Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS7648699 B2
Publication typeGrant
Application numberUS 11/469,186
Publication dateJan 19, 2010
Filing dateAug 31, 2006
Priority dateJun 2, 2000
Fee statusPaid
Also published asUS7892535, US20070098697, US20100080781
Publication number11469186, 469186, US 7648699 B2, US 7648699B2, US-B2-7648699, US7648699 B2, US7648699B2
InventorsRaymond P. Goodrich, Junzhi Li
Original AssigneeCaridianbct Biotechnologies, Llc
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Preventing transfusion related complications in a recipient of a blood transfusion
US 7648699 B2
Abstract
This invention is directed toward a process for reducing transfusion related complications in a recipient of an allogeneic blood transfusion by adding to the blood to be transfused a photosensitizer comprising riboflavin, irradiating the blood and riboflavin with light, transfusing the irradiated blood into a recipient, and reducing a transfusion related complication by the recipient to cells in the donor blood. The invention is also directed towards a process for preventing rejection of a donor organ by a recipient comprising the steps of transfusing the recipient of the donor organ with treated platelets; and transplanting the donor organ into the recipient.
Images(5)
Previous page
Next page
Claims(9)
1. A process for reducing transfusion related complications in a human recipient due to human donor cells that may be present in an allogeneic blood transfusion comprising the steps of:
adding to the blood to be transfused a photosensitizer consisting essentially of riboflavin at a concentration of 50 μM;
irradiating the blood and riboflavin with light at a wavelength between 290-370 nm for around 8 minutes to reduce transfusion related complications in the recipient caused by the donor cells;
wherein the transfusion related complications are alloimmunization, Transfusion Associated Graft vs. Host Disease (TA-GvHD) or microchimerism;
transfusing the irradiated blood into a recipient; and
reducing transfusion related complications in the recipient.
2. The process of claim 1 wherein the blood to be transfused is whole blood.
3. The process of claim 1 wherein the blood to be transfused is platelets.
4. The process of claim 1 wherein the donor cells causing transfusion related complications comprise white blood cells.
5. The process of claim 1 wherein the donor cells causing transfusion related complications comprise platelets.
6. The process of claim 1 wherein the step of reducing transfusion related complications further comprises reducing alloimmunization by reducing activation of the donor cells in the recipient.
7. The process of claim 1 wherein the step of reducing transfusion related complications further comprises reducing alloimmunization by reducing proliferation of the donor cells in the recipient.
8. The process of claim 1 wherein the step of reducing transfusion related complications further comprises reducing alloimmunization by reducing production of cytokines by the donor cells in the recipient.
9. The process of claim 1 wherein the step of reducing transfusion related complications further comprises reducing microchimerism by reducing production of antibodies by the donor cells in the recipient.
Description
PRIORITY CLAIM

This invention claims the benefit of U.S. provisional application No. 60/714,682 filed Sep. 7, 2005. This instant application is a continuation-in-part of U.S. patent application Ser. No. 10/648,536, filed Aug. 25, 2003, which is a continuation of Ser. No. 10/377,524 filed Feb. 28, 2003, which is a continuation of Ser. No. 09/586,147, filed Jun. 2, 2000, now abandoned.

FIELD OF THE INVENTION

This invention is directed to methods of preventing transfusion related complications in a recipient of allogeneic donor blood.

BACKGROUND

Whole blood collected from volunteer donors for transfusion into recipients is typically separated into components: red blood cells, white blood cells, platelets, plasma and plasma proteins, using apheresis or other known methods. Each of these separated blood components may be stored individually for later use and are used to treat a multiplicity of specific conditions and disease states. For example, the red blood cell component is used to treat anemia, the concentrated platelet component is used to control bleeding, and the plasma protein component is used frequently as a source of Clotting Factor VIII for the treatment of hemophilia.

In cell separation procedures, there is unusually some small percentage of other types of cells which are carried over into a separated blood component. When contaminating cells are carried over into a separated component of cells in a high enough percentage to cause some undesired effect, the contaminating cells are considered to be undesirable. White blood cells, which may transmit infections such as HIV and CMV also cause other transfusion-related complications such as transfusion-associated Graft vs. Host Disease (TA-GVHD), alloimmunization and microchimerism.

TA-GVHD is a disease produced by the reaction of immunocompetent T lymphocytes of the donor that are histoincompatible with the cells of the recipient into which they have been transplanted. Recipients develop skin rashes, fever, diarrhea, weight loss, hepatosplenomegaly and aplasia of the bone marrow. The donor lymphocytes infiltrate the skin, gastrointestinal tract and liver. Three weeks following transfusion 84% of patients who develop TA-GVHD die.

Alloimmunization describes an immune response provoked in a recipient by an alloantigen from a donor of the same species. Alloantigens include blood group substances (A, B, O) on erythrocytes and histocompatibility antigens.

Chimerism, or microchimerism refers to the small numbers of donor cells found in the recipient's body outside the region of the organ transplant. It is believed that the presence of these cells may contribute to the long term development of autoimmune diseases in the transfusion recipient.

Human Leukocyte Antigen (HLA) markers are found on the cell membranes of many different cell types, including white blood cells. HLA is the major histocompatibility complex (MHC I) in humans, and contributes to the recognition of self v. non-self. Recognition by a transfusion recipient's immune system of differences in HLA antigens on the surface of the transfused cells may be the first step in the rejection of transplanted tissues. Therefore, the phenomena of alloimmunization of recipients against HLA markers on donor blood is a major problem in transfusion medicine today. This issue arises in recipients of blood products due to the generation of antibodies against white blood cell HLA antigens in donor blood by the recipient.

Platelets also contain low levels of these HLA antigens because they bud from a megakaryocyte cell (a form of white cell) located primarily in the bone marrow. When a recipient of a whole blood or blood component transfusion generates antibodies against the HLA antigens on the white blood cells of the donor blood cells, a consequence is that these antibodies also lead to recognition and clearance of platelets that carry this same marker. When this occurs, it becomes necessary to HLA match the donor and recipient in order to assure that the recipient receiving the transfusion is able to maintain an adequate number of platelets in circulation. This is often a complicated, expensive and difficult procedure but a necessary one, since rapid clearance of the platelets due to antibody-antigen interaction would otherwise put the recipient at severe risk of bleeding to death. In cases where recipients are very heavily transfused with blood or blood products from multiple donors and antibodies to several different HLA markers are generated, or where no suitable matched donor for platelets is available, death frequently results for those patients who become alloimmunized and sustain a bleed.

Since the problem arises from the presence of white cells in the donated blood products, the elimination of white cells from these products would be expected to reduce the likelihood and frequency of reactions. Gamma irradiation of blood products, which kills the cells but does not remove them from the blood product to be transfused, has not been shown to be able to prevent alloimmunization reactions. It is likely that this is due to the fact that the treated cells are still present and capable of presenting antigens to the recipient's immune system.

Filtration of white blood cells from blood or blood products to be transfused has been shown to be capable of reducing alloimmunization reactions. This has been demonstrated based on an extensive clinical study known as the TRAP study. It was conducted as a multi-institutional study between 1995-1997 and results were subsequently published in the NEJM in 1997 (Trial to Reduce Alloimmunization to Platelets Study Group. Leukocyte reduction and ultraviolet B irradiation of platelets to prevent alloimmunization and refractoriness to platelet transfusions. N Engl J Med. 1997;337:1861-1869). The data from that study suggested that leukoreduction significantly decreased the likelihood of alloimmunization reactions in patients from 13% for non-leukoreduced, untreated products to 3-5% for leukoreduced products. As a result of this work, platelet products have been routinely filtered by a variety of methods to remove WBC. The remaining levels of alloimmunization that were observed were believed to be due to residual white blood cells that were not filtered out. Even the best WBC filters cannot remove 100% of the white blood cells and those left behind are potentially able to stimulate antibody production against the HLA markers on the remaining cells. A decrease in the occurrence rate from 13% of patients receiving platelets to 3-4% is significant, but still leaves several tens of thousands of cases occurring on an annual basis.

In the same TRAP study, treatment of platelet products with ultraviolet B (UVB) light was evaluated. In the case of the UVB treatment, the results were equivalent to those obtained through leukoreduction. The work was consistent with prior studies that showed that UVB treated platelet products possessed significantly reduced alloimmunization responses (Blundell et al. Transfusion 1996; 36: 296-302). This was believed to be due to changes in white cells induced by UVB that cause them to present their antigens and have those antigens processed differently from non-irradiated cells by the patient's immune system. The result is that antibody generation is significantly suppressed for UVB treated products. Although the results were positive, the UVB treatment described in the TRAP study was not adopted widely, because the UV dose required to suppress the alloimmunization response damaged the platelets to an extent which did not allow the platelets to be stored with adequate maintenance of their efficacy (Grijzenhout et al. Blood 1994; 84: 3524-3531).

Photosensitizers, or compounds which absorb light of a defined wavelength and transfer the absorbed energy to an electron acceptor may be a solution to the above problems, by inactivating undesirable cells contaminating a blood product without damaging the desirable components of blood.

There are many photosensitizer compounds known in the art to be useful for inactivating undesirable cells and/or other infectious particles. Examples of such photosensitizers include porphyrins, psoralens, dyes such as neutral red, methylene blue, acridine, toluidines, flavine (acriflavine hydrochloride) and phenothiazine derivatives, coumarins, quinolones, quinones, anthroquinones and endogenous photosensitizers.

As described above, ways to reduce the risks of transfusion related complications from white blood cells is either to reduce the number of white blood cells transfused into a recipient to an extent that no immune response is generated, and/or to effectively destroy the viability and capacity of any transfused white blood cells to function post transfusion.

What is not known is whether donor cells which have been subjected to pathogen reduction treatment with riboflavin and light have modified HLA surface markers, and therefore will not cause transfusion related complications such as alloimmunization, GVHD and microchimerism in the recipient.

It is to this second aspect that this invention is directed.

SUMMARY OF THE INVENTION

This invention is directed toward a process for reducing transfusion related complications in a recipient of an allogeneic blood transfusion by adding to the blood to be transfused a photosensitizer comprising riboflavin, irradiating the blood and riboflavin with light, transfusing the irradiated blood into a recipient, and reducing a transfusion related complication by the recipient to cells in the donor blood.

Also claimed is a blood product for transfusion into a recipient comprising inactivated blood or a blood product which has been treated with riboflavin and light. The treated blood or blood product will not cause transfusion related complications in the recipient when transfused.

The invention is also directed towards a process for preventing rejection of a donor organ by a recipient comprising the steps of transfusing the recipient of the donor organ with treated platelets; and transplanting the donor organ into the recipient.

BRIEF DESCRIPTION OF THE FIGURES

FIG. 1 depicts an embodiment of the invention to treat donor cells to be transfused into a recipient with riboflavin and light.

FIG. 2 is a graph showing the effect of treatment with riboflavin and light on the ability of peripheral blood mononuclear cells (PBMNC) to proliferate in response to CD3 and CD3/CD28 stimulation.

FIG. 3 is a graph comparing the production of cytokines by treated and untreated PBMNC.

FIG. 4 is a graph measuring IgG and IgM production by rats transfused with untreated allogeneic platelets for 10 weeks before receiving an allogeneic heart transplant.

FIG. 5 is a graph measuring IgG and IgM production by rats transfused with treated allogeneic platelets for 10 weeks before receiving an allogeneic heart transplant.

DETAILED DESCRIPTION

Photosensitizers useful in this invention include endogenous photosensitizers. The term “endogenous” means naturally found in a human or mammalian body, either as a result of synthesis by the body or because of ingestion as an essential foodstuff (e.g. vitamins) or formation of metabolites and/or byproducts in vivo. When endogenous photosensitizers are used, particularly when such photosensitizers are not inherently toxic or do not yield toxic photoproducts after photoradiation, no removal or purification step is required after decontamination, and the decontaminated product can be directly administered to a recipient in need of its therapeutic effect.

Examples of such endogenous photosensitizers which may be used in this invention are alloxazines such as 7,8-dimethyl-10-ribityl isoalloxazine (riboflavin), 7,8,10-trimethylisoalloxazine (lumiflavin), 7,8-dimethylalloxazine (lumichrome), isoalloxazine-adenine dinucleotide (flavin adenine dinucleotide [FAD]) and alloxazine mononucleotide (also known as flavin mononucleotide [FMN] and riboflavine-5-phosphate). The term “alloxazine” includes isoalloxazines.

Use of endogenous isoalloxazines as a photosensitizer to pathogen reduce blood and blood components are described in U.S. Pat. Nos. 6,258,577 and 6,277,337 both issued to Goodrich et al., and are herein incorporated by reference to the amount not inconsistent.

The process of using endogenous alloxazine and light to reduce the risks of transfusion related complications from contaminating white blood cells in blood or blood products are shown in FIG. 1.

