Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS7710423 B2
Publication typeGrant
Application numberUS 11/085,500
Publication dateMay 4, 2010
Filing dateMar 21, 2005
Priority dateMar 21, 2005
Fee statusPaid
Also published asCA2535115A1, CN1838071A, DE602006013745D1, EP1724727A1, EP1724727B1, US20060209062
Publication number085500, 11085500, US 7710423 B2, US 7710423B2, US-B2-7710423, US7710423 B2, US7710423B2
InventorsSteven Drucker, Henry Sowizral, Kentaro Toyama
Original AssigneeMicrosoft Corproation
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Automatic layout of items along an embedded one-manifold path
US 7710423 B2
Abstract
The coordinates for laying out visual items in two-, three-, or n-dimensional space along an embedded one-manifold or path are calculated and coordinates are generated for placement of the items in a container. A one-manifold may be continuous, discontinuous, be contained entirely within a container or extent beyond a container. The one-manifold may be defined by a set of parameters defining a function, formula or set of points. The container may be a two-dimensional, three-dimensional, or n-dimensional container. Such a mechanism may be employed by a graphics application and may determine the location or positioning of an object or item. The object or item may be one of a set of objects or items. In response to receiving a set of parameters defining a one-manifold, the one-manifold may be embedded within a container. In response to receiving a set of parameters describing aspects of the object or item to be placed within the container, a set of x and y or x, y and z co-ordinates may be generated, which may be sent to a standard graphics interface for display.
Images(9)
Previous page
Next page
Claims(22)
1. A system for positioning objects in a container of a graphics application, the system comprising:
a processor comprising a positioner module that receives parameters associated with placing a set of objects along a curved one-manifold embedded, at least in part, within the container, and provides positioning coordinates along the curved one-manifold based, at least in part, on a non-zero amount of space defined by a dimensional attribute of an individual object, the non-zero amount of space surrounding each object in the set of objects, and wherein placing the set of objects along the curved one-manifold comprises rendering each object with a center line of each object oriented tangentially to the curved one-manifold.
2. The system of claim 1, wherein the one-manifold is configured as a rail, and wherein placing each object comprises modeling each object as having a mass and further comprises hanging each object from the one-manifold configured as a rail.
3. The system of claim 2, wherein the each object is configured to exhibit an inertial characteristic that depends on speed of movement of each object with respect to the one-manifold.
4. The system of claim 1, wherein the set of objects is placed along the one-manifold using a first-object-first/last-object-last paradigm.
5. The system of claim 1, wherein the one-manifold comprises one of a segmented path or a piece-wise smooth path.
6. The system of claim 1, wherein at least one object is placed such that a major surface of the at least one object is orthogonal to an x-y plane of the container.
7. The system of claim 1, wherein the curved one-manifold is a circular one-manifold.
8. The system of claim 1, wherein the curved one-manifold is an open-ended one-manifold.
9. The system of claim 1, wherein the curved one-manifold is derived from a polynomial.
10. A method for placing objects in a container of a graphics application system that is executed on a computer, the method comprising:
defining via the computer, a circular one-manifold of the graphics application system based, at least in part, on a non-zero amount of space surrounding each object of a set of objects that are to be placed along the circular one-manifold, wherein the non-zero amount of space is defined by a dimensional attribute of each object;
determining via the computer, a set of x, y, and z coordinates; and
using the x, y, and z coordinates to place each object with a center line of each object oriented in a radial direction so as to orthogonally intersect the circular one-manifold, wherein the center line of each object is defined as a horizontal axis extending from one edge of the object to an opposing edge of the object.
11. The method of claim 10, wherein placing the set of objects comprises a scaling of at least one of the objects.
12. The method of claim 10, wherein each object comprises a rectangular profile and the horizontal axis extends from a first minor edge of the rectangular profile to an opposing minor edge of the rectangular profile.
13. The method of claim 10, wherein each object comprises a rectangular profile and the horizontal axis extends from a first major edge of the rectangular profile to an opposing major edge of the rectangular profile.
14. The method of claim 13, wherein the set of objects is oriented such that a major face of each object is coplanar to a radial plane defined by the circular one-manifold.
15. A computer-readable storage medium comprising computer-executable instructions for:
defining a curved one-manifold;
placing a set of objects along the curved one-manifold based, at least in part, on a non-zero amount of space defined by a dimensional attribute of an individual object, the non-zero amount of space surrounding each object in the set of objects;
embedding at least a portion of the curved one-manifold in a visible portion of a container of a graphics application; and
translating a scrolling movement of a cursor along the curved one-manifold into a corresponding movement of a position indicator along a horizontal scroll bar, the translating comprising mapping of a position along the one-manifold to a corresponding position of the position indicator along the horizontal scroll bar.
16. The computer-readable storage medium of claim 15, wherein the horizontal scroll bar is a linear scroll bar, and mapping of the position of the cursor along the curved one-manifold to the corresponding position of the position indicator along the linear scroll bar comprises a one-to-one mapping of abscissa values of the cursor along the curved manifold to corresponding abscissa values of the position indicator along the linear scroll bar.
17. The computer-readable storage medium of claim 15, wherein the horizontal scroll bar is a linear scroll bar, and mapping of the position of the cursor along the curved one-manifold to the corresponding position of the position indicator along the horizontal scroll bar comprises mapping a traversed distance by the cursor along the curved one-manifold to a corresponding one-to-one traversal distance of the position indicator along the linear scroll bar.
18. The computer-readable storage medium of claim 15, wherein the horizontal scroll bar is a linear scroll bar, and mapping of the position of the cursor along the curved one-manifold to the corresponding position of the position indicator along the horizontal scroll bar comprises mapping of a point along a z-axis to a corresponding point of the position indicator along the linear scroll bar.
19. The computer-readable storage medium of claim 15, wherein the horizontal scroll bar is a linear scroll bar, and mapping of the position of the cursor along the curved one-manifold to the corresponding position of the position indicator along the horizontal scroll bar comprises mapping of a point's (x, y) location along the curved one-manifold to a corresponding point of the position indicator along the linear scroll bar.
20. The computer-readable storage medium of claim 15, wherein the curved one-manifold is a discontinuous one-manifold and a spring action is realized on the movement of a cursor traveling along the discontinuous one-manifold whereby the spring action provides a smooth transition of the cursor through a discontinuity in the discontinuous one-manifold.
21. The computer-readable storage medium of claim 15, wherein placing the set of objects along the curved one-manifold comprises configuring the one-manifold as a rail and hanging the set of objects from the rail.
22. The computer-readable storage medium of claim 21, wherein depending on a speed of movement of an object along the curved one-manifold, the object is oriented away from the center of curvature of the curved one-manifold.
Description
FIELD OF THE INVENTION

