Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS7772581 B2
Publication typeGrant
Application numberUS 11/530,625
Publication dateAug 10, 2010
Filing dateSep 11, 2006
Priority dateSep 11, 2006
Fee statusPaid
Also published asCN101145599A, CN101145599B, CN102097587A, CN102097587B, US7964437, US20080061341, US20100261329
Publication number11530625, 530625, US 7772581 B2, US 7772581B2, US-B2-7772581, US7772581 B2, US7772581B2
InventorsHsiang-Lan Lung
Original AssigneeMacronix International Co., Ltd.
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Memory device having wide area phase change element and small electrode contact area
US 7772581 B2
Abstract
A memory cell device of the type that includes a memory material switchable between electrical property states by application of energy, situated between first and second (“bottom” and “top”) electrodes has a top electrode including a larger body portion and a stem portion. The memory material is disposed as a layer over a bottom electrode layer, and a base of the stem portion of the top electrode is in electrical contact with a small area of the surface of the memory material. Methods for making the memory cell are described.
Images(9)
Previous page
Next page
Claims(12)
1. A memory device comprising:
a plurality of memory cells, memory cells in the plurality of memory cells comprising
a bottom electrode,
a memory element over the bottom electrode, the memory element having a top surface,
a dielectric fill over the top surface of the memory element, and
a top electrode extending through a via in the dielectric fill and including a stem portion, wherein a base of the stem portion of the top electrode is in electrical contact with a contact area on the top surface of the memory element; and
wherein the vias of the memory cells have via widths adjacent the top surfaces of the memory elements, the via widths having a first variation in magnitude across the plurality of memory cells, and the bases of the stem portions of the top electrodes of the memory cells have base widths less than the via widths, the base widths having a second variation in magnitudes across the plurality of memory cells, the second variation being smaller than the first variation.
2. The device of claim 1 wherein the memory elements of the memory cells comprise an alloy including a chalcogenide.
3. The device of claim 1 wherein the second variation in magnitude of base widths of the stem portion is not dependent on the first variation in magnitude of the via widths.
4. The device of claim 1 wherein the width of the base of the stem portion of respective memory cells is nominally between 20 nm and 50 nm.
5. The device of claim 1, wherein the top electrodes of the memory cells comprise a liner and a core.
6. The memory device of claim 1, wherein the contact areas of the bases of the stem portions have widths less than the widths of the top surfaces of the memory elements.
7. The memory device of claim 1, wherein the bottom electrodes of the memory cells contact bottom surfaces of the memory elements at second contact areas, the second contact areas being larger than the contact areas of the bases of the stem portions of the top electrodes.
8. The device of claim 5, wherein the liner comprises a material chosen from tantalum nitride, titanium nitride, and tungsten nitride.
9. A memory device, comprising:
a substrate;
a first electrode over the substrate;
a memory element in electrical contact with the first electrode, the memory element having a top surface;
a dielectric fill layer over the top surface of the memory element, the first electrode, and the substrate, the dielectric fill layer having a via extending therethrough over the memory element, the via having a perimeter with a width;
an overlying layer over the dielectric fill layer and having an opening therethrough over the via, the opening having a width less than the width of the via such that an overhang of the overlying layer extends inward from the perimeter of the via;
a solid insulating spacer extending beneath the overhang, and within and partially filling the via to provide a contact opening more narrow than the width of the via and more narrow than the opening in the overlying layer; and
a second electrode extending into the contact opening, the second electrode comprising a stem portion, a base of the stem portion having a contact area in electrical contact with the top surface of the memory element;
wherein the contact area has a width dependent upon a width of the overhang.
10. The memory device of claim 9 wherein the width of the contact area is about twice the width of the overhang.
11. The memory device of claim 9 wherein the solid insulating spacer is a thermal isolation material.
12. The memory device of claim 9, wherein the width of the contact area is less than the width of the top surface of the memory element.
Description
PARTIES TO A JOINT RESEARCH AGREEMENT

International Business Machines Corporation, a New York corporation, Macronix International Corporation, Ltd., a Taiwan corporation, and Infineon Technologies A.G., a German corporation, are parties to a Joint Research Agreement

BACKGROUND

1. Field of the Invention

This invention relates to high density memory devices based on phase change based memory materials, including chalcogenide based materials and other materials, and to methods for manufacturing such devices.

2. Description of Related Art

Phase change based memory materials are widely used in read-write optical disks. These materials have at least two solid phases, including for example a generally amorphous solid phase and a generally crystalline solid phase. Laser pulses are used in read-write optical disks to switch between phases and to read the optical properties of the material after the phase change.

Phase change based memory materials, like chalcogenide based materials and similar materials, also can be caused to change phase by application of electrical current at levels suitable for implementation in integrated circuits. The generally amorphous state is characterized by higher resistivity than the generally crystalline state; this difference in resistance can be readily sensed to indicate data. These properties have generated interest in using programmable resistive material to form nonvolatile memory circuits, which can be read and written with random access.

The change from the amorphous to the crystalline state is generally a lower current operation. The change from crystalline to amorphous, referred to as reset herein, is generally a higher current operation, which includes a short high current density pulse to melt or breakdown the crystalline structure, after which the phase change material cools quickly, quenching the phase change process, allowing at least a portion of the phase change structure to stabilize in the amorphous state. It is desirable to minimize the magnitude of the reset current used to cause transition of phase change material from crystalline state to amorphous state. The magnitude of the reset current needed for reset can be reduced by reducing the size of the phase change material element in the cell and by reducing the size of the contact area between electrodes and the phase change material, so that higher current densities are achieved with small absolute current values through the phase change material element.

One direction of development has been toward forming small pores in an integrated circuit structure, and using small quantities of programmable resistive material to fill the small pores. Patents illustrating development toward small pores include: Ovshinsky, “Multibit Single Cell Memory Element Having Tapered Contact,” U.S. Pat. No. 5,687,112, issued Nov. 11, 1997; Zahorik et al., “Method of Making Chalogenide [sic] Memory Device,” U.S. Pat. No. 5,789,277, issued Aug. 4, 1998; Doan et al., “Controllable Ovonic Phase-Change Semiconductor Memory Device and Methods of Fabricating the Same,” U.S. Pat. No. 6,150,253, issued Nov. 21, 2000.

Problems have arisen in manufacturing such devices with very small dimensions, and with variations in process that meet tight specifications needed for large-scale memory devices. It is desirable therefore to provide a memory cell structure having small dimensions and low reset currents, and a method for manufacturing such structure

SUMMARY

Generally, the invention features a memory cell device of the type that includes a memory material switchable between electrical property states by application of energy, situated between first and second (“bottom” and “top”) electrodes. In embodiments of a memory cell device of the invention, the top electrode includes a larger body portion and a stem portion. The memory material is disposed as a layer over a bottom electrode layer, and a base of the stem portion of the top electrode is in electrical contact with a small area of the surface of the memory material. The area of electrical contact is defined by the dimensions of the stem of the electrode, near the base, and not by the dimensions of the memory material, which can have a significantly greater area. The dimensions of the stem portion of the top electrode, and of the area of contact of the base of the stem with the memory material can according to the invention be made very small, and are not dependent upon masking technologies.

In one general aspect, the invention features a memory cell device including a bottom electrode, a memory material element over the bottom electrode, and a top electrode including a body portion and a stem portion, in which a base of the stem portion of the top electrode is in electrical contact with a small area of a surface of the memory material.