Whole blood to be transfused into a recipient is collected from a donor. If desired, the whole blood may be separated into blood components using any available procedures and/or extracorporeal blood processing machines. 50 μM riboflavin in PBS is added to the whole blood or separated blood components. The blood product and riboflavin are illuminated at a wavelength of between about 290-370 nm for a sufficient amount of time to reduce the number of white blood cells present in the donor blood or blood product to an extent that no immune response to the donor blood is generated by the transfusion recipient, and/or to effectively destroy the viability and capacity of any transfused donor white blood cells to function in the recipient post transfusion. An illumination time of around 8 minutes appears to be satisfactory. The inactivated blood product is ready to be transfused into a donor.

The following examples show that allogeneic and xenogeneic donor cells subjected to a pathogen reduction treatment with riboflavin and light will not cause transfusion related complications in a donor such as alloimmunization, TA-GVHD and microchimerism.

EXAMPLE 1

The intent of this study was to determine whether human peripheral blood mononuclear cells (PBMNCs) treated with riboflavin and light (hereinafter known as treated cells) could be induced to proliferate in vitro when exposed to a growth stimulus, or whether the treated cells were rendered inactive by the treatment, and therefore could not be induced to proliferate. Untreated cells (control) are those human PBMNCs not treated with riboflavin and light.

For this study, PBMNC were obtained from three human donors, with each donor set being split into a treated and untreated subset. Each subset was subsequently tested using the in vitro test methods described below. PBMNC were isolated from platelets obtained from the donors using a standard apheresis procedure on a Trima® apheresis machine (available from Gambro BCT, Lakewood, Colo., USA). For treatment with riboflavin and light, the cells were added to ABO-matched platelet-poor plasma (PPP), which was then mixed with riboflavin and illuminated according to the procedure shown in FIG. 1.

CD3 is the signaling complex of the T lymphocyte cell receptor. Anti-CD3+ antibody has been shown to induce proliferation of T cells. CD28 is a low affinity T cell receptor that interacts with B7 (ligand for CD28). CD28 is considered a co-stimulatory receptor because its signals are synergistic with those provided by the CD3 receptor in promoting T cell activation and proliferation. Signals from CD28 to the CD3 receptor also increase the synthesis of many cytokines. Cytokines are produced primarily by lymphocytes in response to a stimulus. Production of cytokines is therefore a measure of white blood cell health.

Preparation of CD3, CD3/CD28 or Control Coated Plates

PBS containing 10 μg/mL of anti-CD3 (NA/LE, Pharmingen), 10 μg/mL anti-CD3 and 4 μg/mL anti-CD28 (NA/LE, Pharmingen) or PBS alone were added to wells (50 μl per well) in a 96 well flat bottom plate. The plates were incubated for at least 90 minutes at room temperature. Following 2 washes of the wells with PBS, 100 μl of RPMI 1640 media containing 5% human AB serum, penicillin and streptomycin was added to all wells and the plates were incubated at room temperature for at least another 60 minutes. Then 100 μl of the treated or untreated cells at 2×106 cells/ml in RPMI 1640 containing 5% human AB serum, penicillin and streptomycin were added to the wells (replicate 6 wells per group).

1. A. The effect of treatment with riboflavin and light on the ability of PBMNC to proliferate in response to CD3 and CD3/CD28 stimulation.

As shown in FIG. 2, anti-CD3 antibody induced significant proliferation of untreated (designated as Control cell+CD3 in FIG. 2) cells in all 3 donors. The combination of anti-CD3 and anti-CD28 antibodies further increased proliferation of untreated (Control cell+CD3/CD28) cells. Both treated (designated as Tx+medium in FIG. 2) and untreated (Control cell+medium) cells present in media alone exhibited minimal proliferation. In contrast, the treated PBMNCs did not proliferate in response to either anti-CD3 (Tx cell+CD3) or anti-CD3/CD28 antibody (Tx cell+CD3/CD28) stimulus.

1. B. The Ability of the Treated or Untreated PBMNC to Produce Cytokines

A comparison of the levels of cytokines present in the supernatants of the wells after 2 days in culture indicated that both anti-CD3 antibody (Control cell+CD3) and anti-CD3/CD28 antibodies (Control cell+CD3/CD28) induced increased cytokine production by the untreated PBMNCs. As shown in FIG. 3, higher levels of some cytokines could be detected in the wells containing control cells and medium alone (Control cell+medium). However, the treated cells (Tx cell+CD3; Tx+CD3/CD28 or Tx cell+medium) did not produce cytokines in any of the wells, even in the media control. This data demonstrates that the treated leukocytes are unresponsive in that they do not exhibit any significant proliferation or cytokine production.

EXAMPLE 2

2. A. The Ability of Treated or Untreated PBMNC to be Activated in Response to PMA

Phorbol myristic acetate (PMA) is a stimulus that activates WBCs but does not cause proliferation. One of the results of this activation signal is the upregulation onto the surface of the leukocyte the activation antigen CD69. Activation through CD69 does not cause the cell to proliferate. This assay determined whether treatment with riboflavin and light interferes with the ability of the cells to be activated.

As above, WBC were obtained from the leukocyte reduction chamber of a Trima® machine following a double unit platelet collection. The peripheral blood mononuclear cells (PBMNCs) were purified by Ficoll-Hypaque discontinuous gradient centrifugation. These PBMNCs were divided into 2 aliquots and one aliquot was placed in an Extended Life Platelet (ELP) bag containing autologous human plasma and exposed to riboflavin and light. Following the treatment, the PBMNC were collected by centrifugation, washed and then placed in a 50 ml tube filled with RPMI 1640 containing 10% fetal calf serum (FCS). The cells were initially counted and then the following assays were performed:

Stock PMA (Sigma) at 0.5 mg/ml in DMSO was diluted to 1000 ng/ml in PBS. 50 μL of PMA or PBS was transferred to 12×75 mm tubes. Treated and untreated PBMNC were adjusted to 1×106/ml in RPMI-10% Fetal calf serum (R10 medium) and 450 μL of each was transferred to tubes containing either 50 μL of PMA or PBS. The tubes were incubated in a 37° C. water bath for 4 hours. 50 μL of cells were stained with 20 μL of CD8FITC, CD69PE, and CD3PerCP (Becton Dickinson, Fast Immune Kit) and analyzed on the FACScan Flow Cytometer (Becton Dickinson). Fluorescence of the cells containing CD69 and CD8 fluorescent markers was acquired by gating on the CD3+ PerCP positive cells, and quadrant analysis used to assess the level of lymphocyte activation.

The results are shown in Table 2A below. Summarizing this data shows that untreated (−) CD3+ cells (both CD4+ (helper T cells) and CD8+ (cytotoxic T cells)) expressed CD69 upon activation with PMA, while the treated (+) CD3+ cells (both CD4+ and CD8+) did not express CD69 upon activation with PMA. Thus treatment with riboflavin and light resulted in almost 100% inhibition of the ability of PMA to activate cells.

TABLE 2A
Experiment % CD3+ CD4+ % CD3+ CD8+
No. Treatment CD69+ cells CD69+ cells
1 39.7 7.7
1 + 0.5 0.0
2 62.9 11.3
2 + 2.8 0.3
3 59.5 15.1
3 + 1.2 0.2

2. B. The Effect of Treatment on the Ability of PBMNC to Proliferate in Response to Mitogens and Allogenenic Stimulator Cells

Other stimuli that have been shown to induce PBMNC to proliferate are mitogens such as phytohemagglutinin (PHA), which activates T lymphocytes (CD8), and allogeneic stimulator PBMNC. Allogenic stimulator cells are cells from a different donor which initiates an immune response by presenting antigen to responder cells. The ability of treated or untreated PBMNC to proliferate in response to these stimuli was tested. Responder cells proliferate in response to antigen presentation by a stimulator cell.

To measure the proliferative response to PHA, PBMNC were adjusted to 1×106/ml in RPMI-10% fetal calf serum, and Phytohemagglutinin-M(PHA-M) (Gibco) was diluted 1:40 in R10 medium. Equal volumes (100 uL) of each were transferred to triplicate flat bottomed wells of 96 well micro plates (Falcon Primeria). After incubating for 3 days under 10% CO2 the wells were pulsed for 4 hours with 1 uCi of 3H-thymidine (Perkin Elmer/NEN). The cells were harvested on a multi well harvester apparatus (Brandel Scientific), and uptake of the isotope was quantitated on a liquid scintillation counter (Beckman).

To measure the proliferative response to allogeneic stimulator PBMNC, 1×107 cells/ml of allogenenic stimulator cells were treated with mitomycin C (Sigma) 33 ug/ml in R10 medium for 30 minutes at 37° C. Mitomycin C was removed by washing 2× with 30 ml of R10 medium. The experimental treated and control PBMNC as well as the allogeneic mitomycin C treated cells were adjusted to 1×106 cells/ml in R10 medium. The treated and control PBNMNC were transferred in 100 μL volumes to triplicate flat bottom wells (Falcon Primaria). After adding an equal volume of the mitomycin C allogeneic stimulators the plates were incubated for 5 days at 37° C. under 10% CO2, and cell proliferation assessed by uptake of 1 uCi of 3H-thymidine.

Table 2B below shows that treated PBMNC were unable to proliferate in response to either PHA or allogeneic stimulator cells.

TABLE 2B
Exper-
iment
No. Untreated cells Treated cells
+PHA −PHA +PHA −PHA
1 42349 ± 3947 643 ± 31  1387 ± 86  1070 ± 187
2 108946 ± 989  396 ± 37  222 ± 56 225 ± 27
3 117373 ± 14215 589 ± 27  326 ± 4  336 ± 84
Mean 89556  543 645 544
±SD 41099  130 644 459
+Stimulators −Stimulators +Stimulators −Stimulators
1 41598 ± 4697 5019 ± 3391 430 ± 73  450 ± 191
2  38089 ± 19733 6813 ± 1880  322 ± 137 349 ± 88
3 45652 ± 5515 596 ± 143 234 ± 43 251 ± 80
Mean 41780 4143 329 350
±SD  3784 3200  98 100

2. C. The Ability of Treated or Untreated PBMNC to Stimulate Proliferation

While treatment with riboflavin and light appears to inhibit the proliferation of treated PBMNCs, there remains the possibility that although the treated donor cells themselves may not proliferate, they may act as stimulator cells to other responder immune cells in a transfusion recipient, causing the recipient's body to mount an immune response to the treated transfused cells, causing ultimate rejection of the cells. This was tested by measuring the ability of the treated and untreated PBMNC to stimulate the proliferation of allogeneic responder PBMNC.

The assay was set up as described in section 2 B. above. The experimental treated and control PBMNC as well as the allogeneic responder PBMNC were adjusted to 1×106 cells/ml in R10 medium. The treated and control PBMNC were transferred in 100 μL volumes to triplicate flat bottom wells (Falcon Primaria). After adding an equal volume of the allogeneic responder PBMNC the plates were incubated for 5 days at 37° C. under 10% CO2, and cell proliferation assessed by uptake of 1 uCi of 3H-thymidine as for PHA (see above).

The results in Table 2C below show that the treated cells do not stimulate proliferation of allogeneic responder cells.

TABLE 2C
Experiment Untreated cells Treated cells
No. +Responder −Responder +Responder −Responder
1 55483 ± 3232 436 ± 126 548 ± 221 436 ± 126
2 50690 ± 750  3028 ± 3323 806 ± 619 3028 ± 3323
3 55295 ± 6149 412 ± 65  510 ± 90  412 ± 65 
Mean 53823 1292 621 1292
±SD  2714 1503 161 1503

EXAMPLE 3

While the results obtained using the in vitro assays above demonstrate that treatment with riboflavin and light inactivates the treated PBMNC, it remains important to confirm these results with an assay that measures the in vivo responsiveness of the treated or untreated PBMNC. One such assay is to measure xenogeneic GVHD responses in mice which have been transfused with human PBMNCs. These mice (Rag−/− γc−/− double knockout mice) lack T and B lymphocytes as well as natural killer (NK) cells, and previous studies have shown that the injection of human WBC into these mice results in xenogeneic GVHD that is characterized by xenoreactive T cells.

Characterization of Donor Cells

White blood cells were obtained from the leukocyte reduction chamber of a Trima® machine following platelet donation from 6 different human donors. The cells were separated into the mononuclear cell fraction using Ficoll-Hypaque discontinuous centrifugation and then placed in a platelet bag containing autologous plasma. Treated cells received treatment with riboflavin and light, while control cells received no treatment.

3. A. Induction and Clinical Observations of Xenogeneic GVHD Mice

Rag2−/−γc−/− double knockout mice were obtained from Taconic (Germantown, N.Y.).

Injection of Cells

The recipient mice received 350 cGy irradiation the night before injection. The number of donor cells either treated or untreated containing 30×106 CD3+ cells was determined and 3 mice were injected intraperitoneally with that number of cells per group. Each injected mouse was assigned a number. Mice receiving treated cells were given the prefix T, mice receiving untreated cells were given the prefix C.