The invention relates to graphics applications and in particular to laying out items in two-dimensional space, three-dimensional space, and n-dimensional space along a one-manifold path embedded within a container.

BACKGROUND OF THE INVENTION

In graphics applications, a user needs to be able to see and lay out visual items in a deterministic fashion, very often as an ordered list of items. In some graphics applications, two-dimensional items are automatically laid out based on a layout policy. Typically, items are placed sequentially within a two-dimensional (usually rectangular) container in a left-to-right, right-to-left, top-to-bottom or bottom-to-right pattern. Typical layout policies include flow layout, in which objects (usually rectangular) are placed in a rectangular window from left to right, dock panels, in which objects are laid out vertically and grid layout in which objects are laid out in tabular fashion, the “grid” consisting of cells that are arranged in rows and columns.

When placing objects in three- or higher-dimensional containers, there are fewer preconceptions about how objects “should be” laid out and there are also fewer constraints. There is a need in the art to provide a more flexible way to lay out visual items not only in two-dimensional space but also in three- or higher-dimensional space.

SUMMARY OF THE INVENTION

A mechanism is provided for laying out visual items in two-, three- or n-dimensional space along an embedded one-manifold or path. A one-manifold may be continuous, discontinuous, be contained entirely within a container or may extend beyond a container. The one-manifold may be defined by a set of parameters defining a function, formula or set of points. The container may be a two-dimensional, three-dimensional, or n-dimensional container.

Such a mechanism may be employed by a graphics application and may determine the location or positioning of an object or item. The object or item may be one of a set of objects or items. In response to receiving a set of parameters defining a one-manifold, the one-manifold may be embedded within a container. In response to receiving a set of parameters describing aspects of the object or item to be placed within the container, a set of x and y or x, y and z, etc. co-ordinates may be generated, which may be sent to a standard graphics interface for display.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing summary, as well as the following detailed description of illustrative embodiments, is better understood when read in conjunction with the appended drawings. For the purpose of illustrating the invention, there is shown in the drawings exemplary constructions of the invention; however, the invention is not limited to the specific methods and instrumentalities disclosed. In the drawings:

FIG. 1 is a block diagram showing an exemplary computing environment in which aspects of the invention may be implemented;

FIG. 2 is a block diagram of an exemplary system for positioning an object or item along a one-manifold embedded within a container in accordance with one embodiment of the invention;

FIGS. 3 a-3 d illustrates exemplary one-manifolds in two-dimensional containers in accordance with embodiments of the invention;

FIG. 4 a illustrates an exemplary one-manifold in a three-dimensional container in accordance with one embodiment of the invention;