In another general aspect the invention features a method for making a memory cell device, by: forming a bottom electrode layer over a surface of a substrate; forming a memory material layer over the bottom electrode layer; forming a cap layer over the memory material layer; patterning the bottom electrode layer, the memory material layer and the cap layer to define a bottom electrode overlain by a memory element overlain by a cap; forming an intermetal dielectric fill layer over the memory material; forming an etch stop layer over the dielectric fill; forming a via through the etch stop layer and the dielectric fill to expose a surface of the cap, the via including an opening in the etch stop layer; removing a quantity of dielectric fill material from walls of the via, forming a cavity and resulting in an undercut beneath the margin of the opening in the etch stop layer; depositing a thermal isolation material in the cavity over the surface of the memory material, whereby a void is formed in the thermal isolation material; anisotropically etching the thermal isolation material and the cap to expose a small area of the surface of the memory material, forming a pore in the thermal isolation material and the cap adjacent the memory element and a wider cavity in the thermal isolation material; and depositing an electrode material in the pore and the wider cavity to form the top electrode.

According to the invention, a masking step establishes the openings in the silicon nitride layer over the memory cell vias. The remainder of the process is self-aligning, and highly repeatable. The area of contact between the top electrode and the memory material is determined by width of the stem portion of the top electrode, which in turn is determined by anisotropic etch conditions and by the size and shape of the void in the thermal insulator, which can be readily and repeatably controlled.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a diagrammatic sketch in a sectional view showing a memory cell device according to an embodiment of the invention.

FIGS. 2-10 are sketches in a sectional view showing stages in a process for making a phase change memory cell according to an embodiment of the invention.

FIGS. 11A and 11B are sketches in a sectional view showing a portion of a memory array according to an embodiment of the invention; FIG. 11B shows a programming current flow.

FIG. 12 is a schematic diagram for a memory array having phase change memory elements.

FIG. 13 is a diagrammatic sketch in a layout or plan view showing a part of a memory array having phase change memory elements.

DETAILED DESCRIPTION

The invention will now be described in further detail by reference to the drawings, which illustrate alternative embodiments of the invention. The drawings are diagrammatic, showing features of the invention and their relation to other features and structures, and are not made to scale. For improved clarity of presentation, in the FIGs. illustrating embodiments of the invention, features corresponding to features shown in other drawings are not all particularly renumbered, although they are all readily identifiable in all the FIGs.

Turning now to FIG. 1, there is shown generally at 10 a memory cell structure according to an embodiment of the invention. Memory cell structure 10 includes a bottom electrode 12 overlain by a memory element 14, a top electrode 18 including a body portion 19 and a stem portion 17. The stem portion 17 of the top electrode 18 is in contact with a small area 13 of the surface 15 of the memory material layer 14. The top electrode may optionally include a core portion 21 and a liner (heater) portion 23. The top electrode 18 is surrounded by a thermal isolation material 16. The top electrode and the surrounding thermal isolation material are formed within a via in an interlayer dielectric fill, or separation layer, 11, which is overlain by an electrically insulative layer 20.

The memory cell structure 10 is formed over a semiconductor substrate including access transistors, and electrical connection of the surface 22 of the top electrode 18 is made by way of patterned metallization, as described for example below with reference to FIG. 11A.

The conductive path in the memory cell passes from the surface 22 of the top electrode 18 through the top electrode body portion 19 and the top electrode stem portion 17 and then into the memory element 14 at the area of contact 13 of the base of the stem portion 17 with the surface of the memory element 14, then through the memory element to the bottom electrode 12.

This memory cell structure according to the invention provides several advantageous features. The top electrode is well isolated thermally from the surrounding dielectric fill. The area of contact of the top electrode with the memory material is small, so that the reset program current can be reduced. The area of contact between the top electrode and the memory material is determined by width of the stem portion of the top electrode, which in turn is determined by anisotropic etch conditions and by the size and shape of the void in the thermal insulator. The size of the void in the thermal insulator is determined by the width of an undercut 320 at the margin of the opening in the electrically insulative layer, which can be readily and repeatably controlled.

Embodiments of memory cell device 10 include phase change based memory materials, including chalcogenide based materials and other materials, for memory material 14. Phase change alloys are capable of being switched between a first structural state in which the material is in a generally amorphous solid phase, and a second structural state in which the material is in a generally crystalline solid phase in its local order in the active channel region of the cell. These alloys are at least bistable. The term amorphous is used to refer to a relatively less ordered structure, more disordered than a single crystal, which has the detectable characteristics such as higher electrical resistivity than the crystalline phase. The term crystalline is used to refer to a relatively more ordered structure, more ordered than in an amorphous structure, which has detectable characteristics such as lower electrical resistivity than the amorphous phase. Typically, phase change materials may be electrically switched between different detectable states of local order across the spectrum between completely amorphous and completely crystalline states. Other material characteristics affected by the change between amorphous and crystalline phases include atomic order, free electron density and activation energy. The material may be switched either into different solid phases or into mixtures of two or more solid phases, providing a gray scale between completely amorphous and completely crystalline states. The electrical properties in the material may vary accordingly.

Phase change alloys can be changed from one phase state to another by application of electrical pulses. It has been observed that a shorter, higher amplitude pulse tends to change the phase change material to a generally amorphous state. A longer, lower amplitude pulse tends to change the phase change material to a generally crystalline state. The energy in a shorter higher amplitude pulse is high enough to allow for bonds of the crystalline structure to be broken and short enough to prevent the atoms from realigning into a crystalline state. Appropriate profiles for pulses can be determined, without undue experimentation, specifically adapted to a particular phase change alloy. In the disclosure herein, the phase change material is referred to as GST, and it will be understood that other types of phase change materials can be used. A material useful for implementation of a memory device described herein is Ge2Sb2Te5.

With reference again to FIG. 1, access circuitry, such as described with reference to FIG. 12, can be implemented to contact the first electrode 12 and the second electrode 18 in a variety of configurations for controlling the operation of the memory cell, so that it can be programmed to set the phase change material 14 in one of the two solid phases that can be reversibly implemented using the memory material. For example, using a chalcogenide-based phase change memory material, the memory cell may be set to a relatively high resistivity state in which at least a portion of the bridge in the current path is an amorphous state, and a relatively low resistivity state in which most of the bridge in the current path is in a crystalline state. For example, application of an electrical pulse having a suitable shorter, high amplitude profile, for example, results in changing the phase change material 14 locally to a generally amorphous state, as indicated at 29 in FIG. 1.

Manufacture of a memory cell device 10 will be described with reference to FIGS. 2-10, in which various stages in an exemplary process are shown in sectional view.

Referring to FIG. 2, a layer 212 of a material suitable as a bottom electrode is formed over a surface 211 of a substrate 210; a layer 214 of a phase change memory material is formed over the bottom electrode material layer 212; and a layer 226 of a protective cap material is formed over the layer 214 of phase change memory material.