Analysis of GVHD Response

Mice were weighed twice per week and observed regularly. Recipient mice that demonstrated a dramatic weight loss (usually >20%) and exhibited lethargy, hunched posture and ruffled fur were considered to have developed a GVHD response and were euthanized. Blood was collected by cardiac puncture using a heparinized syringe. In addition, the spleen, bone marrow from the femurs, liver and any intestinal lymphoid tissue that was observed was collected. The weight of the spleen was determined and then single cell suspensions were prepared from all organs by rubbing the organ on a screen. The liver mononuclear cell population was obtained from the liver cells by centrifuging the cells over a Ficoll-Hypaque discontinuous gradient and collecting the cells at the interface. The blood was centrifuged and the plasma collected and stored at −20° C. The buffy coat cells were collected and the red blood cells were lysed using RBC Lysis solution (Gentra, Minneapolis, Minn.). All mice that did not exhibit a GVHD response were euthanized by day 63 (designated as N/A in table below) and a similar analysis was conducted on all of these recipient mice as well.

Analysis of Cells

Cells were initially stained with PECy5 or PE anti-human CD45 or isotype control and then analyzed for the presence of human CD45+ cells in the organs of the transfused mice. CD45+ is a marker found on all leukocytes. The results are shown in Table 3A below.

TABLE 3A
% CD45 % CD45
Mouse Death Spleen % CD45 % CD45 bone Intestinal % CD45
No. Treatment (day) weight Hct spleen blood marrow lymphoid liver
Donor 1
T1 Yes N/A 0.05 57 0.0 0.0 0.0 ND ND
T2 Yes N/A 0.02 57 0.0 0.0 0.0 ND ND
T3 Yes N/A 0.04 55 0.0 0.0 0.0 ND ND
C4 No 55 0.59 21 1.9 0.2 0.8 66.8 6.6
C5 No N/A 0.03 20 0.1 0.0 0.2 ND 0.01
C6 No 57 0.79 23 3.0 0.3 0.6 48.4 3.3
Donor 3
T7 Yes N/A 0.04 55 0.0 0.0 0.0 ND ND
T8 Yes N/A 0.20 48 0.0 0.0 0.0 ND ND
T9 Yes N/A 0.18 50 0.0 0.0 0.0 ND ND
C10 No 43 ND 68 54.9 3.3 1.7 67.8 35.7
C11 No 19 ND ND 11.2 ND ND ND ND
C12 No 48 0.04 42 42.1 3.9 7.36 45.8 70.7
Donor 4
T13 Yes N/A 0.03 56 0.0 0.0 0.0 ND ND
T14 Yes N/A 0.02 56 0.0 0.0 0.0 ND ND
T15 Yes N/A 0.02 57 0.0 0.0 0.0 ND ND
C16 No 61 0.07 25 31.3 4.7 3.2 26.8 7.2
C17 No 58 0.09 26 36.9 4.3 3.5 82.6 7.8
C18 No 58 0.02 34 47.6 8.1 16.6 91.3 ND
Donor 5
T19 Yes 37 ND ND 0.0 0.0 0.0 ND ND
T20 Yes N/A 0.11 52 0.0 0.0 0.0 ND ND
T21 Yes N/A 0.19 53 0.0 0.0 0.0 ND ND
C22 No 42 0.12 6 15.5 16.7 3.7 91.0 19.1
C23 No 42 0.30 6 4.7 7.6 1.1 44.5 14.9
C24 No 51 ND ND ND ND ND ND ND
Donor 6
T25 Yes N/A 0.04 52 0.0 0.0 0.0 ND ND
T26 Yes N/A 0.03 53 0.0 0.0 0.0 ND ND
T27 Yes N/A 0.01 52 0.0 0.0 0.0 ND ND
C28 No 60 0.20 40 38.3 1.5 1.9 43.5 20.9
C29 No 60 0.31 38 39.8 1.0 6.0 1.4 36.5
C30 No 38 0.68 13 47.6 8.1 16.6 91.32 ND

Conclusions

The clinical evaluation of the mice found that one from 15 recipients per group injected with either untreated or treated cells died of unknown causes. No weight loss or human CD45+ cells were detected in the remaining 14 recipients injected with treated cells. These mice had an average spleen weight of 0.07±0.07 g and an average hematocrit of 53.8±2.8%. In contrast 12 of 14 recipients injected with untreated cells were euthanized because of GVHD symptoms including >20% loss of weight and hunched posture, ruffled fur and lethargy and 13 of 14 recipients had high levels of human cell chimenism. This recipient group had an average spleen weight of 0.27±0.27 g, which is significantly larger (p=0.0138) than that of the treated mice (p value<0.02), and an average hematocrit of 27.9±16.9%, which is also significantly lower than that of the treated mice (p value <0.02).

A summary of the results is shown in the following table:

Total No. of No. of dead GVHD Body
mice survivors at during study death weight
No. end of study GVHD non-GVHD rate loss rate
Treated 15 14 0 1  0/14  0/14
Group
Control 15 2 12 1 12/14 13/14
Group

3. B. Phenotypic and Functional Analysis of Chimeric Human Cells

If human CD45+ cells were detected and enough cells remained for further study, a second battery of staining was done in which the expression of leukocyte subpopulation markers including CD3 (all T cells), CD4 (T helper cells), CD8 (cytotoxic cells), CD14 (macrophages), CD19 (B cells), and CD56 (NK cells) was measured. The data shown in Table 3B below is expressed as % of total cells.

TABLE 3B
Source of Mouse % % % % % %
cells No. CD3 CD4 CD8 CD56 CD19 CD14
Donor 1
Spleen C4 1.64 0.62 0.88 0.05 0.25 1.9
Intestinal C4 20.30 8.47 11.07 75.36
Spleen C6 0.81 0.54 0.57 3.38
Intestinal C6 8.63 6.09 1.99 32.26
Donor 3
Blood C10 1.24 0.3 1.16 2.22
Spleen C10 51.42 14.72 38.90 6.26
Liver C10 5.68 3.08 4.14 25.90
BM C10 1.98 0.58 0.58 1.48
Intestinal C10 6.06 3.24 6.04 37.24
Blood C12 1.23 0.22 1.14 7.5 3.82
Spleen C12 33.07 6.52 24.16 6.09 18.03
Liver C12 2.28 1.82 7.42 24.86
BM C12 3.32 0.68 3.19 3.43
Intestinal C12 6.52 1.85 4.86 22.06
Donor 4
Spleen C16 5.09 3.25 2.09 28.21
BM C16 0.40 0.34
Intestinal C16 12.28 3.52 1.06 32.84
Blood C17 0.90 0.28
Spleen C17 2.80 3.65 1.96 14.05
Liver C17 1.05 0.34
BM C17 0.97 0.39
Intestinal C17 4.57 3.72 1.68 7.74
Blood C18 2.71 0.32 0.23
BM C18 1.00 0.59 0.48 1.48
Intestinal C18 3.59 0.85 0.85 2.15
Donor 5
Blood C22 5.84 4.54 1.25 2.33 0.71
Spleen C22 14.62 11.25 4.67
Liver C22 18.94 17.12 2.52
BM C22 2.74 2.98 1.50
Intestinal C22 43.25 40.27 16.07 5.21 71.2
Blood C23 7.76 5.74 1.31
Spleen C23 4.55 2.96 2.41
Liver C23 13.08 11.30 2.24
Donor 6
Blood C28 2.8 0.36 1.98 2.42
Spleen C28 46.6 7.9 39.9 11.0
Liver C28 14.46 1.50 10.86 19.9
Intestinal C28 31.38 8.54 18.26 25.22
Blood C29 9.23 1.79 5.84
Spleen C29 19.68 5.86 11.96
Liver C29 3.56 3.08 0.32 29.3
BM C29 6.70 2.22 5.76
Blood C30 8.02 6.46 0.98
Spleen C30 42.96 29.84 27.2
BM C30 13.96 9.9 6.08
Intestinal C30 22.84 14.24 10.52 10.22

Results

When examined in a donor by donor fashion, the results indicate that the makeup of donor cells trans fused can influence the type of cells that are present in different lymphoid organs and in which organs they will be found. CD3+ cells were found in varying numbers in the different lymphoid compartments and CD19+ cells were primarily found in the intestinal lymphoid tissue and in the liver. In contrast to these findings, no macrophages were found and only a limited number of CD56+ cells in a few mice.

3. C. The Level of Cytokines in the Plasma of Rag2−/−γc−/− Recipients of Treated and Untreated White Blood Cells

Plasma of recipient mice was collected when the mice were euthanized either because they were demonstrating symptoms of GVHD or because the experiment was terminated. The levels of cytokines associated with inflammation and acute phase response were measured using the CBA cytometric bead assay kits available from BD Biosciences. The measurement of cytokines associated with the inflammation response is another approach to determine if recipient mice develop an acute phase response to transplanted human cells and also helps define the nature of the xenogeneic GVHD response.

Results are shown in Table 3C below. As can be seen, human cells treated with riboflavin and light do not cause a significant production of inflammatory cytokines.

TABLE 3C
Mouse Cytokine concentration in plasma (pg/ml)
No. Treatment IL-1β IL-6 IL-8 IL-12p70
Donor 1
T1 Yes 0.1 0.1 0.1 0.1
T2 Yes 32.5 0.1 2.5 4.8
T3 Yes 0.1 0.1 1.5 0.1
C5 No 0.1 0.1 3.2 4.9
C4 No 0.1 6.3 28.4 8.7
C6 No 0.1 390.6 104 158.8
Donor 3
T7 Yes 41.2 2.5 4.3 7.3
T8 Yes 22.6 0.1 4 7.3
T9 Yes 0.1 0.1 2.9 5
C10 No 205.5 8.0 236.2 78.9
C12 No 396.8 13.2 189.6 149.6
Donor 4
T13 Yes 8.4 0.1 3.3 6.2
T14 Yes 0.1 0.1 2.7 6.3
T15 Yes 12.9 0.1 2.2 4.8
C16 No 0.1 300 105 500
C17 No 0.1 162.6 22.6 17.4
C18 No 40 110 100 11
Donor 5
T20 Yes 8.4 0.1 3.2 5.6
T21 Yes 33.9 0.1 3.7 5.7
C22 No 0.1 0.1 3.8 4.8
C23 No 0.1 0.1 4.1 4.3
Donor 6
T25 Yes 0.1 0.1 2 3.4
T26 Yes 0.1 0.1 2.6 2.8
T27 Yes 21.3 2.2 4.4 8.8
C28 No 65 60 80 11
C29 No 0.1 4.2 3.9 4.3
C30 No 0.1 0.1 3.8 3.5

3. D. The Level of Human Immunoglobulins in the Plasma of Rag2−/−γc−/− recipients of Untreated Control and Treated White Blood Cells

Another measure of human cell chimerism is to determine the level of human IgG and IgM present in the plasma of the recipient mice using an ELISA assay. IgG and IgM are antibodies produced by B cells in response to an antigen. The results shown in Table 3D below indicate that no human IgG (0.10±0.24 ng/ml) or IgM (0.27±0.68 ng/ml) was detected in the plasma of mice injected with treated cells. High levels of IgG (5980.8±2780.8 ng/ml) or IgM (1389.6±845.3 ng/ml) were detected in the plasma of all recipients in which human cell chimerism was detected (these mice received untreated cells).

TABLE 3D
Mice No.
T1 T2 T3 T7 T8 T9 T13 T14 T15 T19 T20 T21 T25 T26 T27
IgG (ng/ml) 0 0 0 0 0 0 0.2 0 0 ND 0 0 0 0 0.9
IgM (ng/ml) 0 0 0 0 0.1 0 0 0 0 ND 0 2.1 0 2.1 0
Mice No.
C4 C5 C6 C10 C11 C12 C16 C17 C18 C22 C23 C24 C28 C29 C30
IgG (ng/ml) 5682 0 6134 4241 ND 4102 9087 10202 7283 8973 7034 ND 3478 4221 7314
IgM (ng/ml) 2189 0 1070 1383 ND  631  685  1500  800 2853 1676 ND  809 1746 2724

In vitro studies showed that treatment with riboflavin and light abolished the functional activity of human WBC cells. Consistent with these findings, treated human WBCs did not appear to generate a xenogeneic GVHD response in vivo following injection of these cells into immunodeficient Rag2−/−γc−/− mice recipients. The lack of a xenogeneic GVHD response in the recipient mice also correlated with a lack of human cell chimerism as measured by immunophenotyping. The plasmas of these recipient mice were also found to lack human cytokines or immunoglobulins. These findings indicate that blood cells treated with riboflavin and light are unable to respond in vitro and in vivo and therefore should not induce TA-GVHD in a transfusion recipient.

EXAMPLE 4

This study evaluated the ability of treatment with riboflavin and light to modify the immune response to allogeneic solid organ transplants in rats.

Over a 10 week period, Lewis rats received 8 transfusions (shown by the small arrows in FIGS. 4 and 5) of untreated or treated platelet products containing leukocytes from DA rats. A third group of animals received saline injections. Antibody levels (IgG, IgM) were monitored weekly. At the end of the 10 week period (shown by the large arrow in FIGS. 4 and 5), the transfused animals underwent allogeneic heart transplants with hearts from DA rats to assess the effect pre-transplantation transfusions of platelets with riboflavin and light had on pre-sensitization and transplant rejection.

As can be seen in FIG. 5, the IgM and IgG response in rats that received treated platelets was almost completely abolished compared to animals that received untreated platelets (FIG. 4). In preliminary experiments, (not shown) animals that mounted an IgG response also rejected the subsequent heart transplant.