FIGS. 4 b-4 c illustrate exemplary object orientations in two-dimensional containers in accordance with embodiments of the invention;

FIGS. 4 d-4 f illustrate exemplary object orientations in three-dimensional containers in accordance with embodiments of the invention;

FIG. 4 g illustrates an exemplary one-manifold that extends outside a two-dimensional container in accordance with one embodiment of the invention; and

FIG. 4 h illustrates an exemplary one-manifold that extends outside a three-dimensional container in accordance with one embodiment of the invention;

FIGS. 5 a-5 c illustrate exemplary scrolling mechanisms in accordance with some embodiments of the invention; and

FIG. 6 illustrates a method for generating position co-ordinates in accordance with one embodiment of the invention.

DETAILED DESCRIPTION OF ILLUSTRATIVE EMBODIMENTS Overview

The simplest way to arrange items within a container or upon a canvas is to specify the position and orientation of each item. Such a fixed layout scheme is not very useful however, when changes occur. For example, to insert a new item upon an existing canvas using such a scheme, a programmer must specify the placement of the new item. If there is insufficient “visual space” for that item in the desired location, the programmer must re-arrange the original items to make room for the new one.

Similarly, if the shape or size of the canvas changes, all the items may no longer be able to be displayed. If all the items must continue to remain visible, code that rearranges the placement of the items must be provided. If the container does not have enough room to display all the items, the layout may show only some of the items. A scroll bar may enable a user to choose which of the items are visible.

The introduction of a third dimension (or more) changes how items are placed within a container.

Exemplary Computing Environment

FIG. 1 and the following discussion are intended to provide a brief general description of a suitable computing environment in which the invention may be implemented. It should be understood, however, that handheld, portable, and other computing devices of all kinds are contemplated for use in connection with the present invention. While a general purpose computer is described below, this is but one example, and the present invention requires only a thin client having network server interoperability and interaction. Thus, the present invention may be implemented in an environment of networked hosted services in which very little or minimal client resources are implicated, e.g., a networked environment in which the client device serves merely as a browser or interface to the World Wide Web.

Although not required, the invention can be implemented via an application programming interface (API), for use by a developer, and/or included within the network browsing software which will be described in the general context of computer-executable instructions, such as program modules, being executed by one or more computers, such as client workstations, servers, or other devices. Generally, program modules include routines, programs, objects, components, data structures and the like that perform particular tasks or implement particular abstract data types. Typically, the functionality of the program modules may be combined or distributed as desired in various embodiments. Moreover, those skilled in the art will appreciate that the invention may be practiced with other computer system configurations. Other well known computing systems, environments, and/or configurations that may be suitable for use with the invention include, but are not limited to, personal computers (PCs), automated teller machines, server computers, hand-held or laptop devices, multi-processor systems, microprocessor-based systems, programmable consumer electronics, network PCs, minicomputers, mainframe computers, and the like. The invention may also be practiced in distributed computing environments where tasks are performed by remote processing devices that are linked through a communications network or other data transmission medium. In a distributed computing environment, program modules may be located in both local and remote computer storage media including memory storage devices.

FIG. 1 thus illustrates an example of a suitable computing system environment 100 in which the invention may be implemented, although as made clear above, the computing system environment 100 is only one example of a suitable computing environment and is not intended to suggest any limitation as to the scope of use or functionality of the invention. Neither should the computing environment 100 be interpreted as having any dependency or requirement relating to any one or combination of components illustrated in the exemplary operating environment 100.

With reference to FIG. 1, an exemplary system for implementing the invention includes a general purpose computing device in the form of a computer 110. Components of computer 110 may include, but are not limited to, a processing unit 120, a system memory 130, and a system bus 121 that couples various system components including the system memory to the processing unit 120. The system bus 121 may be any of several types of bus structures including a memory bus or memory controller, a peripheral bus, and a local bus using any of a variety of bus architectures. By way of example, and not limitation, such architectures include Industry Standard Architecture (ISA) bus, Micro Channel Architecture (MCA) bus, Enhanced ISA (EISA) bus, Video Electronics Standards Association (VESA) local bus, and Peripheral Component Interconnect (PCI) bus (also known as Mezzanine bus).

