Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS7637412 B2
Publication typeGrant
Application numberUS 12/052,564
Publication dateDec 29, 2009
Filing dateMar 20, 2008
Priority dateAug 22, 2002
Fee statusLapsed
Also published asUS6845901, US7347348, US20040035917, US20050092810, US20080164298
Publication number052564, 12052564, US 7637412 B2, US 7637412B2, US-B2-7637412, US7637412 B2, US7637412B2
InventorsMichel Koopmans
Original AssigneeMicron Technology, Inc.
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Apparatus and method for depositing and reflowing solder paste on a microelectronic workpiece
US 7637412 B2
Abstract
Stenciling machines and methods for forming solder balls on microelectronic workpieces are disclosed herein. In one embodiment, a method for depositing and reflowing solder paste on a microelectronic workpiece having a plurality of dies includes positioning a stencil having a plurality of apertures at least proximate to the workpiece. The method further includes placing discrete masses of solder paste into the apertures and reflowing the discrete masses of solder paste while the stencil is positioned at least proximate to the workpiece and while the discrete masses are in the apertures. In another embodiment of the invention, a stenciling machine for depositing and reflowing solder paste on the microelectronic workpiece includes a heater for reflowing the solder paste, a stencil having a plurality of apertures, and a controller operatively coupled to the heater and the stencil. The controller has a computer-readable medium containing instructions to perform the above-mentioned method.
Images(8)
Previous page
Next page
Claims(14)
1. A stenciling machine for depositing and reflowing solder paste on a microelectronic workpiece having a plurality of microelectronic dies, the machine comprising:
a stencil having a plurality of apertures and a heating element coupled to the stencil; and
a controller operatively coupled to the heating element and the stencil, the controller having a computer-readable medium containing instructions to perform a method comprising:
positioning the stencil at least proximate to the workpiece;
placing discrete masses of solder paste into the plurality of apertures; and
activating the heating element and thereby reflowing the discrete masses of solder paste while the stencil is positioned at least proximate to the workpiece and while the discrete masses are in the apertures.
2. The stenciling machine of claim 1 wherein the heating element is in the stencil.
3. The stenciling machine of claim 1, further comprising a means for placing solder paste into the plurality of apertures in the stencil.
4. The stenciling machine of claim 1 wherein the stencil comprises a nonwettable material.
5. A stenciling machine for depositing and reflowing solder paste on a wafer, the stenciling machine comprising:
a stencil having a plurality of apertures and a plurality of heating elements positioned in the stencil at least proximate to the plurality of apertures; and
a controller operatively coupled to the heating elements and the stencil, the controller having a computer-readable medium containing instructions to perform a method comprising:
depositing solder paste into the plurality of apertures in the stencil and onto ball-pads of the wafer; and
activating the heating elements and thereby reflowing the solder paste within the plurality of apertures.
6. The stenciling machine of claim 5 wherein the stencil is formed from a nonwettable material.
7. The stenciling machine of claim 5 wherein activating the plurality of heating elements and thereby reflowing the solder paste includes heating the solder paste through sidewall portions of each of the plurality of apertures.
8. A stenciling machine for depositing and reflowing solder paste on a microelectronic workpiece having a redistribution layer with bond-sites, the stenciling machine comprising:
a stencil having a plurality of apertures and a heat source embedded in the stencil; and
a controller operatively coupled to the heater and the stencil, the controller having a computer-readable medium containing instructions to perform a method comprising:
positioning the stencil in a first position at least proximate to the redistribution layer with each aperture in the plurality of apertures generally aligned with a corresponding bond-site;
depositing discrete masses of solder paste onto the bond-sites through the plurality of apertures while the stencil is in the first position; and
reflowing the solder paste while the stencil is in the first position.
9. The stenciling machine of claim 8 wherein the heat source includes one or more heating elements in the stencil positioned at least proximate to the plurality of apertures.
10. The stenciling machine of claim 8 wherein reflowing the solder paste while the stencil is in the first position includes activating the heat source and thereby heating the solder paste at least partially by conduction through the stencil.
11. The stenciling machine of claim 8, further comprising a moveable wiper, and wherein the computer readable medium contains further instructions to activate the moveable wiper and thereby move the solder paste across the stencil and press discrete portions of the solder paste into the apertures and onto the bond-sites.
12. A stenciling machine for depositing and reflowing solder paste on a microelectronic workpiece having a plurality of microelectronic dies and a redistribution layer with a dielectric layer over the dies and bond-sites coupled to the dies, the stenciling machine comprising:
a housing;
a stencil within the housing movable relative to the microelectronic workpiece between a first position in which the stencil is at least proximate to the redistribution layer of the microelectronic workpiece and a second position in which the stencil is spaced apart from the redistribution layer; and
a heat source within the stencil to reflow discrete masses of solder paste on the bond-sites of the microelectronic workpiece when the stencil is in the first position.
13. The stenciling machine of claim 12 wherein the stencil includes a plurality of holes generally aligned with the bond-sites when the stencil is in the first position, and wherein the heat source includes one or more heating elements positioned in the stencil at least proximate to the plurality of holes.
14. The stenciling machine of claim 12 wherein the heat source includes a heater at least partially embedded in the stencil.
Description
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. application Ser. No. 11/012,584 filed Dec. 14, 2004, now U.S. Pat. No. 7,347,348, which is a divisional of U.S. patent application Ser. No. 10/226,509 filed Aug. 22, 2002, now U.S. Pat. No. 6,845,901, both of which are incorporated herein by reference in their entireties.