In summary, treatment with riboflavin and light prevented the development of an Ig response in transplanted animals. This inhibition of an Ig response, in particular IgG, shows that pre-transfusion of a solid organ recipient with platelets treated with riboflavin and light helps to prevent alloimmunization to the transplanted allogeneic organ. The lack of rejection of the allogeneic heart transplant in the absence of an IgG response indicates that the pre-treatment may be effective in preventing alloimmune refractoriness to platelets and pre-sensitization to transplants.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US683690Dec 5, 1900Oct 1, 1901Charles M JohnsonApparatus for sterilizing disease-germs.
US1733239Jan 31, 1929Oct 29, 1929Roberts Donald EApplicator for conducting ultra-violet rays
US1961700Jul 29, 1932Jun 5, 1934Gen Electric Vapor Lamp CoApparatus for sterilizing articles by ultraviolet radiation
US2056614Jun 13, 1933Oct 6, 1936Gen Electric Vapor Lamp CoUltraviolet sterilizer
US2212330May 3, 1938Aug 20, 1940Thomas Albert GSterilizing device
US2340890Feb 25, 1941Feb 8, 1944Alphonse LangMethod and apparatus for sterilizing, preserving, and irradiating of various liquid substances
US2417143Oct 30, 1941Mar 11, 1947Merck & Co Inc1-polyacyloxyalkylamino-2-amino-4, 5-dimethylbenzene and process for preparing the same
US2786014Sep 10, 1952Mar 19, 1957James L TullisPlatelet preservation
US3057865May 31, 1960Oct 9, 1962Armour PharmaPreparation of alloxazine and isoalloxazine compounds
US3456053May 6, 1966Jul 15, 1969Pfizer & Co CInactivated hog cholera virus vaccine
US3629071Feb 10, 1970Dec 21, 1971Upjohn CoStorage-stable hemostatic transfusion suspensions of blood platelets, glucose, magnesium chloride and certain prostaglandins
US3683177Jun 30, 1970Aug 8, 1972Veloz Louis PSterilization of a fluid by ultraviolet radiation
US3683183Jun 4, 1969Aug 8, 1972Radiation Machinery CorpA flow-through irradiator for the extra corporeal irradiation of fluid
US3705985Jun 27, 1969Dec 12, 1972Nuclear Associates IncFluid irradiator and process for its manufacture
US3776694Apr 3, 1972Dec 4, 1973Leittl LGermicidal toiletry cabinet for different personal hygiene items
US3852032May 7, 1973Dec 3, 1974Uroptics Int IncProcess for sterilizing hydrophilic gelatin lenses having ultraviolet stabilizers
US3864081Jun 12, 1973Feb 4, 1975Spectroderm International IncApparatus for sterilizing biologic material and the like by ultra-violet irradiation
US3874384Mar 29, 1973Apr 1, 1975American Hospital Supply CorpImproved blood storage unit and method of storing blood
US3894236Dec 10, 1973Jul 8, 1975Hazelrigg Wayne KDevice for irradiating fluids
US3926556May 30, 1973Dec 16, 1975Boucher Raymond Marcel GutBiocidal electromagnetic synergistic process
US3927325Jul 10, 1974Dec 16, 1975Us EnergyTissue irradiator
US4061537Jul 16, 1976Dec 6, 1977Behringwerke AktiengesellschaftPolyionic isotonic salt solution
US4112070Jun 8, 1977Sep 5, 1978Research CorporationBlood preservation system
US4124598Oct 20, 1976Nov 7, 1978Hoffmann-La Roche Inc.Psoralens
US4139348Nov 28, 1975Feb 13, 1979Massachusetts Institute Of TechnologyElectrochemical process and apparatus to control the chemical state of a material
US4159320Feb 10, 1978Jun 26, 1979Bayer AktiengesellschaftActivated MASF
US4169204Aug 28, 1978Sep 25, 1979Regents Of The University Of CaliforniaPsoralens
US4173631Jun 1, 1978Nov 6, 1979Merck & Co., Inc.7-Methyl-8-methylamino-10-(1'-D-ribityl)isoalloxazine
US4181128Feb 21, 1978Jan 1, 1980Massachusetts Institute Of TechnologyVirus inactivation applicator and the like
US4196281Aug 31, 1978Apr 1, 1980Regents Of The University Of CaliforniaPsoralens
US4264601Jun 12, 1979Apr 28, 1981The Board Of Regents Of The University Of OklahomaAntihypertensive agents and their use in treatment of hypertension
US4267269Feb 5, 1980May 12, 1981Baxter Travenol Laboratories, Inc.Red cell storage solution
US4312883Aug 15, 1980Jan 26, 1982Consiglio Nazionale Delle RicercheFurocoumarin for the photochemotherapy of psoriasis and related skin diseases
US4321918Oct 23, 1979Mar 30, 1982Clark Ii William TProcess for suppressing immunity to transplants
US4321919Dec 11, 1979Mar 30, 1982Leukocyte Research, Inc.Method and system for externally treating human blood
US4336809Mar 17, 1980Jun 29, 1982Burleigh Instruments, Inc.Human and animal tissue photoradiation system and method
US4381004Jan 15, 1981Apr 26, 1983Biomedics, Inc.Extracorporeal system for treatment of infectious and parasitic diseases
US4390619Sep 28, 1981Jun 28, 1983James Clifford HaightLeukocyte or platelet storage using ion-exchange resins
US4398031Mar 9, 1982Aug 9, 1983The Regents Of The University Of CaliforniaCoumarin derivatives and method for synthesizing 5'-methyl psoralens therefrom
US4398906Jun 12, 1981Aug 16, 1983Frederic A. Bourke, Jr.Method for externally treating the blood
US4402318May 29, 1981Sep 6, 1983Swartz Mitchell RMethod for inactivating viruses, bacteria, etc. in vitro and production of vaccines
US4407282Oct 24, 1980Oct 4, 1983Swartz Mitchell RMethod and apparatus for generating superoxide and hydroxyl ions in solution
US4421987Mar 16, 1981Dec 20, 1983Espe Fabrik Pharmazeutischer Praeparate GmbhApparatus for irradiating dental objects
US4424201Nov 28, 1978Jan 3, 1984Rockefeller UniversityEmployment of a mereyanine dye for the detection of malignant leukocytic cells
US4428744Jun 16, 1981Jan 31, 1984Frederic A. Bourke, Jr.Method and system for externally treating the blood
US4432750Dec 2, 1981Feb 21, 1984Baxter Travenol Laboratories, Inc.Additive sterol solution and method for preserving normal red cell morphology in whole blood during storage
US4456512Jul 29, 1982Jun 26, 1984The Dow Chemical CompanyPhotochemical reactor and method
US4457918May 12, 1982Jul 3, 1984The General Hospital CorporationGlycosides of vitamins A, E and K
US4464166Jun 30, 1983Aug 7, 1984Frederic A. Bourke, Jr.Method for externally treating the blood
US4467206Dec 14, 1981Aug 21, 1984Extracorporeal Medical Specialties, Inc.Method and apparatus for the irradiation of fluids
US4474153Oct 8, 1982Oct 2, 1984Toyo Kogyo Co., Ltd.Idling speed controlling system for internal combustion engine
US4481167Jul 1, 1981Nov 6, 1984The Dow Chemical CompanySanitizing complexes of polyoxazolines or polyoxazines and polyhalide anions
US4493981Mar 5, 1984Jan 15, 1985General Electric CompanyBoil dry protection system for cooking appliance
US4568328Oct 29, 1984Feb 4, 1986Extracorporeal Medical Specialties, Inc.Automated photophoresis blood portion control methods and apparatus
US4572899Jul 6, 1983Feb 25, 1986Biotest-Serum-Institut GmbhAqueous solution for suspending and storing cells, especially erthrocytes
US4573960Oct 29, 1984Mar 4, 1986Extracorporeal Medical Specialties, Inc.Three phase irradiation treatment process
US4573961Oct 29, 1984Mar 4, 1986Extracorporeal Medical Specialties, Inc.Electronic control methods for puvapheresis apparatus
US4573962Oct 29, 1984Mar 4, 1986Extracorporeal Medical Specialties, Inc.Cassette drawer assembly for photoactivation patient treatment system
US4576143Oct 5, 1984Mar 18, 1986Clark Iii William TMethod of immune modification by means of extracorporeal irradiation of the blood
US4578056Oct 29, 1984Mar 25, 1986Extracorporeal Medical Specialties, Inc.Patient photopheresis treatment apparatus and method
US4585735Jul 19, 1984Apr 29, 1986American National Red CrossProlonged storage of red blood cells
US4596547Oct 29, 1984Jun 24, 1986Mcneilab, Inc.Valve apparatus for photoactivation patient treatment system
US4604356Dec 21, 1983Aug 5, 1986Miles Laboratories, Inc.Purification of flavin adenine dinucleotide synthetase
US4608255Jan 31, 1985Aug 26, 1986American National Red CrossBiocompatible method for in situ production of functional platelets and product produced thereby lacking immunogenicity
US4609372Oct 13, 1983Sep 2, 1986Miles Laboratories, Inc.Heat sterilizable storage solution for red blood cells
US4612007Dec 8, 1982Sep 16, 1986Edelson Richard LeslieMethod and system for externally treating the blood
US4613322Mar 29, 1983Sep 23, 1986Edelson Richard LeslieMethod and system for externally treating the blood
US4614190Sep 8, 1982Sep 30, 1986Alexei StancoPhotoradiation method and arrangement
US4623328Oct 29, 1984Nov 18, 1986Mcneilab, Inc.Pump monitor for photoactivation patient treatment system
US4626431Oct 19, 1984Dec 2, 1986Burroughs Wellcome Co.Storage of red blood cells
US4642171Jul 18, 1985Feb 10, 1987Kabushiki Kaisha ToshibaPhototreating apparatus
US4645649Feb 3, 1982Feb 24, 1987G-C Dental Industrial Corp.Apparatus for curing resin films coated on dental resin prosthesis
US4648992Feb 11, 1985Mar 10, 1987Ciba-Geigy CorporationWater-soluble phthalocyanine compounds
US4649151May 14, 1984Mar 10, 1987Health Research, Inc.Drugs comprising porphyrins
US4651739Apr 8, 1985Mar 24, 1987The General Hospital CorporationLight-induced killing of carcinoma cells
US4675185Dec 6, 1985Jun 23, 1987Baxter Travenol Laboratories, Inc.Solution for stabilizing red blood cells during storage
US4683195Feb 7, 1986Jul 28, 1987Cetus CorporationProcess for amplifying, detecting, and/or-cloning nucleic acid sequences
US4683202Oct 25, 1985Nov 27, 1990Cetus CorpTitle not available
US4683889Jun 21, 1985Aug 4, 1987Frederic A. Bourke, Jr.Method and system for externally treating the blood
US4684521Jun 21, 1985Aug 4, 1987Frederic A. Bourke, Jr.Method and system for externally treating the blood
US4693981Oct 7, 1985Sep 15, 1987Advanced Genetics Research InstitutePreparation of inactivated viral vaccines
US4695460Mar 19, 1986Sep 22, 1987American Red CrossSynthetic, plasma-free, transfusible platelet storage medium
US4704352Jun 25, 1985Nov 3, 1987Baxter Travenol Laboratories, Inc.L-ascorbate-2-phosphate salts in blood cell storage
US4708715Feb 27, 1986Nov 24, 1987Mcneilab, Inc.Light array assembly for photoactivation patient treatment system
US4726949Aug 26, 1986Feb 23, 1988Baxter Travenol Laboratories, Inc.Irradiation of blood products
US4727027Oct 7, 1985Feb 23, 1988Diamond Scientific Co.Photochemical decontamination treatment of whole blood or blood components
US4737140May 22, 1987Apr 12, 1988Mcneilab, Inc.Irradiation chamber for photoactivation patient treatment system
US4748120Oct 20, 1986May 31, 1988Diamond Scientific Co.Photochemical decontamination treatment of whole blood or blood components
US4769318Apr 15, 1987Sep 6, 1988Ube Industries, Ltd.Additive solution for blood preservation and activation
US4775625Nov 21, 1986Oct 4, 1988The Medical College Of Wisconsin, Inc.Inactivating enveloped viruses with a merocyanine dye
US4784852Nov 12, 1986Nov 15, 1988Erland JohanssonComposition for human supply of selenium as trace element
US4788038Jun 1, 1987Nov 29, 1988Kabushiki Kaisya Advance Kaihatsu KenkyujoProcess for killing cells
US4828976Sep 9, 1986May 9, 1989Thomas Jefferson UniversityGlucose free media for storing blood platelets
US4831268Nov 10, 1988May 16, 1989VEB Elektro-und Metallgerate IlmenauMethod for the physiologically & therapeutically effective irradiation of corporeal venous blood
US4833165Oct 7, 1987May 23, 1989Louderback Allan LeeMethod of inactivating HTLV-III virus in blood
US4861704Oct 8, 1986Aug 29, 1989The Trustees Of Columbia University In The City Of New YorkProcesses for development of acceptance of transplanted organs and tissues
US4866282Feb 17, 1988Sep 12, 1989Baxter International Inc.Irradiation of blood products
US4878891Jun 25, 1987Nov 7, 1989Baylor Research FoundationMethod for eradicating infectious biological contaminants in body tissues