Computer 110 typically includes a variety of computer readable media. Computer readable media can be any available media that can be accessed by computer 110 and includes both volatile and nonvolatile media, removable and non-removable media. By way of example, and not limitation, computer readable media may comprise computer storage media and communication media. Computer storage media includes both volatile and nonvolatile, removable and non-removable media implemented in any method or technology for storage of information such as computer readable instructions, data structures, program modules or other data. Computer storage media includes, but is not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CDROM, digital versatile disks (DVD) or other optical disk storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices, or any other medium which can be used to store the desired information and which can be accessed by computer 110. Communication media typically embodies computer readable instructions, data structures, program modules or other data in a modulated data signal such as a carrier wave or other transport mechanism and includes any information delivery media. The term “modulated data signal” means a signal that has one or more of its characteristics set or changed in such a manner as to encode information in the signal. By way of example, and not limitation, communication media includes wired media such as a wired network or direct-wired connection, and wireless media such as acoustic, RF, infrared, and other wireless media. Combinations of any of the above should also be included within the scope of computer readable media.

The system memory 130 includes computer storage media in the form of volatile and/or nonvolatile memory such as read only memory (ROM) 131 and random access memory (RAM) 132. A basic input/output system 133 (BIOS), containing the basic routines that help to transfer information between elements within computer 110, such as during start-up, is typically stored in ROM 131. RAM 132 typically contains data and/or program modules that are immediately accessible to and/or presently being operated on by processing unit 120. By way of example, and not limitation, FIG. 1 illustrates operating system 134, application programs 135, other program modules 136, and program data 137.

The computer 110 may also include other removable/non-removable, volatile/nonvolatile computer storage media. By way of example only, FIG. 1 illustrates a hard disk drive 141 that reads from or writes to non-removable, nonvolatile magnetic media, a magnetic disk drive 151 that reads from or writes to a removable, nonvolatile magnetic disk 152, and an optical disk drive 155 that reads from or writes to a removable, nonvolatile optical disk 156, such as a CD ROM or other optical media. Other removable/non-removable, volatile/nonvolatile computer storage media that can be used in the exemplary operating environment include, but are not limited to, magnetic tape cassettes, flash memory cards, digital versatile disks, digital video tape, solid state RAM, solid state ROM, and the like. The hard disk drive 141 is typically connected to the system bus 121 through a non-removable memory interface such as interface 140, and magnetic disk drive 151 and optical disk drive 155 are typically connected to the system bus 121 by a removable memory interface, such as interface 150.

The drives and their associated computer storage media discussed above and illustrated in FIG. 1 provide storage of computer readable instructions, data structures, program modules and other data for the computer 110. In FIG. 1, for example, hard disk drive 141 is illustrated as storing operating system 144, application programs 145, other program modules 146, and program data 147. Note that these components can either be the same as or different from operating system 134, application programs 135, other program modules 136, and program data 137. Operating system 144, application programs 145, other program modules 146, and program data 147 are given different numbers here to illustrate that, at a minimum, they are different copies. A user may enter commands and information into the computer 110 through input devices such as a keyboard 162 and pointing device 161, commonly referred to as a mouse, trackball or touch pad. Other input devices (not shown) may include a microphone, joystick, game pad, satellite dish, scanner, or the like. These and other input devices are often connected to the processing unit 120 through a user input interface 160 that is coupled to the system bus 121, but may be connected by other interface and bus structures, such as a parallel port, game port or a universal serial bus (USB).

A monitor 191 or other type of display device is also connected to the system bus 121 via an interface, such as a video interface 190. A graphics interface 182, such as Northbridge, may also be connected to the system bus 121. Northbridge is a chipset that communicates with the CPU, or host processing unit 120, and assumes responsibility for accelerated graphics port (AGP) communications. One or more graphics processing units (GPUs) 184 may communicate with graphics interface 182. In this regard, GPUs 184 generally include on-chip memory storage, such as register storage and GPUs 184 communicate with a video memory 186. GPUs 184, however, are but one example of a coprocessor and thus a variety of coprocessing devices may be included in computer 110. A monitor 191 or other type of display device is also connected to the system bus 121 via an interface, such as a video interface 190, which may in turn communicate with video memory 186. In addition to monitor 191, computers may also include other peripheral output devices such as speakers 197 and printer 196, which may be connected through an output peripheral interface 195.

The computer 110 may operate in a networked environment using logical connections to one or more remote computers, such as a remote computer 180. The remote computer 180 may be a personal computer, a server, a router, a network PC, a peer device or other common network node, and typically includes many or all of the elements described above relative to the computer 110, although only a memory storage device 181 has been illustrated in FIG. 1. The logical connections depicted in FIG. 1 include a local area network (LAN) 171 and a wide area network (WAN) 173, but may also include other networks. Such networking environments are commonplace in offices, enterprise-wide computer networks, intranets and the Internet.