The bottom electrode material layer 212 may be formed by a thin film deposition technique such as, for example, sputtering or atomic layer deposition onto surface 211 of the substrate 210. A suitable bottom electrode layer 212 may include layers of two or more materials, selected for their properties, among others, of adhesion to materials on adjacent layers. The bottom electrode layer 212 may include, for example, a film of titanium, followed by a film of titanium nitride on the surface of the titanium film. Titanium adheres well to materials in the underlying semiconductor substrate (such as a silicide); and titanium nitride adheres well to the overlying GST phase change material. Additionally, titanium nitride serves as a good diffusion barrier. A wide variety of materials can be used for the bottom electrode, including for example Ta, TaN, TiAlN, TaAlN; or the material of the bottom electrode may include one or more elements selected from the group consisting of Ti, W, Mo, Al, Ta, Cu, Pt, Ir, La, Ni and Ru, and alloys thereof; or may include a ceramic. The conditions of the deposition processes are established to provide suitable thickness of, and coverage by, the material(s) of the electrode layer, and to provide good thermal isolation. The bottom electrode at the surface of the substrate may have a thickness in a range about 200 nm to about 400 nm.

The layer 214 of phase change memory material may be formed over the bottom electrode layer 212 by a thin film deposition technique such as, for example, sputtering or atomic layer deposition. The conditions of the deposition processes are established to provide a suitable thickness of the phase change material layer over the bottom electrode. The phase change material layer at the surface of the bottom electrode over the substrate may have a thickness in a range about 20-200 nm.

The protective cap layer 226 protects the underlying phase change memory material during subsequent processes. Suitable materials for the protective cap layer 226 include, for example, silicon nitride, SiO2, Al2O3, Ta2O5, and the layer may be formed by, for example a CVD or PVD process. The protective cap layer 226 may have a thickness in the range about 5 nm to about 50 nm. Formation of the bottom electrode layer, the phase change memory material layer, and the protective cap layer results in a structure as shown in FIG. 2

Then a mask and etch process is used to define a bottom electrode 12 overlain by a phase change material element 14 and a cap 326 approximately at the site 30 of the memory cell, resulting in a structure as shown in FIG. 3. The cap 326, which has a surface 315, protects the phase change material element during the mask and etch process and, particularly, in some embodiments, during removal (stripping) of the photoresist.

Then, an interlayer dielectric fill is formed over the surface of the substrate and over the patterned bottom electrode, memory element, and cap, and an etch stop layer is formed over the interlayer dielectric fill. The interlayer dielectric fill may include, for example, a low-K dielectric material such as silicon dioxide, silicon oxynitride, silicon nitride, Al2O3, or other low K dielectric. Alternatively, the material of the interlayer dielectric fill may include one or more elements selected from the group consisting of Si, Ti, Al, Ta, N, O, and C. The material of the etch stop layer may include, for example, silicon nitride. Vias are formed through the etch stop layer and the dielectric fill, using a mask and etch process. FIG. 4 shows a resulting memory cell via 200, formed through the etch stop layer 20, and the dielectric fill layer 211. The via reaches to the surface 315 of the cap 326 over the phase change material element 14. Then, a wet etch process, such as, for example, a hydrofluoric acid dip, is applied to undercut the dielectric fill material and to widen the cavity 300 in the dielectric fill 11, as shown in FIG. 5.

The dimensions of the completed memory cell will be determined in part by the dimensions of the memory cell via and, particularly, in part by the extent of the undercut, as described with reference particularly to FIGS. 6 and 7, below.

The interlayer dielectric fill may have a thickness in a range about 100 nm to about 300 nm, and the silicon nitride layer may have a thickness in a range about 10 nm to about 40 nm. The via 200 may have a width in a range about 30 nm to about 300 nm. The size of the opening 220 through the silicon nitride layer is established, within a variation (typically +/−about 20 nm for example), by the design rules for the particular lithographic process used to form the via 200. The diameter 220 of the opening in the silicon nitride layer may be generally circular, for example, with a diameter 220 about 200 nm +/−about 20 nm, for example. The material of the etch stop layer 20 is selected to be selectively etched relative to the dielectric fill material; that is, the wet etch process that removes the dielectric material to form the undercut 320 may have substantially no effect on the etch stop layer 20. Where silicon dioxide is the dielectric fill material, for example, silicon nitride provides a suitable material for the etch stop layer. The extent of the undercut can be controlled by timing the wet etch process, within a variation typically +/−about 1.5 nm, for example. The conditions of the wet etch are established to provide an undercut 320 having a width 321 in a range about 5 nm to about 50 nm beneath the margin in the opening of the silicon nitride layer, resulting in a width 311 of the cavity 300 about the sum of the width 220 of the opening in the silicon nitride layer plus 2 times the width 321 of the undercut 320.

The protective cap layer 326 may protect the underlying phase change memory element 14 during the etch process that forms the via 200, and during the wet etch process that widens the cavity 300 in the dielectric fill.

Then a suitable thermal isolation material is formed over the structure of FIG. 5, and within the via, using a conformational deposition process such as a chemical vapor deposition (CVD), resulting in a structure as shown FIG. 6. The geometry of the undercut, and the conditions of the deposition process, result in formation of a void 610 in the thermal isolation material 600. The void 610 is approximately centered within the cavity in the memory cell via. The shape and width 613 of the void (or diameter, where the void is generally round, for example circular) is related to the width of the undercut 320; for example, where the opening 220 in the etch stop layer 20 is generally circular, for example, the void can be expected to be generally circular, and can be expected to have a diameter 613 about two times the width of the undercut 321.

Suitable thermal isolation materials 600 include dielectric materials, and may be an oxide, such as a silicon dioxide, for example. Other thermal isolation materials may be preferred, and selection of a thermal isolation material depends in part on the material of the interlayer dielectric fill; particularly, thermal isolation material 600 is a better thermal insulator than the interlayer dielectric fill 11, preferably at least 10% better. Therefore, when the interlayer dielectric comprises silicon dioxide, the thermal insulator 600 preferably has a thermal conductivity value “kappa” less than that of silicon dioxide, which is 0.014 J/cm*K*sec. Representative materials for thermal insulator 600 include low permittivity (low-K) materials, including materials that are a combination of the elements silicon (Si), carbon (C), oxygen (O), fluorine (F), and hydrogen (H). Examples of thermally insulating materials which are candidates for use as thermal insulator 600 include SiCOH, polyimide, polyamide, and fluorocarbon polymers. Other examples of materials which are candidates for use for thermal insulator 600 include fluorinated SiO2, silsesquioxane, polyarylene ethers, parylene, fluoropolymers, fluorinated amorphous carbon, diamond like carbon, porous silica, mesoporous silica, porous silsesquioxane, porous polyimide, and porous polyarylene ethers. A single layer or combination of layers can provide thermal insulation. In other preferred embodiments, the thermal insulator has a thermal conductivity less than that of the amorphous state of the phase change material, that is, less than about 0.003 J/cm*K*sec where the phase change material is a GST.