US4880788Oct 30, 1987Nov 14, 1989Baylor College Of MedicineMethod for preventing and treating thrombosis
US4915683Mar 10, 1987Apr 10, 1990The Medical College Of Wisconsin, Inc.Antiviral method, agents and apparatus
US4921473Feb 2, 1989May 1, 1990Therakos, Inc.Multicomponent fluid separation and irradiation system
US4925665Jun 22, 1989May 15, 1990Thomas Jefferson UniversityGlucose free primary anticoagulant for blood containing citrate ions
US4930516Apr 25, 1988Jun 5, 1990Alfano Robert RMethod for detecting cancerous tissue using visible native luminescence
US4946438Jun 12, 1989Aug 7, 1990The Trustees Of Columbia University In The City Of New YorkProcess for development of acceptance of transplanted organs and tissues
US4948980Jul 20, 1989Aug 14, 1990Wedeco Gesellschaft Fur Entkeimungsanlagen M.B.H.Apparatus for irradiating media with UV-light
US4950665Oct 28, 1988Aug 21, 1990Oklahoma Medical Research FoundationPhototherapy using methylene blue
US4952812May 2, 1989Aug 28, 1990Baxter International Inc.Irradiation of blood products
US4960408Jan 10, 1989Oct 2, 1990Klainer Albert STreatment methods and vaccines for stimulating an immunological response against retroviruses
US4961928Sep 21, 1987Oct 9, 1990American Red CrossSynthetic, plasma-free, transfusible storage medium for red blood cells and platelets
US4978688Mar 24, 1989Dec 18, 1990Louderback Allan LeeMethod of treating white blood cells
US4986628Aug 23, 1988Jan 22, 1991Lozhenko Alexandr SLight guide device for phototherapy
US4992363Dec 15, 1988Feb 12, 1991Thomas Jefferson UniversityMethod for preparing glucose free media for storing blood platelets
US4994367Oct 7, 1988Feb 19, 1991East Carolina UniversityExtended shelf life platelet preparations and process for preparing the same
US4998931Dec 21, 1988Mar 12, 1991Puget Sound Blood CenterMethod of reducing immunogenicity and inducing immunologic tolerance
US4999375Apr 11, 1989Mar 12, 1991Hoffmann-La Roche Inc.Psoralen reagent compositions for extracorporeal treatment of blood
US5011695Feb 16, 1989Apr 30, 1991Biotest Pharma GmbhSterilization of blood and its derivatives with vitamins
US5017338Apr 11, 1986May 21, 1991The Center For Blood Research, Inc.Platelet concentrates
US5020995Jan 18, 1989Jun 4, 1991Guy LevySurgical treatment method and instrument
US5030200Nov 6, 1989Jul 9, 1991Baylor Research FoundationMethod for eradicating infectious biological contaminants in body tissues
US5039483Feb 8, 1990Aug 13, 1991The Medical College Of Wisconsin, Inc.Antiprotozoan method
US5041078Dec 21, 1989Aug 20, 1991Baylor Research Foundation, A Nonprofit Corporation Of The State Of TexasPhotodynamic viral deactivation with sapphyrins
US5089146Feb 12, 1990Feb 18, 1992Miles Inc.Pre-storage filtration of platelets
US5089384Nov 4, 1988Feb 18, 1992Amoco CorporationMethod and apparatus for selective cell destruction using amplified immunofluorescence
US5092773Nov 20, 1990Mar 3, 1992Endo Technic CorporationMethod and apparatus for filling a tooth canal
US5114670Aug 30, 1990May 19, 1992Liqui-Box/B-Bar-B CorporationProcess for sterilizing surfaces
US5114957May 8, 1990May 19, 1992Biodor U.S. HoldingTocopherol-based antiviral agents and method of using same
US5120649May 15, 1990Jun 9, 1992New York Blood Center, Inc.Photodynamic inactivation of viruses in blood cell-containing compositions
US5123902Sep 13, 1989Jun 23, 1992Carl-Zeiss-StiftungMethod and apparatus for performing surgery on tissue wherein a laser beam is applied to the tissue
US5133932Mar 28, 1989Jul 28, 1992Iatros LimitedBlood processing apparatus
US5147776Feb 26, 1990Sep 15, 1992University Of Iowa Research FoundationUse of 2,5-anhydromannitol for control of pH during blood storage
US5149718Jan 19, 1989Sep 22, 1992New York UniversityBiological fluid purification system
US5150705Jul 12, 1989Sep 29, 1992Stinson Randy LApparatus and method for irradiating cells
US5166528Oct 4, 1991Nov 24, 1992Le Vay Thurston CMicrowave-actuated ultraviolet sterilizer
US5184020Oct 26, 1989Feb 2, 1993Hearst David PDevice and method for photoactivation
US5185532May 21, 1991Feb 9, 1993Oral Card ProductsDental instrument sterilizer
US5192264Oct 4, 1990Mar 9, 1993The Beth Israel Hospital AssociationMethods and apparatus for treating disease states using oxidized lipoproteins
US5211960Nov 15, 1989May 18, 1993Scripps Clinic And Research FoundationStabilization of leukocytes
US5216251Oct 18, 1991Jun 1, 1993Matschke Arthur LApparatus and method for a bio-conditioning germicidal dryer
US5229081Mar 14, 1991Jul 20, 1993Regal Joint Co., Ltd.Apparatus for semiconductor process including photo-excitation process
US5232844May 29, 1991Aug 3, 1993New York Blood CenterPhotodynamic inactivation of viruses in cell-containing compositions
US5234808Oct 30, 1991Aug 10, 1993Thomas Jefferson UniversityAcetate addition to platelets stored in plasma
US5236716Feb 14, 1992Aug 17, 1993Miles Inc.Platelets concentrate with low white blood cells content
US5247178Dec 12, 1991Sep 21, 1993Fusion Systems CorporationMethod and apparatus for treating fluids by focusing reflected light on a thin fluid layer
US5248506Oct 5, 1990Sep 28, 1993American National Red CrossSynthetic, plasma-free, transfusible storage medium for red blood cells and platelets
US5250303Oct 9, 1990Oct 5, 1993The American National Red CrossProcedure for storing red cells with prolonged maintenance of cellular concentrations of ATP and 2,3 DPG
US5258124Dec 6, 1991Nov 2, 1993Solarchem Enterprises, Inc.Treatment of contaminated waste waters and groundwaters with photolytically generated hydrated electrons
US5269946May 22, 1991Dec 14, 1993Baxter Healthcare CorporationSystems and methods for removing undesired matter from blood cells
US5273713Jun 22, 1992Dec 28, 1993Laser Medical Technology, Inc.Water purification and sterilization process
US5281392Mar 26, 1992Jan 25, 1994Rubinstein Alan IMethod for disinfecting red blood cells, blood products, and corneas
US5288605Mar 2, 1992Feb 22, 1994Steritech, Inc.Methods for inactivating bacteria in blood preparations with 8-methoxypsoralen
US5288647Apr 17, 1991Feb 22, 1994StratageneMethod of irradiating biological specimens
US5290221Dec 17, 1992Mar 1, 1994Baxter International Inc.Systems for eradicating contaminants using photoactive materials in fluids like blood
US5300019Dec 17, 1992Apr 5, 1994Baxter International Inc.Systems and methods for eradicating contaminants using photoactive materials in fluids like blood
US5304113Nov 2, 1990Apr 19, 1994The Mcw Research Foundation, Inc.Method of eradicating infectious biological contaminants
US5318023Apr 3, 1991Jun 7, 1994Cedars-Sinai Medical CenterApparatus and method of use for a photosensitizer enhanced fluorescence based biopsy needle
US5340716Jun 20, 1991Aug 23, 1994Snytex (U.S.A.) Inc.Assay method utilizing photoactivated chemiluminescent label
US5342752Apr 16, 1991Aug 30, 1994Cryopharm CorporationMethod of inactivation of viral blood contaminants using acridine deriatives
US5344752Apr 7, 1993Sep 6, 1994Thomas Jefferson UniversityPlasma-based platelet concentrate preparations
US5344918Dec 10, 1992Sep 6, 1994Association D'aquitaine Pour Le Developpement De La Transfusion Sanguine Et Des Recherches HematologiquesProcess for the manufacture of a high-purity activated factor VII concentrate essentially free of vitamin K-dependent factors and factors VIIIC and VIIICAg
US5358844Feb 18, 1993Oct 25, 1994Brigham And Women's Hospital, Inc.Preservation of blood platelets
US5360734Jan 28, 1993Nov 1, 1994Baxter International, Inc.Method for inactivating pathogens in erythrocytes using photoactive compounds and plasma protein reduction
US5366440Jan 13, 1993Nov 22, 1994The Beth Israel Hospital AssociationMethods for treating disease states using oxidized lipoproteins in conjunction with chemotherapeutic effector agents
US5372929Jan 27, 1992Dec 13, 1994Cimino; George D.Methods for measuring the inactivation of pathogens
US5376524Dec 1, 1992Dec 27, 1994Thomas Jefferson UniversityPlatelet storage medium containing acetate and phosphate
US5378601Jul 24, 1992Jan 3, 1995Montefiore Medical CenterMethod of preserving platelets with apyrase and an antioxidant
US5399719Jun 28, 1993Mar 21, 1995Steritech, Inc.Compounds for the photodecontamination of pathogens in blood
US5418130Jul 13, 1993May 23, 1995Cryopharm CorporationMethod of inactivation of viral and bacterial blood contaminants
US5419759May 27, 1993May 30, 1995Naficy; Sadeque S.Apparatus and methods for treatment of HIV infections and AIDS
US5427695Jul 26, 1993Jun 27, 1995Baxter International Inc.Systems and methods for on line collecting and resuspending cellular-rich blood products like platelet concentrate
US5433738Jan 25, 1994Jul 18, 1995Stinson; Randy L.Method for irradiating cells
US5459030Jun 2, 1993Oct 17, 1995Steritech, Inc.Synthetic media compositions for inactivating bacteria and viruses in blood preparations with 8-methoxypsoralen
US5466573Aug 5, 1994Nov 14, 1995Thomas Jefferson UniversityPlatelet storage method in a medium containing acetate and phosphate
US5474891Jun 16, 1994Dec 12, 1995Thomas Jefferson UniversityPlasma-based platelet concentrate preparations with additive
US5482828Mar 7, 1994Jan 9, 1996Steritech, Inc.Synthetic media compositions and methods for inactivating bacteria and viruses in blood preparations with 8-methoxypsoralen
US5487971Sep 28, 1993Jan 30, 1996American National Red CrossSynthetic, plasma-free, transfusible storage medium for red blood cells and platelets
US5494590Jun 11, 1992Feb 27, 1996Becton DickinsonMethod of using anticoagulant solution in blood separation
US5503721Oct 7, 1994Apr 2, 1996Hri Research, Inc.Method for photoactivation
US5512187Sep 1, 1994Apr 30, 1996Baxter International Inc.Methods for processing red cell products for long term storage free of microorganisms
US5516629Sep 22, 1994May 14, 1996Cryopharm CorporationPhotoinactivation of viral and bacterial blood contaminants using halogenated coumarins
US5527704May 4, 1995Jun 18, 1996Baxter International Inc.Apparatus and method for inactivating viral contaminants in body fluids
US5536238Aug 11, 1994Jul 16, 1996Baxter International Inc.Systems and methods for simultaneously removing free and entrained contaminants in fluids like blood using photoactive therapy and cellular separation techniques
US5545516Feb 18, 1994Aug 13, 1996The American National Red CrossInactivation of extracellular enveloped viruses in blood and blood components by phenthiazin-5-ium dyes plus light
US5547635Nov 10, 1993Aug 20, 1996Duthie, Jr.; Robert E.Sterilization method and apparatus
US5550111Nov 3, 1994Aug 27, 1996Temple University-Of The Commonwealth System Of Higher EducationDual action 2',5'-oligoadenylate antiviral derivatives and uses thereof
US5556958Jun 3, 1994Sep 17, 1996Steritech, Inc.Inactivation of pathogens in clinical samples
US5556993Jun 5, 1995Sep 17, 1996Steritech, Inc.Compounds for the photodecontamination of pathogens in blood
US5557098Dec 20, 1994Sep 17, 1996Baxter International Inc.System to identify bags disinfected by irradiation which punches holes in a polarized portion of the bag to indicate processing thereof
US5559250Jun 5, 1995Sep 24, 1996Steritech, Inc.Treating red blood cell solutions with anti-viral agents
US5569579Mar 17, 1994Oct 29, 1996Thomas Jefferson UniversitySynthetic-based platelet storage media
US5571666May 31, 1994Nov 5, 1996Oklahoma Medical Research FoundationThiazine dyes used to inactivate HIV in biological fluids
US5578736May 31, 1995Nov 26, 1996Steritech, Inc.Compounds for the photo-decontamination of pathogens in blood