When used in a LAN networking environment, the computer 110 is connected to the LAN 171 through a network interface or adapter 170. When used in a WAN networking environment, the computer 110 typically includes a modem 172 or other means for establishing communications over the WAN 173, such as the Internet. The modem 172, which may be internal or external, may be connected to the system bus 121 via the user input interface 160, or other appropriate mechanism. In a networked environment, program modules depicted relative to the computer 110, or portions thereof, may be stored in the remote memory storage device. By way of example, and not limitation, FIG. 1 illustrates remote application programs 185 as residing on memory device 181. It will be appreciated that the network connections shown are exemplary and other means of establishing a communications link between the computers may be used.

One of ordinary skill in the art can appreciate that a computer 110 or other client device can be deployed as part of a computer network. In this regard, the present invention pertains to any computer system having any number of memory or storage units, and any number of applications and processes occurring across any number of storage units or volumes. The present invention may apply to an environment with server computers and client computers deployed in a network environment, having remote or local storage. The present invention may also apply to a standalone computing device, having programming language functionality, interpretation and execution capabilities.

Automatic Layout of Items Using a One-Manifold Path

FIG. 2 illustrates an exemplary system for automatic layout of items in two-dimensional, three-dimensional, or n-dimensional space in accordance with some embodiments of the invention. Such a system may reside in whole or in part on one or more computers, such as exemplary computer 202 of FIG. 2. Computer 202 may comprise a computer such as computer 110 described with respect to FIG. 1. A system for automatic layout of items in two-dimensional, three-dimensional, or n-dimensional space may comprise a graphics application 204 including one or more of the following elements: a graphics positioning application 206, parameters describing a one-manifold 208, object or item positioning and orienting parameters 210, positioning co-ordinates 212 and a standard display module 214.

When placing items within a two-dimensional, three-dimensional, or n-dimensional container, in some embodiments of the invention, a first-object-first/last-object-last paradigm is employed. In accordance with some embodiments of the invention, a first-object-first/last-object-last paradigm may place objects along any path, (e.g., along any one-manifold or one-dimensional path or line) embedded within the space, hence providing such a path enables a general means for mapping the objects using the first-object-first/last-object-last paradigm into the space. The one-manifold or path may be open, (that is, may begin and end at different points within the space), or closed (begin and end at the same point within the space), continuous or discontinuous, curved, straight or segmented (piece-wise smooth). The one-manifold may be polynomial-based or non-polynomial-based and can be of any length. The one-manifold may extend beyond the container in which it is embedded or may be confined within it embedding container. FIGS. 3 a-3 d illustrate four such paths (paths 302, 304, 306 and 308 respectively of an infinitely large number of possible paths within a two-dimensional space (310, 312, 314, and 316 respectively).

It will be appreciated that an infinitely large number of possible closed and open paths within a three-dimensional space are also possible. FIG. 4 a illustrates one such possible closed, circular, one-manifold 402 embedded into a three-dimensional-space 404 with items 406, 408, etc. uniformly distributed along the one-manifold 402. In some embodiments of the invention, the one-manifold (e.g., 302, 304, 306, 308, 402, etc.) may be specified as a set of points connected by straight lines, or as reference points for some higher order interpolation function or curve definition function. Items may be placed along the one-manifold uniformly, randomly, according to some function or equation, or based on an item's extent (and any additional space that should surround that item) to allocate space along the one-manifold, or by any other function, algorithm, or scheme. For example, a layout algorithm could place items using the width of each item plus a minimum amount of surrounding space, specified either as a fixed value, as a percentage, or as some fixed function of the extent of the item and/or of the extent of the item's neighbor.

The scale or orientation of the item(s) may also be specified. For example, an item may be perpendicular to the one-manifold, skewed, rotated, oriented so that the top of the item is parallel to the top of the container (see FIG. 4 b, items 410, 412, etc.). Alternatively, a center line of an item may be oriented tangent to the path (see FIG. 4 c, center line 414 of item 416 along path 418) or according to any function, algorithm or scheme.

In three-dimensional space, items may be laid flat with the top edge of the item oriented to the left as illustrated in FIG. 4 d. Similarly, items may be oriented perpendicularly to the one-manifold with the top edge up, as illustrated in FIG. 4 e or items may be oriented to the viewer with the top edge of the item up, as illustrated in FIG. 4 f.

Thus, in some embodiments of the invention, the orientation of the item may be specified in relation to some point, axis or plane, or may be oriented as some function of the item itself, its neighbors, and/or the item's neighborhood. Examples of such item-orientation specification could include items facing the viewer, facing a point in three-dimensional-space, tangent (or normal) to a path and so on. An item can also be oriented according to various rules that may incorporate parameters apart from those specified by the manifold itself. For example, items on the manifold may exhibit inertial characteristics that depend on speed of movement: Items could be modeled as objects with mass, which “hang” on the manifold as on a rail; depending on the speed of item movement, they may then orient themselves away from the center of curvature. Other possibilities include enforcing orthogonality of an axis of the item with the tangent of the one-manifold while the object remains “facing” a particular point in space.