TECHNICAL FIELD

The present invention relates to an apparatus and method for depositing and reflowing solder paste on a microelectronic workpiece.

BACKGROUND

Microelectronic devices are used in cell phones, pagers, personal digital assistants, computers and many other products. A packaged microelectronic device can include a microelectronic die, an interposer substrate or lead frame attached to the die, and a molded casing around the die. The microelectronic die generally has an integrated circuit and a plurality of bond-pads coupled to the integrated circuit. The bond-pads are coupled to terminals on the interposer substrate or lead frame. The interposer substrate can also include ball-pads coupled to the terminals by traces in a dielectric material. An array of solder balls is configured so that each solder ball contacts a corresponding ball-pad to define a “ball-grid” array. Packaged microelectronic devices with ball-grid arrays generally have lower profiles and higher pin counts than conventional chip packages that use a lead frame.

Packaged microelectronic devices are typically made by (a) forming a plurality of dies on a semiconductor wafer, (b) cutting the wafer to singulate the dies, (c) attaching individual dies to an interposer substrate, (d) wire-bonding the bond-pads to the terminals of the interposer substrate, and (e) encapsulating the dies with a molding compound. It is time consuming and expensive to mount individual dies to interposer substrates. Also it is time consuming and expensive to wire-bond the bond-pads to the interposer substrate and then encapsulate the individual dies. Therefore, packaging processes have became a significant factor in producing semiconductor and other microelectronic devices.

Another process for packaging devices is wafer-level packaging. In wafer-level packaging, a plurality of dies is formed on a wafer and then a redistribution layer is formed on top of the dies. The redistribution layer has a dielectric layer, a plurality of ball-pad arrays on the dielectric layer, and traces coupled to individual ball-pads of the ball-pad arrays. Each ball-pad array is arranged over a corresponding die, and the ball-pads in each array are coupled to corresponding bond-pads on a die by the traces in the redistribution layer. After forming the redistribution layer on the wafer, a highly accurate stenciling machine deposits discrete blocks of solder paste onto the ball-pads of the redistribution layer to form solder balls.

The stenciling machine generally has a stencil and a wiper mechanism. The stencil has a plurality of holes configured in a pattern corresponding to the ball-pads on the redistribution layer. The wiper mechanism has a wiper blade attached to a movable wiper head that moves the wiper blade across the top surface of the stencil. In operation, a volume of solder paste is placed on top of the stencil along one side of the pattern of holes. A first microelectronic workpiece is then pressed against the bottom of the stencil and the wiper blade is moved across the stencil to drive the solder paste through the holes and onto the first microelectronic workpiece. The solder paste deposited on the microelectronic workpiece forms small solder paste bricks on each ball-pad. The first microelectronic workpiece is then removed from the bottom of the stencil, and the process is repeated for other microelectronic workpieces that have the same pattern of ball-pads.

After forming the solder paste bricks on the ball-pads, the microelectronic workpiece is transferred to a reflow oven. The entire microelectronic workpiece is heated in the oven to reflow the solder (i.e., to vaporize the flux and form solder balls from the solder paste bricks). The reflow process creates both a mechanical and electrical connection between each solder ball and the corresponding ball-pad after the reflowed solder has cooled and solidified.

Conventional solder printing equipment and processes, however, have several drawbacks. For example, after the microelectronic workpiece is removed from the stencil, residual solder paste may remain in the holes of the stencil. The residual solder paste can cause inconsistencies in the size and shape of the deposited solder paste bricks. For example, when the process is repeated with residual solder paste in the holes, an insufficient volume of solder paste may be placed onto the ball-pads of the subsequent microelectronic workpiece. This may create solder balls that are too small for attachment to another device. Additionally, the volume of the residual solder paste may vary across the stencil. This results in different sizes of solder paste bricks across the workpiece, which produces different sizes of solder balls.