Then an anisotropic etch is performed, such as a reactive ion etch, to remove some of the thermal isolation material. The etch proceeds until an area of the surface of the cap 316 is exposed, and then proceeds until an area 13 of the surface 15 of the phase change element 14 is exposed. In some embodiments a first etch is performed under conditions that remove the thermal isolation material, and a second etch is performed under conditions that remove a portion of the cap (different etch chemistries may be used, for example). FIG. 7 shows a resulting structure. All the thermal isolation material overlying the etch stop layer 20 has been removed; and some of the thermal isolation material has been removed from the cavity in the memory cell via forming a pore 712 near the surface of the phase change material, which will define the stem portion of the top electrode; and a wider cavity 710, which will define the body portion of the top electrode The undercut 320 protects the thermal isolation material beneath it, leaving a residual portion 720 adjacent the wall of the cavity and adjacent the portion of the phase change material next to the wall of the cavity. The etch is stopped when a small area 13 of the surface of the phase change material is exposed at the bottom of the pore 712; a residual portion 722 remains after the etch is stopped, and this defines the shape and dimensions of the pore 712. The dimensions of the stem portion of the top electrode—and, consequently, the area of the contact of the top electrode with the phase change material—are determined in part by the position and the size of the void and by the deposition conformality of the thermal insulator material 600. Particularly, the width of the exposed small area 13 (diameter, if the area is circular, for example) of the phase change material 14 exposed at the bottom of the pore 712 results from the shape and width 713 of the pore 712, which in turn results from the shape and size of the void, as well as from the conditions of the etch. As noted above, the width (or diameter) of the void relates to the width of the undercut, and is not dependent upon the width of the via; typically the width of the void is about twice the width of the undercut. The position of the void (and, consequently, the position of the pore 712) is approximately at the center of the via and, because the memory material element has a significantly greater area, it is not necessary for the via to be precisely aligned with the memory material element.

The exposed small area 13 need not have any particular shape; it may, for example, be generally round (e.g., circular) or it may have some other shape, or it may have an irregular shape. Where the small area is circular, for example, the small area 13 may have a diameter in a range about 10 nm to about 100 nm, such as about 20 nm to about 50 nm, for example about 30 nm. Under conditions described herein, these dimensions may be expected where the width of the undercut is in a range about 5 nm to about 50 nm, such as about 10 nm to about 25 nm, for example about 15 nm.

Then the top electrode is formed in the memory cell cavity. In embodiments as shown in the FIGs., the top electrode includes a core surrounded by a liner (heater). In such embodiments, the liner is formed by depositing a suitable liner material over the structure of FIG. 7, resulting in a structure as shown in FIG. 8. The liner material fills the pore 712, forming the stem portion 17 of the top electrode; and forms a film 723 over the other surfaces of the structure. Suitable liner materials include, for example, tantalum nitride, titanium nitride, tungsten nitride, TiW. The conditions of the deposition processes are established to provide suitable thickness of, and coverage by, the material(s) of the electrode layer. Then the core of the top electrode is formed by depositing a suitable electrode material within the cavity and over the structure of FIG. 7, as shown at 900 in FIG. 9. The core material may be deposited by, for example, chemical vapor deposition (CVD). The top electrode 900 may be, for example, tungsten. Other suitable top electrode core materials include, for example, other metals such as copper, platinum, ruthenium, iridium, and alloys thereof.

A wide variety of materials can be used for the top electrode, including for example Ta, TaN, TiAlN, TaAlN; or the material of the top electrode may include one or more elements selected from the group consisting of Ti, W, Mo, Al, Ta, Cu, Pt, Ir, La, Ni and Ru, and alloys thereof; or may include a ceramic.

Then a planarizing process is used to remove the upper material, down to the surface 922 of the silicon nitride layer 20, resulting in a completed memory cell structure as shown in FIG. 10.

FIG. 11A shows a sectional view of two phase change random access memory cells 100, 102 according to the invention. The cells 110, 102 are formed on a semiconductor substrate 110. Isolation structures such as shallow trench isolation (“STI”) dielectric trenches 112 isolate pairs of rows of memory cell access transistors in the substrate. The access transistors are formed by common source region 116 in the substrate 110, and drain regions 115 and 117 in the substrate 112. Polysilicon word lines 113 and 114 constitute the gates of the access transistors. Common source line 119 is formed over the source region 116. A first dielectric fill layer 111 is deposited over the polysilicon word lines and the common source line on the substrate 110. Contact plugs 103, 104 (e.g., tungsten) are formed in vias in the fill layer 111 over the drain regions. Memory cells 100, 102 are formed, generally as described above with reference to FIGS. 2-10, and the memory cells 101, 102 are structured generally each like memory cell 10 as described with reference to FIG. 1: a bottom electrode material layer is deposited over the first dielectric fill layer, a memory material layer is deposited over the bottom electrode material layer, and a protective cap material layer is deposited over the memory material layer; the layers are patterned to form bottom electrode in contact with the contact plug, memory elements over the bottom electrode, and a cap over the memory element; a second dielectric fill layer 121 is deposited over these structures, an etch stop layer 120 is deposited over the second dielectric fill layer, and the etch stop layer and second dielectric fill are masked and etched to form vias and then wet etched to form cavities with undercuts beneath the margins of the via openings in the etch stop layer; then the thermal isolation material is deposited in the cavities (forming voids), anisotropic etch is formed through the thermal isolation material and the cap to form a cavity and to expose a small area of the surface of the memory element; the top electrode is formed in the cavity; the upper surface of the structure is planarized, and bit line 141 is formed over the memory cells, in contact with the upper surfaces of the top electrodes.

FIG. 11B shows a programming current path (arrow 129) through memory cells according to the invention, as described with reference to FIGS. 1 and 11A. The current flows from the M1 common source line 119 to the source region 116, then to the drain region 115, and from the drain region 115 through the contact plug 103 to the memory cell 100 and through the memory cell 100 to the bit line 141.

FIG. 12 is a schematic illustration of a memory array, which can be implemented as described herein. In the schematic illustration of FIG. 2, a common source line 128, a word line 123 and a word line 124 are arranged generally parallel in the Y-direction. Bit lines 141 and 142 are arranged generally parallel in the X-direction. Thus, a Y-decoder and a word line driver in block 145 are coupled to the word lines 123, 124. An X-decoder and a set of sense amplifiers in block 146 are coupled to the bit lines 141 and 142. The common source line 128 is coupled to the source terminals of access transistors 150, 151, 152 and 153. The gate of access transistor 150 is coupled to the word line 123. The gate of access transistor 151 is coupled to the word line 124. The gate of access transistor 152 is coupled to the word line 123. The gate of access transistor 153 is coupled to the word line 124. The drain of access transistor 150 is coupled to the bottom electrode member 132 for memory cell 135, which has top electrode member 134. The top electrode member 134 is coupled to the bit line 141. Likewise, the drain of access transistor 151 is coupled to the bottom electrode member 133 for memory cell 136, which has top electrode member 137. The top electrode member 137 is coupled to the bit line 141. Access transistors 152 and 153 are coupled to corresponding memory cells as well on bit line 142. It can be seen that in this illustrative configuration the common source line 128 is shared by two rows of memory cells, where a row is arranged in the Y-direction in the illustrated schematic. In other embodiments, the access transistors can be replaced by diodes, or other structures for controlling current flow to selected devices in the array for reading and writing data.

FIG. 13 is a layout or plan view of a memory array as shown in the schematic diagram of FIG. 12, showing the structure above the semiconductor substrate layer 110 of FIG. 11A. Certain of the features are omitted, or are shown as transparent. Word lines 123, 124 are laid out substantially parallel to the source line 28. Metal bit lines 141 and 142 are laid out over, and substantially perpendicular to, the word lines. The positions of memory cell devices 135 below the metal bit lines are indicated, although they would not be visible in this view.