US5585503May 31, 1995Dec 17, 1996Steritech, Inc.Compounds for the photodecontamination of pathogens in blood
US5587490Dec 10, 1993Dec 24, 1996Credit Managers Association Of CaliforniaMethod of inactivation of viral and bacterial blood contaminants
US5593823Nov 14, 1994Jan 14, 1997Cerus CorporationMethod for inactivating pathogens in blood using photoactivation of 4'-primary amino-substituted psoralens
US5597722Jul 13, 1994Jan 28, 1997Baxter International Inc.Method for inactivating pathogens in compositions containing cells and plasma using photoactive compounds and plasma protein reduction
US5607924Jun 6, 1995Mar 4, 1997Pharmacyclics, Inc.DNA photocleavage using texaphyrins
US5618662Jan 21, 1994Apr 8, 1997Cerus CorporationIntravenous administration of psoralen
US5622867Oct 19, 1994Apr 22, 1997Lifecell CorporationProlonged preservation of blood platelets
US5624435Jun 5, 1995Apr 29, 1997Cynosure, Inc.Ultra-long flashlamp-excited pulse dye laser for therapy and method therefor
US5624794Jun 5, 1995Apr 29, 1997The Regents Of The University Of CaliforniaMethod for extending the useful shelf-life of refrigerated red blood cells by flushing with inert gas
US5625079Jun 5, 1995Apr 29, 1997Cerus CorporationSynthesizing psoralen compounds useful as intermediates
US5628727Aug 15, 1995May 13, 1997Hakky; Said I.Extracorporeal virioncidal apparatus
US5639376Nov 30, 1994Jun 17, 1997Hemasure, Inc.Process for simultaneously removing leukocytes and methylene blue from plasma
US5639382Jun 7, 1995Jun 17, 1997Baxter International Inc.Systems and methods for deriving recommended storage parameters for collected blood components
US5643334Feb 7, 1995Jul 1, 1997Esc Medical Systems Ltd.Method and apparatus for the diagnostic and composite pulsed heating and photodynamic therapy treatment
US5652096Apr 20, 1994Jul 29, 1997Hri Research Inc.Identification of allele specific nucleic acid sequences by hybridization with crosslinkable oligonucleotide probes
US5653887Jun 7, 1995Aug 5, 1997Cobe Laboratories, Inc.Apheresis blood processing method using pictorial displays
US5654443May 31, 1995Aug 5, 1997Cerus CorporationCompounds for the photo decontamination of pathogens in blood
US5656154Jun 7, 1995Aug 12, 1997Organ, Inc.Method and apparatus for separating a fluid into components and for washing a material
US5656498Feb 21, 1995Aug 12, 1997Nippon Telegraph And Telephone CorporationFreeze-dried blood cells, stem cells and platelets, and manufacturing method for the same
US5658530Apr 3, 1996Aug 19, 1997Purepulse Technologies, Inc.Photocatalyst and pulsed light synergism in deactivation of contaminants
US5658722Nov 25, 1994Aug 19, 1997New York Blood Center, Inc.Process for the sterilization of biological compositions using UVA1 irradiation
US5683661Jun 7, 1995Nov 4, 1997Cerus CorporationDevice and method for photoactivation
US5683768Dec 21, 1994Nov 4, 1997Baxter International Inc.Plastic formulations for platelet storage containers and the like
US5686436Oct 4, 1994Nov 11, 1997Hiv Diagnostics, Inc.Multi-faceted method to repress reproduction of latent viruses in humans and animals
US5688475Aug 19, 1996Nov 18, 1997Duthie, Jr.; Robert E.Sterilization method and apparatus
US5691132Nov 14, 1994Nov 25, 1997Cerus CorporationMethod for inactivating pathogens in red cell compositions using quinacrine mustard
US5698524Jun 5, 1995Dec 16, 1997Mach, Deceased; WalterMethod of treating a patient suffering from a viral infection
US5698677May 5, 1995Dec 16, 1997Immuno AktiengesellschaftStable preparation for the treatment of blood coagulation disorders
US5702684Nov 14, 1995Dec 30, 1997Nalco Chemical CompanyMethod of use of compositions of biocides and fluorescent indicators to control microbial growth
US5707401Feb 24, 1995Jan 13, 1998Esc Medical Systems, Ltd.Apparatus for an efficient photodynamic treatment
US5709653Jul 25, 1996Jan 20, 1998Cordis CorporationPhotodynamic therapy balloon catheter with microporous membrane
US5709991Jun 7, 1995Jan 20, 1998Cerus CorporationProralen inactivation of microorganisms and psoralen removal
US5709992Jul 25, 1995Jan 20, 1998Rubinstein; Alan I.Method for disinfecting red blood cells
US5712085Jun 5, 1995Jan 27, 1998Cerus Corporation5'-(4-amino-2-oxa)butye-4,4', 8-trinethylpsoralen in synthetic medium
US5712086Jun 7, 1995Jan 27, 1998New York Blood Center, Inc.Process for transfusing cell containing fractions sterilized with radiation and a quencher of type I and type II photodynamic reactions
US5714328Jun 7, 1995Feb 3, 1998Board Of Regents, The University Of Texas SystemRNA photocleavage using texaphyrins
US5736313Oct 20, 1995Apr 7, 1998The United States Of America As Represented By The Secretary Of The NavyMethod of lyophilizing platelets by incubation with high carbohydrate concentrations and supercooling prior to freezing
US5739013Sep 24, 1993Apr 14, 1998Budowsky; Edward I.Enzymatic synthesis of 2',5'-oligoadenylate-2',3'-cyclophosphates and treatment of papillomaviruses
US5753428Jul 12, 1996May 19, 1998Kawasumi Laboratories, Inc.Synthetic composition for storage of platelets comprising glycerol
US5756553Jul 13, 1995May 26, 1998Otsuka Pharmaceutical Factory, Inc.Medical material and process for producing the same
US5769839Sep 5, 1996Jun 23, 1998Pall CorporationLong-term blood components storage system and method
US5772960Dec 3, 1996Jun 30, 1998Jms Co., Ltd.Container for medical use
US5783093Jan 2, 1997Jul 21, 1998Haemonetics CorporationBlood cell concentrates using a single solution for anticoagulation and preservation
US5789150Oct 3, 1996Aug 4, 1998New York Blood Center, Inc.Process for the sterilization of biological compositions using UVA1 irradiation
US5789151May 15, 1997Aug 4, 1998The Regents Of The University Of CaliforniaProlonged cold storage of red blood cells by oxygen removal and additive usage
US5789601Apr 21, 1995Aug 4, 1998Baxter International Inc.Method of inactivation of viral and bacterial blood contaminants
US5798238Jun 7, 1995Aug 25, 1998Baxter International Inc.Method of inactivation of viral and bacterial blood contaminants with quinolines as photosensitizer
US5798523Jul 19, 1996Aug 25, 1998Theratechnologies Inc.Irradiating apparatus using a scanning light source for photodynamic treatment
US5817519Nov 1, 1996Oct 6, 1998Bayer CorporationAutomated method and device for identifying and quantifying platelets and for determining platelet activation state using whole blood samples
US5827644Jul 12, 1996Oct 27, 1998Oklahoma Medical Research FoudationThiazine dyes used to inactivate HIV in biological fluids
US5834198Dec 18, 1996Nov 10, 1998Boehringer Mamnnheim GmbhSelective photoinducted flavin-dependent cleavage of RNA at G-U base pairs and kits therefor
US5840252Oct 18, 1996Nov 24, 1998Baxter International Inc.Method of manufacturing and storing medical solutions
US5843459Jan 19, 1996Dec 1, 1998Human Gene Therapy Research InstituteDifferential inactivation of nucleic acids by chemical modification
US5846961Jun 7, 1995Dec 8, 1998Hiv Diagnostics, Inc.Multi-faceted method to repress reproduction of latent viruses in humans and animals
US5854967Feb 25, 1997Dec 29, 1998Cerus CorporationDevice and method for photoactivation
US5866074Dec 20, 1996Feb 2, 1999Baxter International Inc.Systems for quantifying the illumination characteristics of vessels such as blood processing containers with respect to light energy
US5869701Jun 5, 1995Feb 9, 1999Baxter International Inc.Method of inactivation of viral and bacterial blood contaminants
US5871900Nov 7, 1997Feb 16, 1999Cerus CorporationMethod of inactivating pathogens in biological fluids using photoactivated 5-primaryamino psoralens
US5876676May 16, 1996Mar 2, 1999Brigham And Women's Hospital, Inc.Preservation of blood platelets
US5899874Apr 30, 1993May 4, 1999Stiftelsen For Medicinsk-Teknisk UtvecklingPreparation and method for production of platelet concentrates with significantly prolonged viabilty during storage
US5906915Oct 31, 1996May 25, 1999Baxter International Inc.Method for storing red cells using reduced citrate anticoagulant and a solution containing sodium, citrate, phosphate, adenine and mannitol
US5908742Aug 5, 1996Jun 1, 1999Cerus CorporationSynthetic media for blood components
US5919614May 8, 1997Jul 6, 1999Lifecell CorporationComposition comprising three platelet lesion inhibitors for platelet storage
US5922278Nov 19, 1996Jul 13, 1999Baxter International Inc.Method and apparatus for inactivating contaminants in biological fluid
US5935092Dec 19, 1995Aug 10, 1999Baxter International Inc.Systems and methods for removing free and entrained contaminants in plasma
US5955256Jun 7, 1995Sep 21, 1999Baxter International Inc.Method of inactivation of viral and bacterial blood contaminants
US5955257Oct 21, 1997Sep 21, 1999Regents Of The University Of MinnesotaInfusible grade short-term cell storage medium for mononuclear cells
US5965349Mar 17, 1997Oct 12, 1999Cerus CorporationMethods of photodecontamination using synthetic media
US5972593Mar 30, 1998Oct 26, 1999Cerus CorporationMethod for the photo-decontamination of pathogens in blood using 4'-primary amino psoralens
US5976884Dec 29, 1998Nov 2, 1999Baxter International Inc.Methods for quantifying photoreactions in light activated materials
US5981163Dec 23, 1994Nov 9, 1999New York Blood Center, Inc.Process for the sterilization of biological compositions using irradiation and quenchers of type I and type II photodynamic reactions
US6004741Oct 23, 1997Dec 21, 1999Cerus CorporationMethod for the photoactivation of 4' and 5' primary aminoalkyl psoralens in platelet preparations
US6004742Nov 3, 1997Dec 21, 1999Cerus CorporationMethod for inactivation of pathogens in platelets using 4' and 5' primary amino-substituted psoralens
US6017691Feb 9, 1996Jan 25, 2000Cerus Corporation4'-primary aminopsoralen and platelet compositions
US6020333Apr 11, 1995Feb 1, 2000Berque; JeanCompositions containing in particular, riboflavin, for the local prevention of diseases of the genital and rectal mucus membranes
US6060233Apr 15, 1998May 9, 2000Biostore New Zealand, LtdMethods for the lyophilization of platelets, platelet membranes or erythrocytes
US6063624Jun 9, 1997May 16, 2000Baxter International Inc.Platelet suspensions and methods for resuspending platelets
US6077659Nov 16, 1994Jun 20, 2000New York Blood Center, Inc.Vitamin E and derivatives thereof prevent potassium ion leakage and other types of damage in red cells that are virus sterilized by phthalocyanines and light
US6087141Aug 4, 1998Jul 11, 2000New York Blood Center, Inc.Process for the sterilization of biological compositions and the product produced thereby
US6093725Jan 6, 1998Jul 25, 2000Cerus CorporationFrangible compounds for pathogen inactivation
US6106773Sep 24, 1998Aug 22, 2000American National Red CrossPathogen inactivating compositions for disinfecting biological fluids
US6133460Nov 20, 1998Oct 17, 2000Cerus CorporationPsoralens for pathogen inactivation
US6143490Jun 7, 1995Nov 7, 2000Cerus CorporationTreating blood or blood product with a compound having a mustard and a nucleic acid binding moiety
US6171777Jun 7, 1995Jan 9, 2001Cerus CorporationTreating blood or blood product with a compound having a mustard and a nucleic acid binding moiety
US6177441Jan 23, 1998Jan 23, 2001Cerus CorporationTreating red blood cell solutions with anti-viral agents
US6194139Sep 28, 1999Feb 27, 2001Cerus CorporationMethods for photodecontamination of pathogens in blood
US6197207May 21, 1997Mar 6, 2001Baxter International Inc.Method of reducing the possibility of transmission of spongiform encephalopathy diseases by blood products