By specifying a one-manifold so that portions of the one-manifold fall outside the visible portion of its container, the items on the portion of the manifold outside that container would not be visible, as illustrated in FIG. 4 g. (Items 420, 422, 424 and 426 are visible while items 428, 430 and 432 along one-manifold 434 are not visible because they fall outside container 436.) A similar one-manifold extending outside the container is illustrated in FIG. 4 h.

In some embodiments of the invention, only a subset of the items is displayed. This may be necessary when there are more items than can be desirably displayed in the available space. In some embodiments of the invention, the displayed subset of items is representative of the complete set of items. The first item in the subset may be defined as the first item on the one-manifold.

In some embodiments of the invention, all of the items in the set may be visible by scrolling along the one-manifold. In some embodiments of the invention, a position along the one-manifold is mapped to a position along a linear scroll bar. Hence, scrolling across the one-manifold is translated to movement along the straightened path (see FIGS. 5 a, 5 b and 5 c). In some embodiments of the invention, the distance along the one-manifold is mapped to the corresponding distance along the straightened path (see FIGS. 5 a and 5 b). Alternatively, the position of point along an axis (such as but not limited to the x-axis) may be mapped to the straightened path (see FIGS. 5 a and 5 c). Other mappings may use a point's abscissa as the value along the straightened path or provide some other one-to-one mapping. Any point on the 2D display may be mapped to a single point on the one-manifold, in such a way that for any given point (x, y) mapped to a point s on the manifold (where s is drawn from a continuous parameterization of the manifold) there are finite, non-zero values, ε and δ, such that a if (x′, y′) is within distance ε from (x, y), the mapped point s′ corresponding to (x′, y′) is necessarily such that |s′−s|<δ. However, it can easily be proven that many one-manifolds admit singularities, in which case this condition is violated. In such cases, there are a number of contrivances which can alleviate the mapping, which may be employed. By way of non-limiting example, a few are listed here. In one embodiment, the singularities are disregarded altogether and the cursor (or other indicator) is allowed to jump over discontinuities. In one embodiment, a “spring” is realized between the cursor at the previous point s on the manifold and the current s′, such that the spring pulls the cursor smoothly between s and s′, even when there is a non-continuous jump between them. In another embodiment, the cursor remains stuck at point s.

An exemplary method for placing an object in a container along an embedded one-manifold is illustrated in FIG. 6. At 602 parameters associated with or defining the one-manifold may be received. The one-manifold or path may be open, (that is, may begin and end at different points within the space), or closed (begin and end at the same point within the space), continuous or discontinuous, curved, straight or segmented (piece-wise linear). The one-manifold may be polynomial-based or non-polynomial-based and can be of any length. The one-manifold may extend beyond the container in which it is embedded or may be confined within it embedding container.

At 604 parameters associated with the object to be placed along the embedded one-manifold are received. Parameters associated with the scale or orientation of the item(s) may be specified. For example, an item may be perpendicular to the one-manifold, skewed, rotated, oriented so that the top of the item is parallel to the top of the container. Alternatively, a center line of an item may be oriented tangent to the path or according to any function, algorithm or scheme.

In three-dimensional space, items may be laid flat with the top edge of the item oriented to the left, oriented perpendicularly to the one-manifold with the top edge up, or may be oriented to the viewer with the top edge of the item up, or in any other designated orientation.

Thus, in some embodiments of the invention, the orientation of the item may be specified in relation to some point, axis or plane, or may be oriented as some function of the item itself, its neighbors, and/or the item's neighborhood. Examples of such item-orientation specification could include items facing the viewer, facing a point in three-dimensional-space, tangent (or normal) to a path and so on.

By specifying a one-manifold so that portions of the one-manifold fall outside the visible portion of its container, the items on the portion of the manifold outside that container would not be visible In some embodiments of the invention, only a subset of the items is displayed. This may be necessary when there are more items than can be desirably displayed in the available space. In some embodiments of the invention, the displayed subset of items is representative of the complete set of items. The first item in the subset may be defined as the first item on the one-manifold.

At 606 the placement of the object or objects are calculated. In some embodiments of the invention, x and y coordinates (for a two-dimensional container) or x, y and z coordinates (for a three-dimensional container) are calculated. At 608, the coordinates (and possibly the object(s) are passed to a standard display module for display.