Embodiments of memory cell device 10 include phase change based memory materials, including chalcogenide based materials and other materials, for memory material 14. Chalcogens include any of the four elements oxygen (O), sulfur (S), selenium (Se), and tellurium (Te), forming part of group VI of the periodic table. Chalcogenides comprise compounds of a chalcogen with a more electropositive element or radical. Chalcogenide alloys comprise combinations of chalcogenides with other materials such as transition metals. A chalcogenide alloy usually contains one or more elements from column six of the periodic table of elements, such as germanium (Ge) and tin (Sn). Often, chalcogenide alloys include combinations including one or more of antimony (Sb), gallium (Ga), indium (In), and silver (Ag). Many phase change based memory materials have been described in technical literature, including alloys of: Ga/Sb, In/Sb, In/Se, Sb/Te, Ge/Te, Ge/Sb/Te, In/Sb/Te, Ga/Se/Te, Sn/Sb/Te, In/Sb/Ge, Ag/In/Sb/Te, Ge/Sn/Sb/Te, Ge/Sb/Se/Te and Te/Ge/Sb/S. In the family of Ge/Sb/Te alloys, a wide range of alloy compositions may be workable. The compositions can be characterized as TeaGebSb100−(a+b). One researcher has described the most useful alloys as having an average concentration of Te in the deposited materials well below 70%, typically below about 60% and ranged in general from as low as about 23% up to about 58% Te and most preferably about 48% to 58% Te. Concentrations of Ge were above about 5% and ranged from a low of about 8% to about 30% average in the material, remaining generally below 50%. Most preferably, concentrations of Ge ranged from about 8% to about 40%. The remainder of the principal constituent elements in this composition was Sb. These percentages are atomic percentages that total 100% of the atoms of the constituent elements. (Ovshinsky '112 patent, columns 10-11.) Particular alloys evaluated by another researcher include Ge2Sb2Te5, GeSb2Te4 and GeSb4Te7. (Noboru Yamada, “Potential of Ge—Sb—Te Phase-Change Optical Disks for High-Data-Rate Recording”, SPIE v. 3109, pp. 28-37 (1997).) More generally, a transition metal such as chromium (Cr), iron (Fe), nickel (Ni), niobium (Nb), palladium (Pd), platinum (Pt) and mixtures or alloys thereof may be combined with Ge/Sb/Te to form a phase change alloy that has programmable resistive properties. Specific examples of memory materials that may be useful are given in Ovshinsky '112 at columns 11-13, which examples are hereby incorporated by reference.

The invention has been described with reference to phase change materials. However, other memory materials, also sometimes referred to as programmable materials, can also be used. As used in this application, memory materials are those materials having electrical properties, such as resistance, that can be changed by the application of energy; the change can be a stepwise change or a continuous change or a combination thereof. Other programmable resistive memory materials may be used in other embodiments of the invention, including N2 doped GST, GexSby, or other material that uses different crystal phase changes to determine resistance; PrxCayMnO3, PrSrMnO, ZrOx, or other material that uses an electrical pulse to change the resistance state; 7,7,8,8-tetracyanoquinodimethane (TCNQ), methanofullerene 6,6-phenyl C61-butyric acid methyl ester (PCBM), TCNQ-PCBM, Cu-TCNQ, Ag-TCNQ, C60-TCNQ, TCNQ doped with other metal, or any other polymer material that has bistable or multi-stable resistance state controlled by an electrical pulse. Further examples of programmable resistive memory materials include GeSbTe, GeSb, NiO, Nb—SrTiO3, Ag—GeTe, PrCaMnO, ZnO, Nb2O5, Cr—SrTiO3.

For additional information on the manufacture, component materials, use and operation of phase change random access memory devices, see U.S. patent application Ser. No. 11/155,067, filed 17 Jun. 2005, titled “Thin film fuse phase change RAM and manufacturing method”.