Another drawback of conventional processes is that solder paste can be smeared while the microelectronic workpiece is moved from the stenciling machine to the reflow oven. Even if the solder paste is not smeared, when the pitch between the solder paste bricks is small, the solder paste on several ball-pads may bridge together after the microelectronic workpiece is removed from the stencil. Accordingly, a new stenciling machine and a new method for applying solder paste to microelectronic workpieces is needed to improve wafer level packaging processes.

SUMMARY

The present invention is directed to stenciling machines and methods for forming solder balls on microelectronic workpieces. One aspect of the invention is directed to a method for depositing and reflowing solder paste on a microelectronic workpiece having a plurality of microelectronic dies. In one embodiment, the method includes positioning a stencil having a plurality of apertures at least proximate to the workpiece and placing discrete masses of solder paste into the apertures. The method further includes reflowing the discrete masses of solder paste while the stencil is positioned at least proximate to the workpiece and while the discrete masses are in the apertures. In one aspect of this embodiment, the discrete masses of solder paste can be placed into the apertures and proximate to bond-pads of the dies or ball-pads in or on a redistribution layer of the microelectronic workpiece. In a further aspect of this embodiment, reflowing the solder paste can include heating the solder paste with infrared light, a laser, a gas, or another device to reflow the solder paste. The heating device can be movable relative to the stencil or stationary, such as a heating device having heating elements in the stencil or in a microelectronic workpiece holder.

In another embodiment of the invention, a method for forming solder balls on the microelectronic workpiece includes placing solder paste into the plurality of apertures in the stencil. The apertures in the stencil are aligned with corresponding ball-pads or bond-pads of the microelectronic workpiece. The method further includes forming solder balls within the apertures and on the ball-pads or bond-pads. In a further aspect of this embodiment, forming solder balls can include heating the solder paste in the apertures through convection. In another aspect of this embodiment, placing solder paste can include wiping solder paste across the stencil in a first direction to press discrete portions of the solder paste into the apertures. In a further aspect of this embodiment, the method can also include separating the microelectronic workpiece from the stencil after forming the solder balls.

Another aspect of the invention is directed to a stenciling machine for depositing and reflowing solder paste on the microelectronic workpiece. In one embodiment, the stenciling machine includes a heater for reflowing the solder paste, a stencil having a plurality of apertures, and a controller operatively coupled to the heater and the stencil. The controller has a computer-readable medium containing instructions to perform any one of the above-mentioned methods. In one aspect of this embodiment, the heater can include an infrared light source, a laser source, or a gas source. In another aspect of this embodiment, the heater can be movable relative to the stencil, such as movable laterally over the top surface of the stencil. Moreover, the heater can include elements that are stationary, such as heating elements that are positioned in the workpiece holder or in the stencil. In another aspect of this embodiment, the machine can also include a wiper to force solder paste into the apertures in the stencil.

In another embodiment, a stenciling machine includes a stencil having a plurality of holes and a moveable wiper configured to move a mass of solder paste across the stencil. The moveable wiper is also configured to press discrete portions of the mass of solder paste into the holes and onto the microelectronic workpiece. The machine further includes a heating means for reflowing the discrete portions of solder paste in the plurality holes and on the microelectronic workpiece.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1A is a schematic cross-sectional view of a stenciling machine depositing solder paste onto a microelectronic workpiece in accordance with one embodiment of the invention.

FIG. 1B is a schematic cross-sectional view of the stenciling machine of FIG. 1A having a heat source in accordance with one embodiment of the invention.

FIG. 1C is a schematic cross-sectional view of the microelectronic workpiece including the attached solder balls after removing the stencil.

FIG. 2 is a schematic cross-sectional view of a stenciling machine having a heat source in accordance with another embodiment of the invention.

FIG. 3 is a schematic cross-sectional view of a stenciling machine having a heat source in accordance with yet another embodiment of the invention.

FIG. 4 is a schematic cross-sectional view of a stenciling machine depositing solder paste onto a microelectronic workpiece in accordance with another embodiment of the invention.

FIG. 5 is a schematic view of a stenciling machine in accordance with another embodiment of the invention.

DETAILED DESCRIPTION

The following description is directed toward microelectronic workpieces and methods for forming solder balls on microelectronic workpieces. The term “microelectronic workpiece” is used throughout to include substrates upon which and/or in which microelectronic devices, micromechanical devices, data storage elements, and other features are fabricated. For example, microelectronic workpieces can be semiconductor wafers, glass substrates, insulative substrates, or many other types of substrates. Many specific details of several embodiments of the invention are described below with reference to microelectronic workpieces having microelectronic dies and in some applications redistribution layers to provide a thorough understanding of such embodiments. Those of ordinary skill in the art will thus understand that the invention may have other embodiments with additional elements or without several of the elements described in this section.