US6214534May 24, 1996Apr 10, 2001New York Blood Center, Inc.Biological compositions containing quenchers of type I and type II photodynamic reactions
US6218100Jul 24, 1997Apr 17, 2001Cerus Corporation5′-primary aminoalkyl psoralen compositions with platelets
US6258319Sep 4, 1998Jul 10, 2001Cerus CorporationDevice and method for photoactivation
US6258577Jul 21, 1998Jul 10, 2001Gambro, Inc.Method and apparatus for inactivation of biological contaminants using endogenous alloxazine or isoalloxazine photosensitizers
US6268120Oct 19, 1999Jul 31, 2001Gambro, Inc.Isoalloxazine derivatives to neutralize biological contaminants
US6270952Jul 6, 1998Aug 7, 2001Cerus CorporationMethods for quenching pathogen inactivators in biological materials
US6277337Jul 20, 1999Aug 21, 2001Gambro, Inc.Method and apparatus for inactivation of biological contaminants using photosensitizers
US6410219Mar 30, 2000Jun 25, 2002Cerus CorporationTreating blood or blood products with compounds which have a mustard, azirdinium or aziridine group and a nucleic acid binding group
US6413714May 26, 2000Jul 2, 2002New York Blood Center, Inc.Process for the sterilization of biological compositions and the product produced thereby
US6420570Jan 22, 2001Jul 16, 2002Cerus CorporationPsoralen compounds
US6433343Jul 8, 1999Aug 13, 2002Cerus CorporationDevice and method for photoactivation
US6455286Feb 9, 2000Sep 24, 2002Cerus CorporationPsoralens for pathogen inactivation
US6461567Jun 11, 2001Oct 8, 2002Cerus CorporationDevice and method for photoactivation
US6469052Jan 22, 2001Oct 22, 2002Cerus CorporationCompounds for the photodecontamination of pathogens in blood
US6503699Aug 16, 1999Jan 7, 2003Cerus CorporationMethod for photodecontamination of pathogens in blood using 5'-primary aminopsoralens
US6514987Jul 2, 2000Feb 4, 2003Cerus CorporationFrangible compounds for pathogen inactivation
US6544727Jun 7, 1996Apr 8, 2003Cerus CorporationMethods and devices for the removal of psoralens from blood products
US6565802Jun 3, 1999May 20, 2003Baxter International Inc.Apparatus, systems and methods for processing and treating a biological fluid with light
US6576201Jan 28, 2000Jun 10, 2003Baxter International Inc.Device and method for pathogen inactivation of therapeutic fluids with sterilizing radiation
US6586749Jun 25, 2002Jul 1, 2003Cerus CorporationDevice and method for photoactivation
US6596230Jan 28, 2000Jul 22, 2003Baxter International Inc.Device and method for pathogen inactivation of therapeutic fluids with sterilizing radiation
US6680025Sep 6, 2002Jan 20, 2004Cerus CorporationDevice and method for photoactivation
US6686480Jun 3, 2002Feb 3, 2004Cerus CorporationCompounds for the photodecontamination of pathogens in blood
US20010053547Jul 6, 2001Dec 20, 2001Slichter Sherrill J.Method for preparing a platelet composition
US20020022215Jun 29, 2001Feb 21, 2002Sobsey Mark D.Inactivation of small non-enveloped viruses and other microbial pathogens by porphyrins
USRE32874May 8, 1986Feb 21, 1989Gail A. RockPlasma-free medium for platelet storage
EP0066886B1Jun 8, 1982Feb 26, 1986Lee H. KronenbergInactivated target cells, methods of using same and vaccines and diagnostic kits containing same
EP0108588B1Oct 31, 1983Jun 28, 1989Gail Ann RockPlasma-free medium for platelet storage and its production
EP0124363B1Apr 27, 1984Dec 19, 1990Diamond Scientific Co.Photochemical decontamination treatment of whole blood or blood components
EP0184331A2Nov 5, 1985Jun 11, 1986E.I. Du Pont De Nemours And CompanyPsoralen inactivation of human T-cell leukemia virus III (HTLV III)
EP0196515A1Mar 13, 1986Oct 8, 1986Baxter Travenol Laboratories, Inc.Photodynamic inactivation of virus in therapeutic protein compositions
EP0491757B2Sep 8, 1990Jan 9, 2002BLUTSPENDEDIENST DER LANDESVERBÄNDE DES DEUTSCHEN ROTEN KREUZES NIEDERSACHSEN, OLDENBURG UND BREMEN G.G.m.b.H.Process for inactivating viruses in blood and blood products
EP0510185B1Oct 30, 1991Dec 11, 1996Baxter International Inc.Blood platelet storage medium
EP0525138B1Dec 20, 1991Sep 16, 1998Baxter International Inc.A device for eradicating contaminants in fluids
EP0590514B1Sep 23, 1993Jun 26, 1996Senju Pharmaceutical Co., Ltd.Blood preserving composition and method for preserving blood
EP0679398B1Sep 9, 1992Jul 11, 2001Eisai Co., Ltd.Immunopotentiating and infection protective agent and production thereof
EP0754461A3Jul 15, 1996Mar 31, 1999Kawasumi Laboratories, Inc.A preservation solution of blood platelets
EP0801072B1Mar 13, 1997Jun 5, 2002Boehringer Mannheim GmbhSelective photoinduced flavin-dependent cleavage of RNA at G-U base pairs
FR2674753B1 Title not available
FR2715303A1 Title not available
FR2718353B3 Title not available
GB2034463B Title not available
JP59020218A Title not available
Non-Patent Citations
Reference
1Abdursashidova et al, "Polynucleotide-protein interactions in the translation system. Identification of proteins interacting with tRNA in the A- and P-sites of E. Coli ribosomes," 1979 Nucleic Acids Res. 6(12):3891-3909.
2Belikov et al, "Choice of an Effective Method of Analysis of Riboflavin and Stud of its Stability", DrugU, AN 1988, 37(2), Suppl. S26, 1988-39621.
3Benade et al, "Inactivation of free and cell-associated human immunodeficiency virus in platelet suspensions by aminomethyltrimethylpsoralen and ultraviolet light", Transfusion, vol. 34, No. 8, 1994, pp. 680-684.
4Blundell et al, "A prospective, randomized study of the use of platelet concentrates irradiated with ultraviolet-B light in patients with hematologic malignancy", Transfusion, 1996; 36:296-302.
5Brodie et al, "Mode of Action of Vitamin K in Microorganisms," 1966, Vitam. Horm 24:447-463.
6Budowsky et al, "Induction of polynucleotide-protein cross-linkages by ultraviolet irradiation," 1986, Eur. J. Biochem. 159:95-101.
7Budowsky et al, "Polynucleotide-Protein Cross-Links Induced by Ultraviolet Light and Their Use for Structural Investigation of Nucleoproteins," 1989, Progress in Nucleic Acid Res. And Mol. Bio 37:1-65.
8Budowsky et al, "Preparation of cyclic 2',3'-monophosphates of oligoadenylates (A2'p)nA>p and A3'p(A2'p)n-1A>, p," 1994, Eur. J. Biochem. 220:97-104.
9Budowsky et al, "Preparation of cyclic 2′,3′-monophosphates of oligoadenylates (A2′p)nA>p and A3′p(A2′p)n-1A>, p," 1994, Eur. J. Biochem. 220:97-104.
10Budowsky et al, "Principles of selective inactivation of viral genome. VI, Inactivation of the infectivity of the influenza virus by the action of beta-propiolactone,", 1991, Vaccine 9:398-402.
11Budowsky et al, "Principles of selective inactivation of viral genome. VI, Inactivation of the infectivity of the influenza virus by the action of β-propiolactone,", 1991, Vaccine 9:398-402.
12Budowsky et al, "Principles of selective inactivation of viral genome. VII, Some peculiarities in determination of viral suspension infectivity during inactivation by chemical agents,", 1991, Vaccine 9:473-476.
13Budowsky et al, "Principles of selective inactivation of viral genome. VIII, The influence of beta-propiolactone on immunogenic and protective activities of influenza virus," 1993, Vaccine 11(3):343-348.
14Budowsky et al, "Principles of selective inactivation of viral genome. VIII, The influence of β-propiolactone on immunogenic and protective activities of influenza virus," 1993, Vaccine 11(3):343-348.
15Budowsky, EI, "Problems and Prospects for Preparation of Killed Antiviral Vaccines", 1991, Adv. Virus Res. 39:255-290.
16Cadet et al., "Mechanisms and Products of Photosensitized Degradation of Nucleic Acids and Related Model Compounds," 1983, Israel J. Chem. 23:420-429.
17Capon et al, "Effective Ultraviolet Irradiation of Platelet Concentrates in Teflon Bags", Transfusion, 1990; 30:678-681.
18Chow et al., "Recognition of G-U mismatches by tris(47-diphenyl-110-phenanthroline)rhodium(III)," 1992 Biochemistry 31(24):5423-5429.
19Clarke, H., "A photodecomosition fluorimetric method for determination of riboflavin in the various constituents of blood", Int. J. Vit. Nutr. Res., 1977, 47(4):356-360.
20Communication pursuant to Article 96(2) EPC from corresponding EP Application 03 751 901.4-1219, dated Oct. 20, 2006.
21Communication pursuant to Article 96(2) EPC from corresponding EP Application 03 751 901.4—1219, dated Oct. 20, 2006.
22Corash et al, "Use of 8-Methoxypsoralen and long wavelength ultraviolet radiation for decontamination of platelet concentrates", Blood Cells, 1992, 18:57-74.
23 *Corash et al. (Novel processes for inactivation of leukocytes to prevent transfusion associated graft-versus-host disease, Bone Marrow Transplantation (2004) 33, 1-7).
24Corash, L; "Inactivation of Viruses, Bacteria, Protozoa, and Leukocytes in Platelet Concentrates", Vox Sanguinis, 1998; 74 (suppl. 2): 173-176.
25Deutsch, E. "Vitamin K in Medical Practice: Adults," 1966, Vitam. Horm., 24:665-680.
26Dodd et al, "Inactivation of Viruses in platelet suspensions that retain their in vitro characteristics: comparison of psoralen-ultraviolet A and merocyanine 540-visible light methods", Transfusion, vol. 31, No. 6, 1991, pp. 483-490.
27Dodd, RY, "Viral inactivation in platelet concentrates", TCB, 1994, 3:181-186.
28Ennever et al, "Short Communication Photochemical Reactions of Riboflavin: Covalent Binding to DNA and to Poly (dA) Poly (dT)," 1983 Pediatr. Res. 17:234-236.
29Fast et al, "Functional inactivation of white blood cells by Mirasol treatment", transfusion, 2006; 46:642-648.
30Fast et al, "Inhibition of xenogeneic GVHD by PEN110 treatment of donor human PBMNCs", Transfusion, 2004; 44:282-285.
31Fast et al, "PEN110 treatment functionally inactivates the PBMNCs present in RBC units: comparison to the effects of exposure to gamma irradiation", Transfusion, 2002; 42:1318-1325.
32Friedman et al, "Reducing the Infectivity of Blood Components -What we have learned", 1995, Immunological Investigations 24 1&2: 49-71.
33Friedman et al, "Reducing the Infectivity of Blood Components —What we have learned", 1995, Immunological Investigations 24 1&2: 49-71.
34Gasparro, F.P., "Symposium-in-Print: Psoralen Photobiology: Recent Advances", Photochemistry and Photobiology, 1996, 63(5):553-557.
35Ghiron et al, "The Flavin-sensitized Photoinactivation of Trypsin," 1965, Photochemistry and Photobiology 4:13-26.
36Goodrich et al, "The design and development of selective, photoactivated drugs for sterilization of blood products," 1997, Drugs of the Future 22(2):159-171.
37Grana et al, "Use of 8-methoxypsoralen and Ultraviolet-A Pretreated Platelet Concentrates to Prevent Alloimmunication Against Class I Major Histocompability Antigens", Blood, 1991; 77:2530-2537.
38Grijzenhout et al, "UVB Irradiation of Human Platelet Concentrates does not Prevent HLA Alloimmunization in Recipients", Blood, 1994, No. 10, pp. 3524-3531.
39Hanchett et al, "Development of a Simple, Clinically Applicable Closed-System for the Photochemical Treatment of Peripheral Blood Mononuclear Cells (PBMC) for Allogeneic Cell Immune Therapy", present at 42nd Annual Meeting of the American Society of hematology, 2000, abstract., www.cerus.com.
40Hanson, C.V., "Photochemical Inactivation of Viruses with Psoralens: An Overview", Blood Cells, 1992, 18:7-25.
41Hanson, CV, "Photochemical Inactivation of Deoxyribonucleic and Ribonucleic Acid Viruses by Chlorpromazine", Antimicrob. Agent Chemother., 1979, 15(3), pp. 461-464.
42Hei et al, "Elimination of cytokine production in stored platelet concentrate aliquots by photochemical treatment with psoralen plus ultraviolet A light", Transfusion, vol. 39, 1999, pp. 239-248.
