controls the driving circuit 120 to output the data of the thermal resistance TR via the display 17. Thereby, designers can conveniently measure thermal resistances of heat sinks in actual working conditions, and use the data to design an optimal heat dissipation system.

If the MCU 110 can drive the display 17, the driving circuit 120 can be deleted. The MCU 110 can be directly electrically connected to the display 17. The power connector 14 can also be replaced by an internal power source arranged in the case 10 according to need.

It is to be understood, however, that even though numerous characteristics and advantages of the preferred embodiments have been set forth in the foregoing description, together with details of the structures and functions of the embodiments, the disclosure is illustrative only, and changes may be made in detail, especially in matters of shape, size, equivalent material and arrangement of parts within the principles of the invention to the full extent indicated by the broad general meaning of the terms in which the appended claims are expressed.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US4696578 *Jun 19, 1986Sep 29, 1987International Business Machines CorporationSingle chip thermal tester
US5721455Nov 20, 1996Feb 24, 1998Kabushiki Kaisha ToshibaSemiconductor device having a thermal resistance detector in the heat radiating path
US6157897 *Jan 30, 1998Dec 5, 2000Nec CorporationApparatus for monitoring ventilation of integrated circuits in electronic apparatus
US6438504 *Mar 28, 2001Aug 20, 2002Nec CorporationMethod of calculating thermal resistance in semiconductor package accommodating semiconductor chip within a case which can be applied to calculation for semiconductor package with radiation fins
US6491426 *Jun 25, 2001Dec 10, 2002Sbs Technologies Inc.Thermal bond verification
US7081811 *Aug 22, 2003Jul 25, 2006John JohnstonMultiple sensor heat alarm
US20060145335 *Mar 2, 2006Jul 6, 2006Denso CorporationMethod for manufacturing semiconductor device having a pair of heat sinks
US20070027981 *Jul 27, 2005Feb 1, 2007Giovanni CoglitoreComputer diagnostic system
US20080004191 *Jun 29, 2006Jan 3, 2008Polymatech Co., Ltd.Thermal conductive grease
US20080038535 *Feb 23, 2007Feb 14, 2008Hitachi Metals, Ltd.Composite material, having high thermal conductivity and low thermal expansion coefficient, and heat-dissipating substrate, and their production methods
US20080100826 *Oct 26, 2007May 1, 2008Richard SharpeDevices For Monitoring Particulate Accumulation On A Filter And Related Methods
US20080165824 *Oct 30, 2007Jul 10, 2008Hong Fu Jin Precision Industry (Shenzhen) Co., LtdMeasuring apparatus for thermal resistance of heat dissipating device
US20080304540 *May 30, 2008Dec 11, 2008Waters Investments LimitedSystem and method for thermal analysis using variable thermal resistance
JP2004319595A * Title not available
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US7969743 *Jul 12, 2009Jun 28, 2011Hong Fu Jin Precision Industry (Shenzhen) Co., Ltd.Heat sink assembly with temperature display
US8083400 *Oct 1, 2008Dec 27, 2011Siemens AktiengesellschaftArrangement with an assembly and a mounting rack
Classifications
U.S. Classification374/44, 361/704, 361/679.52, 374/141, 361/688, 374/137, 361/679.54, 374/29
International ClassificationG01N25/18, H05K7/20
Cooperative ClassificationG01N25/18
European ClassificationG01N25/18
Legal Events
DateCodeEventDescription
Sep 27, 2012FPAYFee payment
Year of fee payment: 4
May 12, 2009ASAssignment
Owner name: HON HAI PRECISION INDUSTRY CO., LTD., TAIWAN
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HON HAI PRECISION INDUSTRY CO., LTD.;REEL/FRAME:022674/0581
Effective date: 20090506
Owner name: HONG FU JIN PRECISION INDUSTRY (SHENZHEN) CO., LTD
Jan 20, 2007ASAssignment
Owner name: HON HAI PRECISION INDUSTRY CO., LTD., TAIWAN
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CHEN, XIAO-ZHU;YE, ZHEN-XING;REEL/FRAME:018782/0961
Effective date: 20070116