Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS7742777 B2
Publication typeGrant
Application numberUS 11/364,463
Publication dateJun 22, 2010
Filing dateFeb 28, 2006
Priority dateDec 4, 2001
Fee statusPaid
Also published asUS7039432, US20030114112, US20060148406
Publication number11364463, 364463, US 7742777 B2, US 7742777B2, US-B2-7742777, US7742777 B2, US7742777B2
InventorsJay Strater, Dean Stoneback, Kevin T. Chang
Original AssigneeGeneral Instrument Corporation
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Dynamic upstream attenuation for ingress noise reduction
US 7742777 B2
Abstract
A dynamic arrangement for reducing the presence of ingress noise in the upstream signal path of a two-way cable system utilizes a variable attenuation element and amplifier disposed along the upstream signal path. The amplifier includes a bypass switch so that the amplifier may be switched in to or out of the upstream path. A signal processor associated with the communications gateway functions to calculate the upstream loss present at the gateway and control the operation of the attenuation element, amplifier and bypass switch accordingly. Upstream attenuation is selected to be as large as possible, yet still allow in-building cable devices to communicate with their associated head end (HE) receiver equipment, after accounting for maximum transmit limitations.
Images(4)
Previous page
Next page
Claims(8)
1. An apparatus for reducing the presence of ingress noise from a communications gateway, including an embedded cable modem, at a subscriber location, said communications gateway comprising an RF module containing separate upstream and downstream signal paths, the apparatus comprising:
a variable attenuation element disposed in the upstream signal path in the RF module;
a signal processor configured to calculate the value of upstream loss as used in attenuation during operation, said signal processor is further configured to control the operation of said variable attenuation element during operation so as to reduce the presence of ingress noise in the upstream signal path based on the value of the upstream loss,
a signal amplifier, exhibiting predetermined gain, disposed in said upstream signal path in said RF module; and
a bypass switch disposed at the input of said signal amplifier, said bypass switch for controlling the presence of said signal amplifier in said upstream signal path such that when said bypass switch is in the “open” position said signal amplifier is removed from said upstream signal path and when said bypass switch is in the “closed” position said signal amplifier is inserted in said upstream signal path,
wherein the signal processor controls the attenuation level of said variable attenuation element such that when the calculated upstream loss is positive the attenuation is set to be essentially equal to said calculated upstream loss, and
the signal processor is configured to close said bypass switch and activate said signal amplifier to further reduce the presence of ingress noise in the upstream signal path.
2. The apparatus as defined in claim 1 wherein the signal processor controls the bypass switch such that the switch is “opened” when the calculated upstream loss is positive and the switch is “closed” when the calculated loss is negative.
3. The apparatus as defined in claim 1 wherein the signal processor controls the amplifier to be “off” when the calculated upstream loss is positive and “on” when the calculated upstream loss is negative.
4. The apparatus as defined in claim 1 wherein the signal processor controls the attenuation level of the variable attenuation element such that when the calculated upstream loss is negative the attenuation is set to be essentially equal to the maximum of the sum of the upstream loss and the predetermined gain of the amplifier, or zero.
5. The apparatus as defined in claim 1 wherein in calculating upstream loss, the signal processor uses the following relationship:

USLossCalc=(MaxInBuildingTxLevel−InBuildingPathLoss−CGPassthroughLoss)−(CMTxLevel−CMpathLoss)+MaxChannelBandDelta−CalcErrorMargin,
where MaxInBuildingTxLevel is defined as an estimate of the maximum transmit level for two-way cable devices at a subscriber, InBuildingPathLoss is defined as an estimate of the nominal high-end upstream path loss at said subscriber, CGPassthroughLoss is defined as the loss in the communication gateway between the RF subscriber interface and the RF cable-drop interface ignoring any adjusted attenuation or amplification in said path, CMTxLevel is defined as the communication gateway's monitored cable modem transmit level, CMPathLoss is defined as the communication gateway's upstream path loss between its embedded cable modem interface and the RF cable-drop interface, CalcErrorMargin is defined as a predetermined “margin of error” used for adapting the determined value of the upstream loss calculation, and MaxChannelBandDelta is defined as 10 log(CMTxBW/MaxInBuildingTxBW), where CNTxBW is defined as the bandwidth of the upstream channel in the communication gateway's cable modem being used to provide the CMTxLevel reference, and MaxInBuildingTxBW is defined as the maximum bandwidth of said in-building cable device with MaxInBuildingTxLevel as a reference.
6. A method of reducing the presence of ingress noise in the upstream path of a bidirectional cable system at a communications gateway located at a subscriber premises, the method comprising the steps of:
calculating the upstream loss present at the communications gateway during operation; and
if the calculated loss is positive, setting an upstream variable attenuation element to exhibit an attenuation equal to the calculated upstream loss value,
wherein the step of calculating the upstream loss utilizes the following relation:

USLossCalc=(MaxInBuildingTxLevel−InBuildingPathLoss−CGPassthroughLoss)−(CMTxLevel−CMPathLoss)+MaxChannelBandDelta−CalcErrorMargin,
where MaxInBuildingTxLevel is defined as an estimate of the maximum transmit level for two-way cable devices at a subscriber, InBuildingPathLoss is defined as an estimate of the nominal high-end upstream path loss at said subscriber, CGPassthroughLoss is defined as the loss in the communication gateway between the RF subscriber interface and the RF cable-drop interface ignoring any adjusted attenuation or amplification in said path, CMTxLevel is defined as the communication gateway's monitored cable modem transmit level, CMPathLoss is defined as the communication gateway's upstream path loss between its embedded cable modem interface and the RF cable-drop interface, CalcErrorMargin is defined as a predetermined “margin of error” used for adapting the determined value of the upstream loss calculation, and MaxChannelBandDelta is defined as 10 log(CMTxBW/MaxInBuildingTxBW), where CMTxBW is defined as the bandwidth of the upstream channel in the communication gateway's cable modem being used to provide the CMTxLevel reference, and MaxInBuildingTxBW is defined as the maximum bandwidth of said in-building cable device with MaxInBuildingTxLevel as a reference.
7. The method as defined in claim 6, further comprising the step of: if the calculated loss is negative, inserting an amplifier along the upstream path, said amplifier exhibiting a predetermined positive gain value and setting an upstream variable attenuation element to exhibit an attenuation equal to the maximum of the sum of the predetermined positive gain value and the calculated upstream loss value, or zero.
8. An apparatus for reducing the presence of ingress noise from a communications gateway, including an embedded cable modem, at a subscriber location, said communications gateway comprising an RF module containing separate upstream and downstream signal paths, the apparatus comprising:
a variable attenuation element disposed in the upstream signal path in the RF module;
a signal processor configured to calculate the value of upstream loss as used in attenuation during operation, said signal processor is further configured to control the operation of said variable attenuation element during operation so as to reduce the presence of ingress noise in the upstream signal path, and
a bypass switch for controlling the presence of a signal amplifier in said upstream signal path such that when said bypass switch is in the “open” position said signal amplifier is removed from said upstream signal path and when said bypass switch is in the “closed” position said signal amplifier is inserted in said upstream signal path, said bypass switch being controlled by said signal processor,
wherein the signal processor controls the attenuation level of said variable attenuation element such that when the calculated upstream loss is positive the attenuation is set to be essentially equal to said calculated upstream loss.
Description
CROSS-REFERENCE TO RELATED APPLICATION

This application claims the benefit of Provisional Application No. 60/336,669 filed Dec. 4, 2001.

TECHNICAL FIELD

The present invention relates to a hybrid fiber cable (HFC) communication system and, more particularly, to an arrangement for reducing the presence of ingress noise in the upstream signal path from a subscriber location to a cable head-end (HE) or hub location.