A. Environment

FIG. 1A is a schematic cross-sectional view of a stenciling machine 180 for depositing solder paste 140 onto a microelectronic workpiece 100 in accordance with one embodiment of the invention. The microelectronic workpiece 100 can include a substrate 108 having a plurality of microelectronic devices and a redistribution layer 120 formed on the substrate 108. In the illustrated embodiment, the microelectronic devices are microelectronic dies 110. Each microelectronic die 110 can have an integrated circuit 111 (shown schematically) and a plurality of bond-pads 112 coupled to the integrated circuit 111. The redistribution layer 120 provides an array of ball-pads for coupling the bond-pads 112 on the microelectronic die 110 to another type of device such as a printed circuit board. The redistribution layer 120 has a dielectric layer 121 with a first surface 126 facing away from the dies 110 and a second surface 127 adjacent to the dies 110. The redistribution layer 120 also has a plurality of ball-pads 122 and a plurality of traces 124 in or on the dielectric layer 121. The ball-pads 122 are arranged in ball-pad arrays relative to the dies 110 such that each die 110 has a corresponding array of ball-pads 122. The traces 124 couple the bond-pads 112 on the microelectronic dies 110 to corresponding ball-pads 122 in the ball-pad arrays.

The stenciling machine 180 in the illustrated embodiment includes a stencil 130, a wiper assembly 150, and a controller 102 operatively coupled to the stencil 130 and the wiper assembly 150. The stencil 130 has a plurality of apertures 132 arranged in a pattern to correspond to the ball-pads 122 on the microelectronic workpiece 100. More specifically, each aperture 132 in the stencil 130 is arranged so as to align with a particular ball-pad 122 in the redistribution layer 120. The stencil 130 also includes a first surface 134, a second surface 136 opposite the first surface 134, a first end 137, and a second end 138 opposite the first end 137. The stencil 130 has a thickness T from the first surface 134 to the second surface 136 that corresponds with a desired thickness of a solder paste brick on each ball-pad. The wiper assembly 150 can include an actuator 152 and a blade 154 coupled to the actuator 152. In the illustrated embodiment, the actuator 152 moves the blade 154 across the stencil 130 from the first end 137 to the second end 138 to drive a solder paste 140 into the apertures 132. In other embodiments, other stenciling machines can be used, such as machines that use print heads or pins to deposit the solder paste into apertures in a stencil.

B. Depositing Solder Paste

In operation, the controller 102 moves the microelectronic workpiece 100 to press the first surface 126 of the redistribution layer 120 against the second surface 136 of the stencil 130. Each aperture 132 in the stencil 130 is positioned over a corresponding ball-pad 122 on the microelectronic workpiece 100. A large volume of the solder paste 140 is on the first surface 134 at the first end 137 of the stencil 130. Next, the wiper assembly 150 moves across; the first surface 134 of the stencil 130 in a direction D1 from the first end 137 to the second end 138. The wiper blade 154 presses a portion of solder paste 140 into the apertures 132 to form solder paste bricks 142 on the ball-pads 122. The wiper 154 sweeps the remaining solder paste 140 to the second end 138 of the stencil 130.

C. Forming Solder Balls

FIG. 1B is a schematic cross-sectional view of the stenciling machine 180 of FIG. 1A having a heat source 290 in accordance with one embodiment of the invention. The heat source 290 is operatively coupled to the controller 102 to reflow the solder paste 140 in the apertures 132 of the stencil 130 before separating the stencil 130 from the workpiece 100. In the illustrated embodiment, the heat source 290 moves laterally in the direction D1 across the stencil 130 over the first surface 134 from the first end 137 to the second end 138. As the heat source 290 moves over each aperture 132, the solder paste 140 is reflowed in the aperture 132. More specifically, the heat source 290 heats the solder paste 140, vaporizes the flux, and melts the solder. In one aspect of this embodiment, the heat source 290 heats the solder to at least approximately 200° C. In other embodiments, the heat source 290 heats and melts the solder at a temperature less than 200° C. The molten solder naturally forms into spherically shaped balls on the ball-pads 122 of the microelectronic workpiece 100 because of the surface tension of the molten solder. After the heat source 290 moves past the apertures 132, the molten solder cools and solidifies into solder balls 240. The wetting characteristics between the molten solder and the ball-pads 122 causes the solder balls 240 to form on top of the ball-pads 122 creating a mechanical and electrical connection between the solder balls 240 and the ball-pads 122.