Other embodiments are within the scope of the invention.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US3271591Sep 20, 1963Sep 6, 1966Energy Conversion Devices IncSymmetrical current controlling device
US3530441Jan 15, 1969Sep 22, 1970Energy Conversion Devices IncMethod and apparatus for storing and retrieving information
US4599705Sep 10, 1984Jul 8, 1986Energy Conversion Devices, Inc.Programmable cell for use in programmable electronic arrays
US4719594Aug 26, 1985Jan 12, 1988Energy Conversion Devices, Inc.Grooved optical data storage device including a chalcogenide memory layer
US4876220Nov 13, 1987Oct 24, 1989Actel CorporationMethod of making programmable low impedance interconnect diode element
US4959812Dec 27, 1988Sep 25, 1990Kabushiki Kaisha ToshibaElectrically erasable programmable read-only memory with NAND cell structure
US5106775Jul 30, 1990Apr 21, 1992Hitachi, Ltd.Process for manufacturing vertical dynamic random access memories
US5166096Apr 14, 1992Nov 24, 1992International Business Machines CorporationProcess for fabricating self-aligned contact studs for semiconductor structures
US5166758Jan 18, 1991Nov 24, 1992Energy Conversion Devices, Inc.Electrically erasable phase change memory
US5177567Jul 19, 1991Jan 5, 1993Energy Conversion Devices, Inc.Thin-film structure for chalcogenide electrical switching devices and process therefor
US5332923Aug 6, 1992Jul 26, 1994Nec CorporationSemiconductor memory
US5391901Oct 22, 1993Feb 21, 1995Nec CorporationSemiconductor memory with oblique folded bit-line arrangement
US5515488Aug 30, 1994May 7, 1996Xerox CorporationMethod and apparatus for concurrent graphical visualization of a database search and its search history
US5534712Aug 21, 1995Jul 9, 1996Energy Conversion Devices, Inc.Electrically erasable memory elements characterized by reduced current and improved thermal stability
US5550396May 24, 1995Aug 27, 1996Mitsubishi Denki Kabushiki KaishaVertical field effect transistor with a trench structure
US5687112Apr 19, 1996Nov 11, 1997Energy Conversion Devices, Inc.Multibit single cell memory element having tapered contact
US5789277Jul 22, 1996Aug 4, 1998Micron Technology, Inc.Method of making chalogenide memory device
US5789758Jun 7, 1995Aug 4, 1998Micron Technology, Inc.Chalcogenide memory cell with a plurality of chalcogenide electrodes
US5814527Jul 22, 1996Sep 29, 1998Micron Technology, Inc.Method of making small pores defined by a disposable internal spacer for use in chalcogenide memories
US5831276Jul 22, 1996Nov 3, 1998Micron Technology, Inc.Three-dimensional container diode for use with multi-state material in a non-volatile memory cell
US5837564Nov 1, 1995Nov 17, 1998Micron Technology, Inc.Patterned etching of amorphous chalcogenide layer to form array of memory cell elements on substrate, annealing to crystallize all elements simultaneously
US5869843Jun 7, 1995Feb 9, 1999Micron Technology, Inc.Memory array having a multi-state element and method for forming such array or cells thereof
US5879955Jun 7, 1995Mar 9, 1999Micron Technology, Inc.Method for fabricating an array of ultra-small pores for chalcogenide memory cells
US5902704Jul 2, 1997May 11, 1999Lsi Logic CorporationProcess for forming photoresist mask over integrated circuit structures with critical dimension control
US5920788Dec 16, 1997Jul 6, 1999Micron Technology, Inc.Chalcogenide memory cell with a plurality of chalcogenide electrodes
US5933365Jun 19, 1997Aug 3, 1999Energy Conversion Devices, Inc.Memory element with energy control mechanism
US5952671May 9, 1997Sep 14, 1999Micron Technology, Inc.Small electrode for a chalcogenide switching device and method for fabricating same
US5958358Jun 3, 1996Sep 28, 1999Yeda Research And Development Co., Ltd.Fullerene-like or nanotube structure of transition metal chalcogenide
US5970336Oct 30, 1997Oct 19, 1999Micron Technology, Inc.Method of making memory cell incorporating a chalcogenide element
US5985698Apr 30, 1997Nov 16, 1999Micron Technology, Inc.Fabrication of three dimensional container diode for use with multi-state material in a non-volatile memory cell
US5998244Aug 22, 1996Dec 7, 1999Micron Technology, Inc.Memory cell incorporating a chalcogenide element and method of making same
US6011725Feb 4, 1999Jan 4, 2000Saifun Semiconductors, Ltd.Two bit non-volatile electrically erasable and programmable semiconductor memory cell utilizing asymmetrical charge trapping
US6025220Jun 18, 1996Feb 15, 2000Micron Technology, Inc.Method of forming a polysilicon diode and devices incorporating such diode
US6031287Jun 18, 1997Feb 29, 2000Micron Technology, Inc.Contact structure and memory element incorporating the same
US6034882Nov 16, 1998Mar 7, 2000Matrix Semiconductor, Inc.Vertically stacked field programmable nonvolatile memory and method of fabrication
US6066870Jul 2, 1998May 23, 2000Micron Technology, Inc.Single digit line with cell contact interconnect
US6077674Oct 27, 1999Jun 20, 2000Agilent Technologies Inc.Coupling linking agent to end of full-length oligonucleotides in mixture of variable length synthesized oligonucleotides, cleaving other end from support, depositing mixture on surface, linking group preferentially attaches to surface
US6077729Feb 5, 1999Jun 20, 2000Micron Technology, Inc.Memory array having a multi-state element and method for forming such array or cellis thereof
US6087269Apr 20, 1998Jul 11, 2000Advanced Micro Devices, Inc.Forming aluminum-based layer(al), titanium/titanium nitride layer, tungsten-based layer(w), and patterned photoresist layer; etching w layer using first etchant and photoresist as etch mask, etching al using second etchant and w as etch mask
US6087674 *Apr 20, 1998Jul 11, 2000Energy Conversion Devices, Inc.Memory element with memory material comprising phase-change material and dielectric material
US6104038May 11, 1999Aug 15, 2000Micron Technology, Inc.Method for fabricating an array of ultra-small pores for chalcogenide memory cells
US6111264Nov 13, 1997Aug 29, 2000Micron Technology, Inc.Small pores defined by a disposable internal spacer for use in chalcogenide memories
US6114713May 27, 1999Sep 5, 2000Zahorik; Russell C.Integrated circuit memory cell having a small active area and method of forming same
US6117720Apr 28, 1997Sep 12, 2000Micron Technology, Inc.Method of making an integrated circuit electrode having a reduced contact area
US6147395Oct 2, 1996Nov 14, 2000Micron Technology, Inc.Method for fabricating a small area of contact between electrodes
US6150253Oct 23, 1997Nov 21, 2000Micron Technology, Inc.Controllable ovonic phase-change semiconductor memory device and methods of fabricating the same
US6153890Aug 13, 1999Nov 28, 2000Micron Technology, Inc.Memory cell incorporating a chalcogenide element
US6177317Apr 14, 1999Jan 23, 2001Macronix International Co., Ltd.Method of making nonvolatile memory devices having reduced resistance diffusion regions
US6185122Dec 22, 1999Feb 6, 2001Matrix Semiconductor, Inc.Vertically stacked field programmable nonvolatile memory and method of fabrication
US6189582Jun 25, 1999Feb 20, 2001Micron Technology, Inc.Small electrode for a chalcogenide switching device and method for fabricating same
US6236059Apr 30, 1997May 22, 2001Micron Technology, Inc.Memory cell incorporating a chalcogenide element and method of making same
US6271090Dec 22, 2000Aug 7, 2001Macronix International Co., Ltd.Method for manufacturing flash memory device with dual floating gates and two bits per cell
US6280684Jan 19, 2000Aug 28, 2001Ricoh Company, Ltd.Sputtering target, method of producing the target, optical recording medium fabricated by using the sputtering target, and method of fabricating the optical recording medium