BACKGROUND OF THE INVENTION

Modern cable systems utilize a hybrid fiber cable (HFC) architecture in which signals are distributed via a fiber optic connection to a node that converts the optical signal to an electrical signal and distributes the signals to residences (subscribers) via a tree and branch coaxial cable distribution network (“plant”) consisting of the coaxial cable, amplifiers and taps. The plant can be made bi-directional through the use of a fiber optic return signal from the node to the head end. A return band, typically from 5-42 MHz, is used to support transmission from devices in the residence back to the head end. Transmission from the residences are received at the node, converted to an optical signal, and transmitted to the head-end on a separate return fiber or on a return wavelength separate from the downstream wavelength.

Suppressing undesirable energy in an HFC network, particularly ingress noise in the HFC upstream, is an important characteristic when operating a network having such a bi-directional communication path on a shared wire between a head-end and each of a plurality of remote points. One technical challenge is to maintain adequate network integrity for signals being transmitted in the return path so that the information in these signals is not contaminated and does not either require retransmission (if data traffic), or is defined as “dropped” (if voice traffic). “Ingress” is defined as unwanted energy that enters the network at a weak point, where these weak points are all too often at or near a remote point where there is a shield discontinuity, a poor shield, or a faulty connector. For example, two-way dispatch services, amateur radio transmission, various commercial, medical or industrial electronic equipment, as well as ignition noise from combustion engines, all contribute to ingress noise. Additionally, one very common and troublesome source of ingress noise is electromagnetic emissions at a subscriber's premise from electric motors in fax machines, vacuum cleaners, hair dryers and the like. These emissions are often coupled onto the cable system cable via unterminated cable stubs in the subscriber's premise, the stubs tending to act as antennas. Thus, the upstream “ingress” noise signals will sum at the head end from the multiple weak points in both the plant and the subscriber premises.

It is desirable for a system operation to be able to mitigate upstream ingress noise originating at the subscriber premises, while minimally disturbing service to the subscriber.

SUMMARY OF THE INVENTION

The need remaining in the art is addressed by the present invention, which relates to a hybrid fiber cable (HFC) communication system and, more particularly, to an arrangement for reducing the presence of ingress noise in the upstream signal path from a subscriber location to a cable head-end (HE) or hub location. It is to be noted that “HE” will be referred to throughout the remainder of this discussion, where it is to be presumed that the ability to mitigate the return of ingress noise from a subscriber premises is just as applicable at a hub or other upstream location housing HFC receiver equipment for subscriber transmitters.

In accordance with the present invention, dynamically adjustable upstream attenuation is used to reduce the presence of ingress noise, where the value of the attenuation, as well as the inclusion/exclusion of an upstream amplifier, is controlled by an RF module located within the communications gateway (CG) at the subscriber's premise. Upstream attenuation is selected to be as large as possible, while still allowing in-building cable devices to communicate with their head end (HE) receiver equipment, after accounting for maximum transmit limitations.

Ingress reduction in accordance with the present invention requires a side-of-the-building communications gateway (CG) device in which cable communications (both downstream and upstream) pass through the gateway and the gateway contains an embedded cable modem (CM). The communications gateway makes use of its embedded cable modem's transmit level, along with home and upstream pass-through assumptions, to calculate and apply an upstream attenuation that forces in-building cable devices behind the communications gateway to transmit at high levels yet still close the link margin needed to communication with their head end receivers.

It is an aspect of the present invention that the communications gateway pass-through loss adjustment must be conducted periodically, since the communication gateway's cable modem upstream transmission level will change. Upstream transmit levels for two-way cable devices will change with changes in plant conditions, such as temperature swings and other environmental factors. In addition, any changes in a communications gateway's upstream attenuation should be applied gradually enough to allow for upstream power ranging or “long-loop AGV” operations to adjust to the changes.