In one embodiment, the stencil 130 can be made of a nonwettable material, such as Kapton® manufactured by DuPont, so that the molten solder does not stick to the sidewalls 233 of the apertures 132. The non-vetting aspect of the stencil 130 further forces the molten solder into sphere-like balls or other solder elements on top of the ball-pads 122. The particular material for the stencil, therefore, should be selected so that the stencil resists wetting by a liquid state of the solder material. As such, materials other than Kapton® can be used for the stencil, such as any material that repels the liquid state of the solder material.

In other embodiments, the heat source 290 can follow the wiper assembly 150 (FIG. 1A) as it moves from the first end 137 of the stencil 130 to the second end 138, or the heat source 290 can be stationary relative to the stencil 130. In any of the foregoing embodiments, the heat source 290 can be a laser, an infrared light, a radiating element or other suitable heat sources. In other embodiments, the heat source 290 can heat the solder paste 140 by convection, such as by blowing a hot gas onto the solder paste 140.

FIG. 1C is a schematic cross-sectional view of the microelectronic workpiece 100 including the attached solder balls 240 after separating the workpiece 100 from the stencil 130. After the solder balls 240 are formed on the ball-pads 122 in the reflow process, the microelectronic workpiece 100 is moved in a direction D2 and released by the stencil 130. Alternatively, the stencil 130 can be raised relative to the workpiece 100. In either circumstance, the solder-balls 240 remain on the ball-pads 122 because the cross-sectional dimension of the solder-balls 240 is less than that of the apertures 132 in the stencil 130. The solder-balls 240 are smaller than the apertures 132 because the flux in the solder paste bricks 142 (FIG. 1A) vaporizes during the reflow stage.

One advantage of the illustrated embodiments is that reflowing the solder paste 140 before disengaging the microelectronic workpiece 100 from the stencil 130 eliminates the problems that occur when residual solder paste remains in the apertures 132 of the stencil 130. In the illustrated embodiments, no residual solder paste remains in the stencil 130 after reflow because the stencil 130 repels the molten solder, the reflow process reduces the volume of the solder by vaporizing the flux, and the molten solder naturally forms into the solder elements. Moreover, the solder-balls 240 are typically allowed to harden and adhere to the ball-pads 122 before the microelectronic workpiece 100 is separated from the stencil 130. As such, neither the solder paste bricks 142 nor the solder-balls 240 remain attached to the stencil 130 after separating the stencil 130 from the workpiece 100.

Another advantage of the illustrated embodiments; is that solder paste bricks 142 will not be smeared or bridged on the workpiece 100. In the illustrated embodiment, the solder paste 140 is formed into hardened solder balls 240 before the microelectronic workpiece 100 is removed from the stencil 130. As such, no smearing or bridging occurs on the workpiece 100. A further advantage of the illustrated embodiments is that stencil machines and reflow equipment are combined in a single machine to reduce the floor space for forming solder balls.

D. Alternate Embodiments

FIG. 2 is a schematic cross-sectional view of a stenciling machine 380 having a heat source in accordance with another embodiment of the invention. The stenciling machine 380 can include the controller 102, the stencil 130, and the wiper assembly 150 described above with reference to FIG. 1A. The stenciling machine 380 of the illustrated embodiment also includes a workpiece holder 382 having a plurality of heating elements 390. The workpiece holder 382 is operatively coupled to the controller 102 and configured to secure the microelectronic workpiece 100 during the deposition and reflow of the solder paste. The heating elements 390 are positioned in the workpiece holder 382 proximate to the microelectronic workpiece 100 to heat and reflow the solder paste in the apertures 132 of the stencil 130. The heating elements 390 heat the microelectronic dies 110, which in turn heat the ball-pads 122 of the redistribution layer 120. The heat is transferred from the ball-pads 122 to the solder paste to reflow the solder paste and form the solder balls 240. The heating elements 390 can be resistance heaters, heat exchangers, or other devices to heat the workpiece holder 382.

FIG. 3 is a schematic cross-sectional view of a stenciling machine 480 having a heat source in accordance with another embodiment of the invention. The stenciling machine 480 can include the controller 102 and the wiper assembly 150 described above with reference to FIG. 1A The stenciling machine 480 of the illustrated embodiment also includes a stencil 430 having a plurality of apertures 132 and a plurality of heating elements 490 positioned proximate to the apertures 132 to reflow the solder paste 140. Heat is transferred from the heating elements 490 to the solder paste through the sidewalls 233 of the apertures 132 by conduction and convection to reflow the solder paste and form solder balls 240 on the microelectronic workpiece 100.