US6287887Aug 31, 2000Sep 11, 2001Micron Technology, Inc.Method for fabricating a small area of contact between electrodes
US6314014Dec 16, 1999Nov 6, 2001Ovonyx, Inc.Programmable resistance memory arrays with reference cells
US6316348Apr 20, 2001Nov 13, 2001Taiwan Semiconductor Manufacturing CompanyHigh selectivity Si-rich SiON etch-stop layer
US6320786Feb 5, 2001Nov 20, 2001Macronix International Co., Ltd.Method of controlling multi-state NROM
US6339544Sep 29, 2000Jan 15, 2002Intel CorporationMethod to enhance performance of thermal resistor device
US6351406Nov 15, 2000Feb 26, 2002Matrix Semiconductor, Inc.Vertically stacked field programmable nonvolatile memory and method of fabrication
US6372651Apr 6, 1999Apr 16, 2002Advanced Micro Devices, Inc.Method for trimming a photoresist pattern line for memory gate etching
US6380068Feb 14, 2001Apr 30, 2002Macronix International Co., Ltd.Method for planarizing a flash memory device
US6420215Mar 21, 2001Jul 16, 2002Matrix Semiconductor, Inc.Three-dimensional memory array and method of fabrication
US6420216Mar 14, 2000Jul 16, 2002International Business Machines CorporationFuse processing using dielectric planarization pillars
US6420725Jun 7, 1995Jul 16, 2002Micron Technology, Inc.Method and apparatus for forming an integrated circuit electrode having a reduced contact area
US6423621Sep 25, 2001Jul 23, 2002Micron Technology, Inc.Controllable ovonic phase-change semiconductor memory device and methods of fabricating the same
US6429064Sep 29, 2000Aug 6, 2002Intel CorporationReduced contact area of sidewall conductor
US6440837Jul 14, 2000Aug 27, 2002Micron Technology, Inc.Method of forming a contact structure in a semiconductor device
US6462353Nov 2, 2000Oct 8, 2002Micron Technology Inc.Method for fabricating a small area of contact between electrodes
US6483736Aug 24, 2001Nov 19, 2002Matrix Semiconductor, Inc.Vertically stacked field programmable nonvolatile memory and method of fabrication
US6487106 *Feb 11, 2000Nov 26, 2002Arizona Board Of RegentsProgrammable microelectronic devices and method of forming and programming same
US6487114Feb 28, 2001Nov 26, 2002Macronix International Co., Ltd.Method of reading two-bit memories of NROM cell
US6501111Jun 30, 2000Dec 31, 2002Intel CorporationThree-dimensional (3D) programmable device
US6511867Jun 30, 2001Jan 28, 2003Ovonyx, Inc.Utilizing atomic layer deposition for programmable device
US6512241Dec 31, 2001Jan 28, 2003Intel CorporationPhase change material memory device
US6514788May 29, 2001Feb 4, 2003Bae Systems Information And Electronic Systems Integration Inc.Method for manufacturing contacts for a Chalcogenide memory device
US6514820Aug 29, 2001Feb 4, 2003Micron Technology, Inc.Method for forming single electron resistor memory
US6534781Dec 26, 2000Mar 18, 2003Ovonyx, Inc.Phase-change memory bipolar array utilizing a single shallow trench isolation for creating an individual active area region for two memory array elements and one bipolar base contact
US6545903Dec 17, 2001Apr 8, 2003Texas Instruments IncorporatedSelf-aligned resistive plugs for forming memory cell with phase change material
US6551866Apr 12, 1999Apr 22, 2003Mitsubishi Denki Kabushiki KaishaMethod of manufacturing a semiconductor memory device
US6555860Jan 25, 2001Apr 29, 2003Intel CorporationCompositionally modified resistive electrode
US6563156Mar 15, 2001May 13, 2003Micron Technology, Inc.Memory elements and methods for making same
US6566700Oct 11, 2001May 20, 2003Ovonyx, Inc.Carbon-containing interfacial layer for phase-change memory
US6567293Sep 29, 2000May 20, 2003Ovonyx, Inc.Single level metal memory cell using chalcogenide cladding
US6576546Dec 19, 2000Jun 10, 2003Texas Instruments IncorporatedMethod of enhancing adhesion of a conductive barrier layer to an underlying conductive plug and contact for ferroelectric applications
US6579760Mar 28, 2002Jun 17, 2003Macronix International Co., Ltd.Self-aligned, programmable phase change memory
US6586761Sep 7, 2001Jul 1, 2003Intel CorporationPhase change material memory device
US6589714Jun 26, 2001Jul 8, 2003Ovonyx, Inc.Providing a conductive material; forming a silylated photoresist sidewall spacer over portion; removing a portion of conductive material to form a raised portion; forming a programmable resistance material adjacent to raised portion
US6593176Jul 15, 2002Jul 15, 2003Ovonyx, Inc.Method for forming phase-change memory bipolar array utilizing a single shallow trench isolation for creating an individual active area region for two memory array elements and one bipolar base contact
US6597009Jan 4, 2002Jul 22, 2003Intel CorporationReduced contact area of sidewall conductor
US6605527Jun 30, 2001Aug 12, 2003Intel CorporationReduced area intersection between electrode and programming element
US6605821May 10, 2002Aug 12, 2003Hewlett-Packard Development Company, L.P.Phase change material electronic memory structure and method for forming
US6607974Dec 14, 2001Aug 19, 2003Micron Technology, Inc.Method of forming a contact structure in a semiconductor device
US6613604Sep 19, 2001Sep 2, 2003Ovonyx, Inc.Method for making small pore for use in programmable resistance memory element
US6617192Oct 3, 2000Sep 9, 2003Ovonyx, Inc.Electrically programmable memory element with multi-regioned contact
US6620715Mar 29, 2002Sep 16, 2003Cypress Semiconductor Corp.Method for forming sub-critical dimension structures in an integrated circuit
US6621095Aug 29, 2001Sep 16, 2003Ovonyx, Inc.Method to enhance performance of thermal resistor device
US6627530Dec 22, 2000Sep 30, 2003Matrix Semiconductor, Inc.Patterning three dimensional structures
US6639849Feb 3, 2003Oct 28, 2003Fujitsu LimitedNonvolatile semiconductor memory device programming second dynamic reference cell according to threshold value of first dynamic reference cell
US6673700Jun 30, 2001Jan 6, 2004Ovonyx, Inc.Reduced area intersection between electrode and programming element
US6674115Dec 4, 2002Jan 6, 2004Intel CorporationMultiple layer phrase-change memory
US7151273 *Apr 12, 2002Dec 19, 2006Micron Technology, Inc.Silver-selenide/chalcogenide glass stack for resistance variable memory
US7314776 *Dec 13, 2002Jan 1, 2008Ovonyx, Inc.Method to manufacture a phase change memory
US7485891 *Nov 20, 2003Feb 3, 2009International Business Machines CorporationMulti-bit phase change memory cell and multi-bit phase change memory including the same, method of forming a multi-bit phase change memory, and method of programming a multi-bit phase change memory
US20030116794 *Aug 31, 2001Jun 26, 2003Lowrey Tyler A.Elevated pore phase-change memory
US20050127349 *Dec 10, 2003Jun 16, 2005Horak David V.Phase change tip storage cell
US20050167656 *Jan 30, 2004Aug 4, 2005International Business Machines CorporationPhase-change memory cell and method of fabricating the phase-change memory cell
US20060118913 *Nov 29, 2005Jun 8, 2006Samsung Electronics Co., Ltd.Phase changeable memory cells and methods of forming the same
US20060175599 *Apr 8, 2005Aug 10, 2006Infineon Technologies North America Corp.Phase change memory cell with high read margin at low power operation
US20060226409 *Apr 6, 2005Oct 12, 2006International Business Machines CorporationStructure for confining the switching current in phase memory (PCM) cells
US20060278895 *Jun 14, 2005Dec 14, 2006International Business Machines CorporationReprogrammable fuse structure and method
US20070007613 *Oct 3, 2005Jan 11, 2007Wen-Han WangPhase change memory with adjustable resistance ratio and fabricating method thereof