Other and further aspects of the present invention will become apparent during the course of the following discussion and by reference to the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

Referring now to the drawings,

FIG. 1 illustrates, in block diagram form, an exemplary communications gateway (CG) and associated RF module that may be used to perform the upstream ingress noise reduction operation of the present invention;

FIG. 2 contains a diagram illustrating the various signal component sources used to calculate upstream loss in accordance with the teachings of the present invention; and

FIG. 3 is a flow chart illustrating the process used to determine the settings within the RF module in response to the calculated upstream loss in accordance with the present invention.

DETAILED DESCRIPTION

FIG. 1 illustrates an exemplary communications gateway (CG) 10 that may be used to implement the upstream noise reduction feature of the present invention. In accordance with the present invention, use of the CG pass-through loss adjustment for ingress noise reduction is possible as long as CG 10 includes a two-way RF pass-through path between RF interface module 12 and the building to which it is attached (see FIG. 2). As shown in FIG. 1, RF interface module 12 contains a separate upstream RF pass-through path 14 and a separate downstream RF pass-through path 16. A signal splitter 18 is used to connect both upstream path 14 and downstream path 16 to a cable modem 20. In this particular embodiment, cable modem 20 is located on a separate electronics assembly board 22. As will be discussed in detail below, a processor 24 is also disposed on electronics assembly board 22 and used to control the operation of upstream path 14 and reduce the impact of ingress signal noise.

In accordance with the operation of the present invention, upstream path 14 includes an upstream attenuation adjustment element 26, where the attenuation value is supplied by processor 24. Also included in upstream path 14 is an upstream amplifier 28 (the amplifier gain supplied by processor 24), and a bypass switch 30 controlled by processor 24. In operation, when the calculated upstream loss (calculated using the relationship defined hereinbelow) is found to be greater than zero, processor 24 activates bypass switch 30 to be in the “open” position and removes amplifier 28 from the upstream path, where amplifier 28 is also turned “off” to reduce power consumption. When the calculated upstream loss (as defined below) is less than zero, processor 24 operates to “close” switch 30, and thus couples amplifier 28 into upstream path 14.

FIG. 2 contains a diagram of an exemplary residence and its associated CG 10, where this diagram is useful in discussing the various parameters that are measured and/or determined for use in calculating upstream loss in the operation of the present invention. FIG. 3 contains a simplified flowchart illustrating the process used by processor 24 in controlling the operation of upstream signal path 14. Referring concurrently to FIGS. 2 and 3, processor 24 is first used to determine the value of the upstream signal loss, where upstream signal loss (USLossCalc) is defined as follows:
USLossCalc=(MaxInBuildingTxLevel−InBuildingPathLoss−CGPassthroughLoss)−(CMTxLevel−CMPathLoss)+MaxChannelBandDelta−CalcErrorMargin

The various components within the above upstream-signal loss calculation can be defined as follows and with particular reference to FIG. 2:

MaxInBuildingTxLevel: is illustrated as element A in FIG. 2 and is defined as an estimate of the maximum transmit level for two-way cable devices in a residence (as measured in dBmV)

InBuildingPathLoss: is illustrated as element B in FIG. 2 and is defined as an estimate of the nominal high-end upstream path loss in a residence (as measured in dB)

CGPassthroughLoss: is illustrated as element C in FIG. 2 and is defined as the loss in the CG between the RF building interface and the RF cable-drop interface (as measured in dB), ignoring any adjusted attenuation or amplification

CMTxLevel: is illustrated as element D in FIG. 2 as is defined as the CG's monitored cable modem (CM) transmit level (measured in dBmV)

CMPathLoss: is illustrated as element E in FIG. 2 and is defined as the CG's upstream path loss between its embedded CM interface and the RF interface to the drop cable (measured in dB)

MaxChannelBandDelta: is defined by the following:
10 log(CMTxBW/MaxInBuildingTxBW),
where CMTxBW is defined as the bandwidth of the upstream channel in the CG's cable modem that is providing the CMTxLevel reference, and MaxInBuilding−TxBW is defined as the maximum bandwidth of the in-building cable device associated with MaxInBuildingTxLevel, as defined above.