FIG. 4 is a schematic cross-sectional view of a stenciling machine 580 for depositing solder paste 140 onto a microelectronic workpiece 500 in accordance with another embodiment of the invention. The microelectronic workpiece 500 can include a substrate 508 having a plurality of microelectronic dies 510 which can be similar to the microelectronic dies 110 described above with reference to FIGS. 1A-3. For example, each microelectronic die 510 can have an integrated circuit 511 (shown schematically) and a plurality of bond-pads 512 electrically coupled to the integrated circuit 511.

The stenciling machine 580 of the illustrated embodiment can include the controller 102, the wiper assembly 150, and the heat source 290 described above with reference to FIGS. 1A-1C. In other embodiments, other heat sources can be used, such as those described in FIGS. 2-3. The stenciling machine 580 also includes a stencil 530 having a plurality of apertures 532 arranged in a pattern to correspond to the bond-pads 512 of the microelectronic workpiece 500. In operation, the wiper assembly 150 of the stenciling machine 580 presses a portion of the solder paste 140 into the apertures 532 of the stencil 530 to form solder paste bricks 542 on the bond-pads 512. Next, the heat source 290 can move over each aperture 532 to reflow the solder paste bricks 542 and form solder balls on the bond-pads 512.

One advantage of the illustrated embodiments is that forming solder balls within the apertures of the stencil allows the microelectronic workpiece to have a fine pitch between the bond-pads or ball-pads. A fine pitch is permitted because the stencil separates the solder paste bricks on adjacent bond-pads or ball-pads and thus prevents smearing and bridging between the adjacent bricks before and during reflow. Accordingly, the fine pitch between the bond-pads or ball-pads of the microelectronic workpiece reduces the size of the microelectronic devices formed from the workpiece.

FIG. 5 is a schematic view of a stenciling machine 680 in accordance with another embodiment of the invention. The stenciling machine 680 includes a housing 682, a stencil 630 in the housing 680, and a heat source 690 in the housing 680. The stencil 630 and the heat source 690 can be similar or identical to any one the stencils 130 and 430 and the heat sources 290, 390 and 490 described above with reference to FIGS. 1A-4. For example, the stencil 630 can have a plurality of apertures arranged to align over the ball-pads of the microelectronic workpiece 100, and the heat source 690 can heat and melt the solder paste bricks within the apertures of the stencil 630 to produce spherically shaped balls on the ball-pads of the microelectronic workpiece 100. In other embodiments, the solder balls can be formed on the bond-pads of the microelectronic workpiece 500 described above with reference to FIG. 4. In the illustrated embodiment, the stencil machine 680 also includes a conveyor 650 having a first end 651 and a second end 652 opposite the first end 651 to move the microelectronic workpiece 100 within the housing 682 to and from the stencil 630 and the heat source 690. In other embodiments of the invention, the housing 682 may not include the conveyor 650.