The various techniques described herein may be implemented in connection with hardware or software or, where appropriate, with a combination of both. Thus, the methods and apparatus of the present invention, or certain aspects or portions thereof, may take the form of program code (i.e., instructions) embodied in tangible media, such as floppy diskettes, CD-ROMs, hard drives, or any other machine-readable storage medium, wherein, when the program code is loaded into and executed by a machine, such as a computer, the machine becomes an apparatus for practicing the invention. In the case of program code execution on programmable computers, the computing device will generally include a processor, a storage medium readable by the processor (including volatile and non-volatile memory and/or storage elements), at least one input device, and at least one output device. One or more programs that may utilize the creation and/or implementation of domain-specific programming models aspects of the present invention, e.g., through the use of a data processing API or the like, are preferably implemented in a high level procedural or object oriented programming language to communicate with a computer system. However, the program(s) can be implemented in assembly or machine language, if desired. In any case, the language may be a compiled or interpreted language, and combined with hardware implementations.

While the present invention has been described in connection with the preferred embodiments of the various figures, it is to be understood that other similar embodiments may be used or modifications and additions may be made to the described embodiments for performing the same function of the present invention without deviating therefrom. Therefore, the present invention should not be limited to any single embodiment, but rather should be construed in breadth and scope in accordance with the appended claims.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US5396590 *Sep 17, 1992Mar 7, 1995Apple Computer, Inc.Non-modal method and apparatus for manipulating graphical objects
US5499330 *Sep 17, 1993Mar 12, 1996Digital Equipment Corp.Document display system for organizing and displaying documents as screen objects organized along strand paths
US5717848 *Dec 20, 1994Feb 10, 1998Hitachi, Ltd.Method and apparatus for generating object motion path, method of setting object display attribute, and computer graphics system
US5872566 *Feb 21, 1997Feb 16, 1999International Business Machines CorporationGraphical user interface method and system that provides an inertial slider within a scroll bar
US5940076 *Dec 1, 1997Aug 17, 1999Motorola, Inc.Graphical user interface for an electronic device and method therefor
US5977974 *Sep 15, 1997Nov 2, 1999Canon Kabushiki KaishaInformation processing apparatus and method
US6243076 *Sep 1, 1998Jun 5, 2001Synthetic Environments, Inc.System and method for controlling host system interface with point-of-interest data
US6295062Nov 13, 1998Sep 25, 2001Matsushita Electric Industrial Co., Ltd.Icon display apparatus and method used therein
US6335737 *Oct 21, 1994Jan 1, 2002International Business Machines CorporationVideo display and selection on a graphical interface
US6466237 *Jul 16, 1999Oct 15, 2002Sharp Kabushiki KaishaInformation managing device for displaying thumbnail files corresponding to electronic files and searching electronic files via thumbnail file
US6473751 *Dec 10, 1999Oct 29, 2002Koninklijke Philips Electronics N.V.Method and apparatus for defining search queries and user profiles and viewing search results
US6768999 *Jun 26, 2001Jul 27, 2004Mirror Worlds Technologies, Inc.Enterprise, stream-based, information management system
US6819344 *Mar 12, 2001Nov 16, 2004Microsoft CorporationVisualization of multi-dimensional data having an unbounded dimension
US6938217 *Jan 4, 1999Aug 30, 2005Apple Computer, Inc.Accelerator handles
US6956574 *Feb 9, 2000Oct 18, 2005Paceworks, Inc.Methods and apparatus for supporting and implementing computer based animation
US6973628 *Aug 29, 2001Dec 6, 2005Sony CorporationImage displaying apparatus and image displaying method and program medium
US6989848 *Nov 7, 2003Jan 24, 2006Beon Media Inc.Method and system for specifying zoom speed
US6990230 *Nov 17, 2003Jan 24, 2006Warner Bros. Entertainment Inc.Reverse-rendering method for digital modeling
US7084875 *Jul 17, 2003Aug 1, 2006Autodesk Canada Co.Processing scene objects
US7139001 *May 11, 2004Nov 21, 2006Apple Computer, Inc.Method and apparatus for chaining two or more tweens to provide non-linear multimedia effects
US7139006 *Feb 4, 2003Nov 21, 2006Mitsubishi Electric Research Laboratories, IncSystem and method for presenting and browsing images serially