CalcErrorMargin: is defined as a predetermined “margin of error” used for adapting the determined value of the upstream loss calculation.

It is presumed that the use of a conventional microprocessor as processor 24 is capable of receiving these various values as inputs and then generating, as an output, a value for “upstream loss”. Further, the various values could be stored as SNMP MIB parameters to allow for configuration via a remote management device. Once a value of “upstream loss” has been calculated, the various components within upstream signal path 14 can be adjusted to reduce the presence of ingress noise in the signal propagating along this upstream path 14. Referring to FIG. 3, in fact, the first step in the process of the present invention is to calculate upstream loss (i.e., USLossCalc, step 100). Once the loss is determined, the value is analyzed to determine if it is positive or negative (step 110). If it is determined that the upstream loss value is positive, the process continues down branch 112 of the flowchart of FIG. 3, with processor 24 then transmitting a first control signal to bypass switch 30, instructing switch 30 to be in the “open” position (step 114). Processor 24 also instructs amplifier 28 to be turned “off” (step 116), thus saving power. Lastly, processor 24 instructs attenuation adjustment element 26 to set its attenuation at the greater of “zero” or the calculated upstream loss (step 118). As previously indicated, this adjustment should be gradual to allow for the cable devices in the customer premises to adjust to the change.

Presuming that the calculated value of the upstream loss was negative (branch 120 from decision step 110), processor 24 is used to instruct bypass switch 30 to be in the “closed” position (step 122) thus inserting amplifier 28 in upstream signal path. Processor 24 also activates amplifier 28 to be “on” (step 124), where amplifier 28 is set to exhibit a predetermined, static, amplifying factor (such as, for example, 15 db). Lastly, processor 24 instructs attenuation adjustment element 26 to set its attenuation at the greater of the sum of the calculated upstream loss and the amplifier gain or “zero” (step 126). Again, this adjustment should be gradual to allow for the cable devices in the customer premises to adjust to the change.

The static parameters that make up the upstream loss calculation (that is, all values except for the CMTxLevel), as well as the static value of the gain of amplifier 28 may be preconfigured at the initialization of CG 10, or may be configured thereafter, as the case may be. The more knowledge a cable operator has about a subscriber's in-building cable devices and cable path, the more accurate will be the choices for MaxInBuildingTxLevel, InBuildingPathLoss and MaxInBuildingTxBW. As these values increase in accuracy, the value of CalcErrorMargin is necessarily reduced.

The above-described process determines the upstream loss or gain needed to set the power density of an upstream signaling transmission of the CG's in-building cable devices, operating at near maximum transmit levels, to be near that of the CG's cable mode at the RF cable-drop interface. The algorithm forces a CG's in-building cable devices and embedded cable mode power densities close to the same level at the CG's RF cable-drop interface since this interface represents a location where the upstream path and associated path loss/gain is the same back to the head end. The process of the present invention uses power density rather than power, since the head end receiver levels are set relative to a given noise density. Most importantly, the process sets the upstream loss as high as possible to still enable in-home devices to communicate, thereby reducing the relative ingress noise entering the cable plant beyond the CG upstream attenuator. In addition, the process of the present invention provides flexibility by accommodating an upstream amplifier and determining when the amplifier should be bypassed to limit CG power use.