From the foregoing, it will be appreciated that specific embodiments of the invention have been described herein for purposes of illustration, but that various modifications may be made without deviating from the spirit and scope of the invention. Accordingly, the invention is not limited except as by the appended claims.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US5128831Oct 31, 1991Jul 7, 1992Micron Technology, Inc.High-density electronic package comprising stacked sub-modules which are electrically interconnected by solder-filled vias
US5539153Aug 8, 1994Jul 23, 1996Hewlett-Packard CompanyMethod of bumping substrates by contained paste deposition
US5593927Dec 1, 1995Jan 14, 1997Micron Technology, Inc.Method for packaging semiconductor dice
US5677566May 8, 1995Oct 14, 1997Micron Technology, Inc.Semiconductor chip package
US5782399Dec 22, 1995Jul 21, 1998Tti Testron, Inc.Method and apparatus for attaching spherical and/or non-spherical contacts to a substrate
US5851845Dec 18, 1995Dec 22, 1998Micron Technology, Inc.Process for packaging a semiconductor die using dicing and testing
US5891797Oct 20, 1997Apr 6, 1999Micron Technology, Inc.Method of forming a support structure for air bridge wiring of an integrated circuit
US5921462Feb 21, 1997Jul 13, 1999Gordon; Thomas A.Ball grid array ball placement method and apparatus
US5933713Apr 6, 1998Aug 3, 1999Micron Technology, Inc.Simplification, accuracy
US5946553Sep 25, 1995Aug 31, 1999Micron Technology, Inc.Process for manufacturing a semiconductor package with bi-substrate die
US5986209Jul 9, 1997Nov 16, 1999Micron Technology, Inc.Package stack via bottom leaded plastic (BLP) packaging
US5988487May 27, 1997Nov 23, 1999Fujitsu LimitedCaptured-cell solder printing and reflow methods
US5990566May 20, 1998Nov 23, 1999Micron Technology, Inc.High density semiconductor package
US6004867Dec 12, 1997Dec 21, 1999Samsung Electronics Co., Ltd.Chip-size packages assembled using mass production techniques at the wafer-level
US6008070May 21, 1998Dec 28, 1999Micron Technology, Inc.Wafer level fabrication and assembly of chip scale packages
US6011314Feb 1, 1999Jan 4, 2000Hewlett-Packard CompanyRedistribution layer and under bump material structure for converting periphery conductive pads to an array of solder bumps
US6018249Dec 11, 1997Jan 25, 2000Micron Technolgoy, Inc.Test system with mechanical alignment for semiconductor chip scale packages and dice
US6020624Apr 1, 1998Feb 1, 2000Micron Technology, Inc.Semiconductor package with bi-substrate die
US6048755Nov 12, 1998Apr 11, 2000Micron Technology, Inc.Method for fabricating BGA package using substrate with patterned solder mask open in die attach area
US6072233May 4, 1998Jun 6, 2000Micron Technology, Inc.Stackable ball grid array package
US6072236Mar 7, 1996Jun 6, 2000Micron Technology, Inc.Micromachined chip scale package
US6081429Jan 20, 1999Jun 27, 2000Micron Technology, Inc.Test interposer for use with ball grid array packages assemblies and ball grid array packages including same and methods
US6089920May 4, 1998Jul 18, 2000Micron Technology, Inc.Modular die sockets with flexible interconnects for packaging bare semiconductor die
US6097087Oct 31, 1997Aug 1, 2000Micron Technology, Inc.Semiconductor package including flex circuit, interconnects and dense array external contacts
US6107122Aug 4, 1997Aug 22, 2000Micron Technology, Inc.Direct die contact (DDC) semiconductor package
US6112975Jul 20, 1998Sep 5, 2000Delaware Capital Formation, Inc.Method for attaching spherical and/or non-spherical contacts to a substrate
US6124634Sep 17, 1998Sep 26, 2000Micron Technology, Inc.Micromachined chip scale package
US6126059Aug 24, 1999Oct 3, 2000Fujitsu LimitedCaptured-cell solder printing and reflow methods and apparatuses
US6130474Oct 12, 1999Oct 10, 2000Micron Technology, Inc.Leads under chip IC package
US6148509Aug 26, 1998Nov 21, 2000Micron Technology, Inc.Method for supporting an integrated circuit die
US6150717Jun 16, 1998Nov 21, 2000Micron Technology, Inc.Direct die contact (DDC) semiconductor package
US6173887Jun 24, 1999Jan 16, 2001International Business Machines CorporationMethod of making electrically conductive contacts on substrates
US6184465Nov 12, 1998Feb 6, 2001Micron Technology, Inc.Semiconductor package
US6187615Dec 28, 1998Feb 13, 2001Samsung Electronics Co., Ltd.Chip scale packages and methods for manufacturing the chip scale packages at wafer level
US6188232Jun 29, 1998Feb 13, 2001Micron Technology, Inc.Temporary package, system, and method for testing semiconductor dice and chip scale packages
US6201304Oct 10, 1997Mar 13, 2001Micron Technology, Inc.Flip chip adaptor package for bare die
US6214716Sep 30, 1998Apr 10, 2001Micron Technology, Inc.Semiconductor substrate-based BGA interconnection and methods of farication same
US6225689Aug 14, 2000May 1, 2001Micron Technology, Inc.Low profile multi-IC chip package connector