US7178111 *Aug 3, 2004Feb 13, 2007Microsoft CorporationMulti-planar three-dimensional user interface
US7249327 *Mar 22, 2002Jul 24, 2007Fuji Xerox Co., Ltd.System and method for arranging, manipulating and displaying objects in a graphical user interface
US7383503 *Feb 23, 2005Jun 3, 2008Microsoft CorporationFiltering a collection of items
US20020018061 *Jul 9, 2001Feb 14, 2002Autodesk, Inc.Determining and displaying geometric relationships between objects in a computer-implemented graphics system
US20020033848 *Apr 19, 2001Mar 21, 2002Sciammarella Eduardo AgustoSystem for managing data objects
US20020186252 *Jun 7, 2001Dec 12, 2002International Business Machines CorporationMethod, apparatus and computer program product for providing context to a computer display window
US20030076306 *Jul 1, 2002Apr 24, 2003Zadesky Stephen PaulTouch pad handheld device
US20030081012 *Oct 30, 2001May 1, 2003Chang Nelson Liang AnUser interface and method for interacting with a three-dimensional graphical environment
US20030197702 *Apr 22, 2002Oct 23, 2003Turner Alan E.Animation techniques to visualize data
US20040100479 *May 9, 2003May 27, 2004Masao NakanoPortable information terminal, display control device, display control method, and computer readable program therefor
US20040150657 *Feb 4, 2003Aug 5, 2004Wittenburg Kent B.System and method for presenting and browsing images serially
US20040155907 *Feb 5, 2004Aug 12, 2004Kosuke YamaguchiIcon display system and method , electronic appliance, and computer program
US20050046630 *Aug 29, 2003Mar 3, 2005Kurt JacobDesignable layout animations
US20050071774 *Nov 7, 2003Mar 31, 2005Lipsky Scott E.Method and system for displaying multiple aspect ratios of a viewport
US20060026521 *Jul 30, 2004Feb 2, 2006Apple Computer, Inc.Gestures for touch sensitive input devices
US20060174211 *Mar 31, 2006Aug 3, 2006Microsoft CorporationMethods, apparatus and data structures for providing a user interface which facilitates decision making
US20080143725 *Sep 11, 2007Jun 19, 2008Smart Technologies Inc.Connected and overlapped shapes enhancements
JPH1195968A * Title not available
WO2001014956A2Aug 22, 2000Mar 1, 2001Cyclus IncVirtual desktop system and method
WO2003042967A2Nov 13, 2002May 22, 2003Koninkl Philips Electronics NvDynamically configurable virtual window manager
Non-Patent Citations
Reference
1 *Article "Cartesian Coordinates" by Weisstein, Eric W. From MathWorld.http://mathworld.wolfram.com/CartesianCoordinates.html.
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US8312374 *Jul 24, 2009Nov 13, 2012Sony CorporationInformation processing apparatus and method and computer program
US8566722 *Apr 30, 2012Oct 22, 2013Frequency Ip Holdings, LlcMultiple-carousel selective digital service feeds
US8583759Nov 14, 2011Nov 12, 2013Frequency Ip Holdings, LlcCreation and presentation of selective digital content feeds
US8613015May 11, 2012Dec 17, 2013Frequency Ip Holdings, LlcTwo-stage processed video link aggregation system
US8627236 *Sep 14, 2010Jan 7, 2014Lg Electronics Inc.Terminal and control method thereof
US8706841Dec 17, 2012Apr 22, 2014Frequency Ip Holdings, LlcAutomatic selection of digital service feed
US8775955 *Dec 2, 2010Jul 8, 2014Sap AgAttraction-based data visualization
US20080065992 *Jan 8, 2007Mar 13, 2008Apple Computer, Inc.Cascaded display of video media
US20090049404 *Mar 13, 2008Feb 19, 2009Samsung Electronics Co., LtdInput method and apparatus for device having graphical user interface (gui)-based display unit
US20110105192 *Sep 14, 2010May 5, 2011Lg Electronics Inc.Terminal and control method thereof
US20110179368 *Jan 19, 2010Jul 21, 2011King Nicholas V3D View Of File Structure
US20120144309 *Dec 2, 2010Jun 7, 2012Sap AgAttraction-based data visualization
Classifications
U.S. Classification345/474, 345/473, 345/959
International ClassificationG06T1/00, G06T15/00, G06F17/00, G06T13/00
Cooperative ClassificationY10S345/959, G06T11/206
European ClassificationG06T11/20T
Legal Events
DateCodeEventDescription
Oct 11, 2013FPAYFee payment
Year of fee payment: 4
Nov 10, 2005ASAssignment
Owner name: MICROSOFT CORPORATION, WASHINGTON
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:DRUCKER, STEVEN;SOWIZRAL, HENRY;TOYAMA, KENTARO;REEL/FRAME:016764/0576;SIGNING DATES FROM 20050316 TO 20050321
Owner name: MICROSOFT CORPORATION,WASHINGTON
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:DRUCKER, STEVEN;SOWIZRAL, HENRY;TOYAMA, KENTARO;SIGNED BETWEEN 20050316 AND 20050321;US-ASSIGNMENT DATABASE UPDATED:20100504;REEL/FRAME:16764/576
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:DRUCKER, STEVEN;SOWIZRAL, HENRY;TOYAMA, KENTARO;SIGNING DATES FROM 20050316 TO 20050321;REEL/FRAME:016764/0576