Example

The following example is useful in understanding the application of the ingress noise reduction technique of the present invention. In particular, consider the following configured parameters for USLossCalc:

    • MaxInBuildingTxLevel=58 dBmV for the maximum DOCSIS 1.1 transmit level for QPSK modulation. This could be associated with an individual cable modem, a video set-top-box, or telephony Media Terminal Adaptor (MTA) with embedded CM. Alternatively, the value could be smaller, associated with a narrowband video return path for a set-top-box that does not utilize an embedded CM. The choice of cable device associated with MaxInBuildingTxLevel will influence the choice of InBuildingTxBW, as shown below.
    • InBuildingPathLoss=8 dB for two cable splitters in the home
    • CGPassthroughLoss=5 dB for a single splitter and dual duplex filter losses between the CG's RF interface at the building and cable drop
    • CMPathLoss=4 dB for a single splitter between the CG's CM interface and the RF drop-cable interface
    • CMTxBW=1.6 MHz for a typical DOCSIS 1.1 upstream CM bandwidth
    • MaxInBuildigTxBW=3.2 MHz for the maximum DOCSIS 1.1 upstream CM bandwidth
    • MaxChannelBandDelta=10 log(1.6 MHz/3.2 MHz)=−3 dB
    • CalcErrorMargin=3 dB margin of error

Next, consider a range of CMTxLevel values spanning a maximum of 58 dBmV to a minimum of 8 dBmV. Assuming a gain of 15 dB for amplifier 28 (as shown in FIG. 1), the following table illustrates the USLossCalc results, as well as upstream amplifier state, upstream amplifier bypass state, and upstream attenuation level resulting from the inventive process as described above.

US Bypass US
CMTxLevel USLossCalc US Amp State State Attenuation
58 dBmV −14 dB ON No Bypass  1 dB
48 dBmV −4 dB ON No Bypass 11 dB
38 dBmV 6 dB OFF Bypass  6 dB
28 dBmV 16 dB OFF Bypass 16 dB
18 dBmV 26 dB OFF Bypass 26 dB
 8 dBmV 36 dB OFF Bypass 36 dB

As shown, when the CMTxLevel is high, amplification is required and attenuation can be low. This is attributed to the fact that CG's embedded cable modem is indicating that high upstream transmission levels are needed, perhaps due to high tap loss at the cable drop to the CG. Conversely, the results indicate that when the CMTxLevel is low, amplification is not needed and attenuation can be high. This result is attributed to the CG's cable modem's indication that low upstream transmission levels are needed, perhaps due to low tap loss at the cable drop.