43Heinmets et al, "Inactivation of Viruses in Plasma by Photosensitized Oxidation", Walter Reed Army Institute of Research, Nov. 1955, pp. 1-16.
44 *Hiroshi et al. Transplantation, vol. 84(9), Nov. 15, 2007, pp. 1174-1182.
45Hoffmann et al "DNA Strand Breaks in mammalian Cells Exposed to Light in the Presence of Riboflavin and Tryptophan," Photochemistry and Photobiology, vol. 29 pp. 299-303 (1979).
46International Search Report for PCT/US99/16404.
47Isaacs et al, "Synthesis and Characterization of New Psoralen Derivatives with Superior Photoreactivity with DNA and RNA", Biochemistry, vol. 16, No. 6, 1977, pp. 1058-1064.
48Ivanchenko et al, "The photochemistry of purine components of nucleic acids. I. The efficiency of photolysis of adenine and guanine derivatives in aqueous solution,", 1974, Nucleic Acids Res. 2(8):1365-1373.
49Johnson et al, "Photochemical Treatment of Donor Lymphocytes Inhibited Their Ability to Facilitate Donor Engraftment or Increase Donor Chimerism after Nonmyeloablative Conditioning or Establishment of Mixed Chimerism", Bio of Blood and MarrowTransplantation, 2002, 8:581-587.
50Joshi, P.C., "Comparison of the DNA-damaging property of photosensitized riboflavin via singlet oxygen (1O2) and superoxide radical (Oi) mechanisms," (1985) Toxicology Letters 26:211-217.
51Kabuta et al. (1978), "Inactivation of viruses by dyes and visible light," Chem. Abstracts 87(1), Abstract No. 400626.
52Kale et al. (1992), "Assesment of the genotoxic potential of riboflavin and lumiflavin; B. Effect of light," Mutation Res. 298:17-23.
53Klebanoff et al, "The risk of Childhood Cancer after Neonatal Exposure ot Vitamin K," 1993, New Eng. J. Med, 329(13):905-908.
54Kobayashi et al. (1983), "The molecular mechanism of mutation. Photodynamic action of flavins on the RNA-synthesizing system," Chem. Abstracts 98(1), Abstract No. 1200.
55Korycka et al, "Photodegradation of DNA with fluorescent light in the presence of riboflavin, and photoprotection by flavin triplet-state quenchers," (1980) Biochimica et Biophysica Acta 610:229-234.
56Kovalsky et al, "Laser (Two-Quantum) Photolysis of Polynucleotides and Nucleoproteins: Quantitative Processing of Results," 1990 Photochemistry and Photobiology 5(6):659-665.
57Kuratomi et al, "Studies on the Interactions Between DNA and Flavins," (1977) Biochemica et Biophysica Acts 476:207-217.
58Leontis et al, "The 5SrRNA loop E: Chemical probing and phylogenetic data versus crystal structure", 1998, RNA 4:1134-1153.
59Lim et al, "Chemical probing of tDNAPhewith transition metal complexes: a structural comparison of RNA and DNA," 1993, Biochemistry 32:11029-11034.
60Lin et al, "Use of 8-Methoxypsoralen and Long-Wavelength Ultraviolet Radiation for Decontamination of Platelet Concentrates", Blood, vol. 74, No. 1, 1989, pp. 517-525.
61Maddox, J., "The working of vitamin K," (1991) Nature 353(6346):695.
62Maksimovich et al, "Content of basal water-soluble vitamins and of carotene in stored donor blood", Probl. Gemtol I Pereliv Krovi, 1962, 792);40-44, abstract only.
63Malik et al, "New Trends in Photobiology-Bactericidal Effects of Photoactivated Porhyrins-an Alternative Approach to Antimicrobial Drugs," J. Photochem. Photobiol Pt.B: Biology, 1990, V:281-293.
64Malik et al, "New Trends in Photobiology—Bactericidal Effects of Photoactivated Porhyrins—an Alternative Approach to Antimicrobial Drugs," J. Photochem. Photobiol Pt.B: Biology, 1990, V:281-293.
65Matsuki et al, "Acceleration of methaemoglobin reduction by riboflavin in human erthrocytes", Br. J. Haematology, 1978, 39(4):523-528.
66Matthews et al., "Photodynamic therapy of viral contaminants with potential for blood banking applications," (1988) Transfusion 28(1):81-83.
67McCord, EF, "Chemically induced dynamic nuclear polarization studies of yeast", 1984, Biochemistry 23:1935-1939.
68Merenstein et al, (Vitamin K ad Hoc Task Force), "Controversies concerning vitamin K and the newborn," 1993, Pediatrics 901(5):1001-1005
69Merrifield et al, "Factors affecting the antimicrobial acitivity of Vitamin K5," 1965, Appl. Microbio. 13(5):766-770.
70Merrifield et al, Vitamin K as a fungistatic agent, 1965, Appl. Microbio. 13(5):660-662.
71Moroff et al, "Factors Influencing Virus Inactivation and Retention of Platelet Properties Following Treatment with Aminomethyltrimethylpsoralen and Ultraviolet A Light", Blood Cells, 1992, 18:43-56.
72Murata et al., "Effect of vitamins other than vitamin C on viruses: virus-inactivating activity of vitamin K5" (1983) J. Nutr. Sci. Vitaminol (Tokyo) 29(6):721-724.
73Naseem et al., "Effect of alkylated and intercalated DNA on the generation of superoxide anion by riboflavin," (1988) Bioscience Reports 8(5):485-492.
74Neyndorff et al., "Development Of A Model To Demonstrate Photosensitizer-mediated Viral Inactivation in Blood," Quadra Logic Technologies, Inc., and the Department of Microbiology, U. of British Columbia, 1990, pp. 485-490.
75North et al, "Photosensitizers as Virucidal Agents", J. Photochem. Photobiol., 1993, 17(2), pp. 99-108.
76Peak et al., "DNA Breakage Caused by 334-nm Ultraviolet Light is Enhanced by Naturally Occurring Nucleic Acid Components and Nucleotide Coenzymes," 1984 Photochemistry and Photobiology 39(5):713-716.
77Piette et al., "Alteration of Guanine Residues During Proflavine Mediated Photosensitization of DNA," (1981) Photochemistry and Photobiology 33:325-333.
78Piette et al., "Production of Breaks in Single- and Double-Stranded Forms of Bacteriophage X174 DNA by Proflavine and Light Treatment," (1979) Photochemistry and Photobiology 30:369-378.
79Pratt et al, "Vitamin K5 as an Antimicrobial Medicament and Preseravative", 1950, J. Am. Pharm. Assn 39(3):127-134.
80Prodouz et al, "Effects of Two Viral Inactivation Methods on Platelets: Laser-UV Radiation and Merocyanine 540-Mediated Photoinactivation", Blood Cells, 1992, 18:101-116.
81Prodouz et al, "Inhibition by albumin of merocyanine 540-mediated photosensitization of platelets and viruses", Transfusion, vol. 31, No. 3, 1991, pp. 415-422.
82Purmal et al, "Removal of White Blood Cell and Plasma Proteins from Leukofiltered RBC Concentrates by Inactine Pathogen Inactivation Process", American Association of Blood Banks Meeting, Oct. 2001, Poster.
83Racek et al, "Influence of antioxidants on the quality of stored blood", Vox Sanguinis, 1997, 72(1):16-19.
84Ramu et al, "The Riboflavin-Mediated Photoxidation of Oxorubicin" Cancer Chemother. Pharmacol, 2000, 46(6), 449-458.
85Reinhardt et al, "Virucidal activity of retinal," Antimicrobial Agents and Chemotherapy 16:3, Sep. 1979, p. 421-423.
86Schwartzman, G., "Antibacterial Properties of 4-Amino-2-Methyl-1-Naphthol Hydrocloride," 1948, Proc. Soc. Exp. Biol. Med. 67:376-378.
87Simukova et al, "Conversion of Non-covalent Interactions in Nucleoproteins into Covalent Bonds: UV-Induced Formation of Polynucleotide-Protein Crosslinks in Bacteriophage Sd Virions," 1974, FEVS Letters 38(3):299-303.
88Slichter et al, "Prevention of platelet alloimmunization in dogs with systemic cyclosporine and by UV-irradiation or cyclosporine-loading of donor platelets", Blood, 1987; 69:414-418.
89Slichter et al, "Trial to Reduce Alloimmunization to Platelets Study Group. Leukocyte Reduction and Ultraviolet B irradiation of Platelets to Prevent Alloimmunization and Refractoriness to Platelet Transfusions", NEJM, 1997; 337:1861-1869.
90Snyder, "Storage of platelet concentrates after high-dose ultraviolet B irradiation", Transfusion, 1991; 31:491-496.
91Speck et al., "Further Observations on the Photooxidation of DNA in the Presence of Riboflavin," (1976) Biochimica et Biphysica Acta 435:39-44.
92Spranger, J. "Does vitamin K cause cancer?" 1993, Eur. J. Pediatr. 152(2):174.
93Stassinopoulos et al, "Helinx Technology, Utilized in the Intercept Blood System, Effectively Inactivates Deinoccus radiodurans, a Bacterium with Highly Efficient DNA Repair", Abstract presented at the 44th Annual Meeting of the American Society of Hematology, 2002, Blood 100(11)(part 2 of 2): p. 708a, 2002, Abstract #2790.
94Tandy et al, "Platelet Transfusions Irradiated with Ultraviolet-B light may have a Role in Reducing Recipient Alloimmunization", Blood Coagul Fibrinolysis, 1991; 2:383-388.
95Truitt et al, "Photochemical Treatment with S-59 Psoralen and Ultraviolet A light to Control the Fate of Naive or Primed T Lymphocytes In Vivo, after Allogeneic Bone Marrow Transplantation", J. Immunology, 1999, 163:5145-5156.
96Tsugita. et al., "Photosensitized inactivation of ribonucleic acids in the presence of riboflavin," (1965) Biochim. Biophys. Acta 103:360-363.
97Uehara et al, "Effect of adenine on the riboflavin-sensitized photoreaction. I. Effect of adenine on the photodynamic inactivation of yeast alcohol dehydrogenase in the presence of riboflavin,"J. Vitaminology, 17:3,1971,148-154.
98Uehara et al, "Effect of adenine on the riboflavin-sensitized photoreaction. II. Effect of adenine on the photodynamic inactivation of transforming deoxyribonucleic acid in the presence of riboflavin", 1972, J Biochemistry, 71:5, 805-810.
99Van Marwijk Kooy et al, "Irradiation of platelets with UV-B light exposes fibrinogen binding sites via an intracellular mechanism", Br. J. Haematol., 1990; 76:531-536.
100Van Prooijen et al, "Evaluation of a new UVB source for irradiation of platelet concentrates", , Br. J. Haematol, 1990; 75:573-577.
101Vest, M., "Vitamin K in medical practice; pediatrics," 1966, Vitami. Horm. 24:649-663.
102Webb et al, "Mutagenesis in Escherichia coli by Visible Light," 1967, Science 156:1104-1105.
103Yang et al, "Vitamin K5 as a Food Preservative," 1958 Food Technology 501-504.
Classifications
U.S. Classification424/93.7, 424/93.72, 435/173.3, 435/366, 435/372, 435/173.1, 435/325, 435/2, 435/363
International ClassificationC12N5/00, A01N1/02, C12N13/00
Cooperative ClassificationA61K35/14, A61K31/525, A61K41/0023, A61K35/19, A01N1/0215, A01N1/0226
European ClassificationA61K35/19, A61K41/00H, A61K35/14, A61K31/525
Legal Events
DateCodeEventDescription
Nov 8, 2006ASAssignment
Owner name: NAVIGANT BIOTECHNOLOGIES, INC., COLORADO
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:GOODRICH, RAYMOND P.;LI, JUNZHI;REEL/FRAME:018496/0582;SIGNING DATES FROM 20061026 TO 20061027
Apr 27, 2007ASAssignment
Owner name: NAVIGANT BIOTECHNOLOGIES, LLC, COLORADO
Free format text: CONVERSION;ASSIGNOR:NAVIGANT BIOTECHNOLOGIES, INC.;REEL/FRAME:019224/0016
Effective date: 20070101
Jul 28, 2008ASAssignment
Owner name: CARIDIANBCT BIOTECHNOLOGIES, LLC., COLORADO
Free format text: CHANGE OF NAME;ASSIGNOR:NAVIGANT BIOTECHNOLOGIES, LLC;REEL/FRAME:021301/0079
Effective date: 20080714
May 21, 2009ASAssignment
Owner name: CITICORP TRUSTEE COMPANY LIMITED, UNITED KINGDOM
Free format text: IP SECURITY AGREEMENT SUPPLEMENT;ASSIGNOR:CARIDIANBCT BIOTECHNOLOGIES, LLC;REEL/FRAME:022714/0560
Effective date: 20090131
Jul 16, 2010ASAssignment
Owner name: CITICORP TRUSTEE COMPANY LIMITED, AS SECURITY AGEN
Free format text: SECURITY AGREEMENT SUPPLEMENT;ASSIGNOR:CARIDIANBCT BIOTECHNOLOGIES, LLC;REEL/FRAME:024686/0972
Effective date: 20100520
Apr 28, 2011ASAssignment
Owner name: CARIDIANBCT BIOTECHNOLOGIES, LLC, COLORADO
Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CITICORP TRUSTEE COMPANY LIMITED, AS SECURITY AGENT;REEL/FRAME:026192/0547
Effective date: 20110413
Feb 16, 2012ASAssignment
Owner name: TERUMO BCT BIOTECHNOLOGIES, LLC, COLORADO
Free format text: CHANGE OF NAME;ASSIGNOR:CARIDIANBCT BIOTECHNOLOGIES, LLC.;REEL/FRAME:027715/0552
Effective date: 20120104
Mar 18, 2013FPAYFee payment
Year of fee payment: 4