US6228687Jun 28, 1999May 8, 2001Micron Technology, Inc.Wafer-level package and methods of fabricating
US6232666Dec 4, 1998May 15, 2001Mciron Technology, Inc.Interconnect for packaging semiconductor dice and fabricating BGA packages
US6235552Jan 12, 2000May 22, 2001Samsung Electronics Co., Ltd.Chip scale package and method for manufacturing the same using a redistribution substrate
US6239489Jul 30, 1999May 29, 2001Micron Technology, Inc.Reinforcement of lead bonding in microelectronics packages
US6247629Feb 5, 1999Jun 19, 2001Micron Technology, Inc.Wire bond monitoring system for layered packages
US6258623Jul 8, 1999Jul 10, 2001Micron Technology, Inc.Low profile multi-IC chip package connector
US6265766Jan 14, 2000Jul 24, 2001Micron Technology, Inc.Flip chip adaptor package for bare die
US6281042Aug 31, 1998Aug 28, 2001Micron Technology, Inc.Structure and method for a high performance electronic packaging assembly
US6285204Jun 3, 2000Sep 4, 2001Micron Technology, Inc.Method for testing semiconductor packages using oxide penetrating test contacts
US6310390Apr 8, 1999Oct 30, 2001Micron Technology, Inc.BGA package and method of fabrication
US6326697Dec 10, 1998Dec 4, 2001Micron Technology, Inc.Hermetically sealed chip scale packages formed by wafer level fabrication and assembly
US6326698Jun 8, 2000Dec 4, 2001Micron Technology, Inc.Semiconductor devices having protective layers thereon through which contact pads are exposed and stereolithographic methods of fabricating such semiconductor devices
US6329222Dec 20, 1999Dec 11, 2001Micron Technology, Inc.Interconnect for packaging semiconductor dice and fabricating BGA packages
US6331221Aug 3, 1999Dec 18, 2001Micron Technology, Inc.Process for providing electrical connection between a semiconductor die and a semiconductor die receiving member
US6344401Mar 9, 2000Feb 5, 2002Atmel CorporationMethod of forming a stacked-die integrated circuit chip package on a water level
US6407381Jul 5, 2000Jun 18, 2002Amkor Technology, Inc.Wafer scale image sensor package
US6503780Jul 5, 2000Jan 7, 2003Amkor Technology, Inc.Wafer scale image sensor package fabrication method
US6523736Dec 11, 1998Feb 25, 2003Micron Technology, Inc.Methods and apparatus for forming solder balls
US6577008Aug 30, 2001Jun 10, 2003Atmel CorporationMetal redistribution layer having solderable pads and wire bondable pads
US6642485Dec 3, 2001Nov 4, 2003Visteon Global Technologies, Inc.System and method for mounting electronic components onto flexible substrates
US6664176Aug 31, 2001Dec 16, 2003Infineon Technologies AgMethod of making pad-rerouting for integrated circuit chips
US6845901Aug 22, 2002Jan 25, 2005Micron Technology, Inc.Apparatus and method for depositing and reflowing solder paste on a microelectronic workpiece
US7347348Dec 14, 2004Mar 25, 2008Micron Technology, Inc.Apparatus and method for depositing and reflowing solder paste on a microelectronic workpiece
US20030088974Jul 24, 2002May 15, 2003Youichi NakamuraElectronic component placing apparatus and mounted board-producing apparatus
US20030167633Mar 7, 2002Sep 11, 2003Kulicke & Soffa Industries, Inc.Method and apparatus for reducing deformation of encapsulant in semiconductor device encapsulation by stencil printing
US20030176014Mar 12, 2002Sep 18, 2003Hofmann James J.Methods of forming patterns for semiconductor constructions; and molds configured to pattern masses associated with semiconductor constructions
US20030207574May 23, 2003Nov 6, 2003Fujitsu LimitedSemiconductor device manufacturing method having a step of applying a copper foil on a substrate as a part of a wiring connecting an electrode pad to a mounting terminal
US20030218261Mar 19, 2003Nov 27, 2003M. A. CapoteIntegrated circuit coated with thermosetting polymer, with hardened adhesive polymer underfill encapsulant including intermixed reaction product of thermosetting polymer and fluxing agent that chemically immobilizes flux and by-products
US20040110366Aug 18, 2003Jun 10, 2004Mackay JohnForming solder balls on substrates
Classifications
U.S. Classification228/11, 228/22, 228/248.1
International ClassificationB23K31/02, H01L21/60, H01L21/48, B23K37/06, B23K1/005, B23K3/06, H05K3/12, B23K37/00, B23K1/00, H05K3/34, B23K1/012
Cooperative ClassificationH05K2203/107, B23K3/0607, H05K3/3494, H05K3/1216, B23K3/0638, H01L2924/14, H01L21/4853, H01L24/11, H01L2924/01082, B23K1/012, B23K1/0016, H05K2203/043, B23K1/0056, H05K3/3484, H01L2224/13099, B23K37/06, B23K2201/36, B23K1/0053, H05K2203/0557, H01L2924/01033, H01L2924/01006, H01L2924/01005, H01L2924/014
European ClassificationH01L24/11, H05K3/34F6B, B23K37/06, B23K1/005L, B23K1/012, B23K1/00S8, B23K1/005R, B23K3/06B8, H01L21/48C4C, B23K3/06B
Legal Events
DateCodeEventDescription
Feb 18, 2014FPExpired due to failure to pay maintenance fee
Effective date: 20131229
Dec 29, 2013LAPSLapse for failure to pay maintenance fees
Aug 9, 2013REMIMaintenance fee reminder mailed