It is to be understood that the periodicity of the CG pass-through loss and upstream amplifier state adjustment should be frequent enough to accommodate return path changes as affected by the HFC plant. In addition, any changes in upstream attenuation and/or gain should be applied gradually enough to allow for upstream power ranging or “long-loop AGC” operations to adjust to the changes.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US3750022 *Apr 26, 1972Jul 31, 1973Hughes Aircraft CoSystem for minimizing upstream noise in a subscriber response cable television system
US3924187 *May 14, 1974Dec 2, 1975Magnavox CoTwo-way cable television system with enhanced signal-to-noise ratio for upstream signals
US5606725 *Nov 29, 1994Feb 25, 1997Xel Communications, Inc.Broadband network having an upstream power transmission level that is dynamically adjusted as a function of the bit error rate
US5737461May 9, 1996Apr 7, 1998Motorola, Inc.Methods and filter for isolating upstream ingress noise in a bi-directional cable system
US5742713 *Oct 23, 1996Apr 21, 1998Motorola, Inc.Methods and filter for isolating upstream ingress noise in a bi-directional cable system
US5765097 *May 20, 1996Jun 9, 1998At & T CorpShared hybrid fiber-coax network having reduced ingress noise in the upstream channel transmitted via a repeater
US5845191 *Jul 25, 1996Dec 1, 1998At&T CorpMethod for asymmetrically attenuating signals in a transmission system
US5937330 *Feb 18, 1997Aug 10, 1999General Instrument CorporationSettop terminal controlled return path filter for minimizing noise ingress on bidirectional cable systems
US5963844Sep 18, 1996Oct 5, 1999At&T Corp.Hybrid fiber-coax system having at least one digital fiber node and increased upstream bandwidth
US5966410 *Jul 11, 1996Oct 12, 1999Motorola, Inc.Method and system for cleaning a frequency band
US6125514 *Jun 30, 1999Oct 3, 2000Yu; Te-ChengSafety clamp
US6166760 *Dec 30, 1998Dec 26, 2000Samsung Electronics Co., Ltd.Ingress noise measuring device in data communication network using CATV network
US6215514Jun 8, 1998Apr 10, 2001Trilithic, Inc.Ingress monitoring system
US6880170 *Dec 28, 1999Apr 12, 2005General Instrument CorporationIngress detection and attenuation
US7039432 *Dec 4, 2002May 2, 2006General Instrument CorporationDynamic upstream attenuation for ingress noise reduction
US20020106012 *Feb 6, 2002Aug 8, 2002Norrell Andrew L.Loop extender with communications, control, and diagnostics
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US8213457 *Oct 9, 2009Jul 3, 2012John Mezzalingua Associates, Inc.Upstream bandwidth conditioning device
US8286209Oct 21, 2008Oct 9, 2012John Mezzalingua Associates, Inc.Multi-port entry adapter, hub and method for interfacing a CATV network and a MoCA network
US8350641Jan 26, 2010Jan 8, 2013John Mezzalingua Associates, Inc.Band selective isolation bridge for splitter
US8356322Sep 21, 2009Jan 15, 2013John Mezzalingua Associates, Inc.Passive multi-port entry adapter and method for preserving downstream CATV signal strength within in-home network
US8385219Oct 9, 2009Feb 26, 2013John Mezzalingua Associates, Inc.Upstream bandwidth level measurement device
US8429695Feb 12, 2010Apr 23, 2013Ppc Broadband, Inc.CATV entry adapter and method utilizing directional couplers for MoCA signal communication
US8464301Oct 16, 2008Jun 11, 2013Ppc Broadband, Inc.Upstream bandwidth conditioning device between CATV distribution system and CATV user
US8487717Feb 1, 2010Jul 16, 2013Ppc Broadband, Inc.Multipath mitigation circuit for home network
US8516537Oct 9, 2009Aug 20, 2013Ppc Broadband, Inc.Downstream bandwidth conditioning device
US8724681Jun 27, 2012May 13, 2014Jds Uniphase CorporationIngress noise localization in a cable network
US8832767Oct 16, 2008Sep 9, 2014Ppc Broadband, Inc.Dynamically configurable frequency band selection device between CATV distribution system and CATV user
US20100095344 *Oct 13, 2008Apr 15, 2010Newby Charles FIngress Noise Inhibiting Network Interface Device and Method for Cable Television Networks
US20140153624 *Dec 3, 2012Jun 5, 2014Comcast Cable Communications, LlcNoise ingress detection
WO2012088606A1 *Dec 21, 2011Jul 5, 2012Belair Networks Inc.Cable modem with dual automatic attenuation
Classifications
U.S. Classification455/501, 725/124, 455/14, 455/67.13, 455/522, 455/523
International ClassificationH04B1/10, H04B15/00, H04N7/10
Cooperative ClassificationH04B1/109, H04N7/102
European ClassificationH04N7/10C, H04B1/10S
Legal Events
DateCodeEventDescription
Aug 20, 2014ASAssignment
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:STRATER, JAY;STONEBACK, DEAN;CHANG, KEVIN T;SIGNING DATES FROM 20030226 TO 20030401;REEL/FRAME:033569/0001
Owner name: GENERAL INSTRUMENT CORPORATION, PENNSYLVANIA
Nov 26, 2013FPAYFee payment
Year of fee payment: 4
Jul 9, 2013ASAssignment
Owner name: GENERAL INSTRUMENT HOLDINGS, INC., CALIFORNIA
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GENERAL INSTRUMENT CORPORATION;REEL/FRAME:030764/0575
Effective date: 20130415
Effective date: 20130528
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GENERAL INSTRUMENT HOLDINGS, INC.;REEL/FRAME:030866/0113
Owner name: MOTOROLA MOBILITY LLC, ILLINOIS