US20070040159 *Feb 21, 2006Feb 22, 2007Wen-Han WangManufacturing method and structure for improving the characteristics of phase change memory
US20070120104 *Nov 29, 2005May 31, 2007Dong Ho AhnPhase change material and non-volatile memory device using the same
US20070158633 *Aug 10, 2006Jul 12, 2007Macronix International Co., Ltd.Method for Forming Self-Aligned Thermal Isolation Cell for a Variable Resistance Memory Array
US20070246748 *Apr 25, 2006Oct 25, 2007Breitwisch Matthew JPhase change memory cell with limited switchable volume
USRE37259Nov 8, 1999Jul 3, 2001Energy Conversion Devices, Inc.Multibit single cell memory element having tapered contact
Non-Patent Citations
Reference
1"Magnetic Bit Boost," www.sciencenews.org, Dec. 18 & 25, 2004, p. 389, vol. 166.
2"New Memories Tap Spin, Gird for Battle," Science News, Apr. 3, 1999, p. 223, vol. 155.
3"Optimized Thermal Capacitance in a Phase Change Memory Cell Design", IPCOM000141986D, IP.com Prior Art Database, Oct. 18, 2006, 4 pp.
4"Remembering on the Cheap," www.sciencenews.org, Mar. 19, 2005, p. 189, vol. 167.
5"Thermal Conductivity of Crystalline Dielectrics" in CRC Handbook of Chemistry and Physics, Internet Version 2007, (87th edition), David R. Lide, ed. Taylor and Francis, Boca Raton, FL.
6Adler, D. et al., "Threshold Switching in Chalcogenide-Glass Thin Films," J. Appl/ Phys 51(6), Jun. 1980, pp. 3289-3309.
7Adler, David, "Amorphous-Semiconductor Devices," Sci. Amer., vol. 236, pp. 36-48, May 1977.
8Ahn, S. J. et al., "Highly Reliable 5nm Contact Cell Technology for 256Mb PRAM," VLSI Technology, Digest of Technical Papers, Jun. 14-16, 2005, pp. 98-99.
9Ahn, S.J. at al., "A Highly Manufacturable High Density Phase Change Memory of 64 Mb and Beyond," IEEE IEDM 2004, pp. 907-910.
10Axon Technologies Corporation paper: Technology Description, pp. 1-6.
11Bedeschi, F. et al., "4-MB MOSFET-Selected Phase-Change Memory Experimental Chip," IEEE, 2004, 4 pp.
12Blake thesis, "Investigation of GeTeSb5 Chalcogenide Films for Use as an Analog Memory," AFIT/GE/ENG/00M-04, Mar. 2000, 121 pages.
13Chen, An et al., "Non-Volatile Resistive Switching for Advanced Memory Applications," IEEE IEDM , Dec. 5-7 2005, 4 pp.
14Cho, S. L. et al., "Highly Scalable On-axis Confined Cell Structure for High Density PRAM beyond 256Mb," 2005 Symposium on VLSI Technology Digest of Technical Papers, pp. 96-97.
15Gibson, G. A. et al, "Phase-change Recording Medium that Enables Ultrahigh-density Electron-beam Data Storage," Applied Physics Letter, 2005, 3 pp., vol. 86.
16Gill, Manzur et al., "A High-Performance Nonvolatile Memory Technology for Stand-Alone Memory and Embedded Applications," 2002 IEEE-ISSCC Technical Digest (TD 12.4), 7 pp.
17Ha, Y. H. et al., "An Edge Contact Type Cell fro Phase Change RAM Featuring Very Low Power Consumption," 2003 Symposium on VLSI Technology Digest of Technical Papers, pp. 175-176.
18Happ, T. D. at al., "Novel None-Mask Self-Heating Pillar Phase Change Memory," 2006 Symposium on VLSI Technology, 2 pp.
19Haring Bolivar, P. et al., "Lateral Design for Phase Change Random Access Memory Cells with Low-Current Consumption," presented at 3rd E*PCOS 04 Symposium in Balzers, Principality of Liechtenstein, Sep. 4-7, 2004, 4 pp.
20Horii, H. et al., "A Novel Cell Technology Using N-doped GeSbTe Films for Phase Change RAM," 2003 Symposium on VLSI Technology Digest of Technical Papers, pp. 177-178.
21Hudgens, S. et al., "Overview of Phase-Change Chalcogenide Nonvolatile Memory Technology," MRS Bulletin, Nov. 2004, pp. 829-832.
22Hwang, Y. N. et al., "Full Integration and Reliability Evaluation of Phase-change RAM Based on 0.24 mum-CMOS Technologies," 2003 Symposium on VLSI Technology Digest of Technical Papers, pp. 173-174.
23Hwang, Y. N. et al., "Full Integration and Reliability Evaluation of Phase-change RAM Based on 0.24 μm-CMOS Technologies," 2003 Symposium on VLSI Technology Digest of Technical Papers, pp. 173-174.
24Iwasaki, Hiroko et al., "Completely Erasable Phase Change Optical Disk," Jpn. J. Appl, Phys., Feb. 1992, pp. 461-465, vol. 31.
25Jeong, C. W. et al., "Switching Current Scaling and Reliability Evaluation in PRAM," IEEE Non-Volatile Semiconductor Memory Workshop, Monterey, CA, 2004, pp. 28-29 and workshop cover sheet.
26Kim, Kinam et al,, "Reliability Investigations for Manufacturable High Density PRAM," IEEE 43rd Annual International Reliability Physics Symposium, San Jose, 2005, pp. 157-162.
27Kim, Kinam et al,, "Reliability Investigations for Manufacturable High Density PRAM," IEEE 43rd Annual International Reliability Physics Symposium, San Jose, 2005, pp. 157-162.
28Kojima, Rie et al., "Ge-Sn-Sb-Te Phase-change Recording Material Having High Crystallization Speed," Proceedings of PCOS 2000, pp. 36-41.
29Lacita, A. L.; "Electrothermal and Phase-change Dynamics in Chalcogenide-based Memories," IEEE IEDM 2004, 4 pp.
30Lai, Stefan, "Current Status of the Phase Change Memory and Its Future," IEEE IEDM 2003, pp. 255-258.
31Lai, Stephan et al., OUM-A 180 nm Nonvolatile Memory Cell Element Technology for Stand Alone and Embedded Applications, IEEE IEDM 2001, pp. 803-806.
32Lankhorst, Martijn H. R., et al; Low-Cost and Nanoscale Non-Volatile Memory Concept for Future Silicon Chips, Mar. 13, 2005, 6 pp., Nature Materials Advance Online Publication, www.nature.com/naturematerials.
33Mott, Nevill, "Electrons in Glass," Nobel Lecture, Dec. 8, 1977, Physics, 1977, pp. 403-413.
34Ovonyx Non-Confidential paper entitled "Ovonic Unified Memory," Dec. 1999, pp. 1-80.
35Ovshinsky, Sandford R., "Reversible Electrical Switching Phenomena in Disordered Structures," Physical Review Letters, vol. 21, No. 20, Nov. 11, 1968, pp. 1450-1453.
36Owen, Alan E. et al., "Electronic Conduction and Switching in Chalcogenide Glasses," IEEE Transactions on Electron Devices, vol. Ed. 20, No. 2, Feb. 1973, pp. 105-122.
37Pellizer, F. et al, "Novel muTrench Phase-Change Memory Cell for Embedded and Stand-Alone Non-Volatile Memory Applications," 2004 Symposium on VLSI Technology Digest of Technical Papers, pp. 18-19.
38Pellizer, F. et al, "Novel μTrench Phase-Change Memory Cell for Embedded and Stand-Alone Non-Volatile Memory Applications," 2004 Symposium on VLSI Technology Digest of Technical Papers, pp. 18-19.
39Pirovano, Agostino et al., "Reliability Study of Phase-Change Nonvolatile Memories," IEEE Transactions on Device and Materials Reliability, Sep. 2004, pp. 422-427, vol. 4, No. 3.
40Prakash, S. et al., "A Guideline for Designing Chalcogenide-Based Glasses for Threshold Switching Characteristics," IEEE Electron Device Letters, vol. 18, No. 2, Feb. 1997, pp. 45-47.
41Radaelli, A. et al., "Electronic Switching Effect and Phase-Change Transition in Chalcogenide Materials," IEEE Electron Device Letters, Oct. 2004, pp. 684-686, vol. 25, No. 10.
42Rochefort, C. et al., "Manufacturing of High Aspect-Ration p-n. Junctions Using Vapor Phase Doping for Application in Multi-Resurf Devices," IEEE 2002.
43Schafft, Harry A. et al., "Thermal Conductivity Measurements of Thin Films Silicon Dioxide", Proceedings of the IEEE 1989 International Conference on Microelectronic Test Structures, vol. 2, No. 1, Mar. 1989, pp. 121-124.
44Strauss, Karl F. et al., "Overview of Radiation Tolerant Unlimited Write Cycle Non-Volatile Memory," IEEE 2000.
45Subramanian, Vivek et al., "Low Leakage Germanium-Seeded Laterally-Crystallized Single-Grain 100-nm TFT's for Vertical Intergration Applications," IEEE Electron Device Letters, vol. 20, No. 7, Jul. 1999.
46Wicker, Guy et al., Nonvolatile, High Density, High Performance Phase Change Memory, 1999, http://klabs.org/richcontent/MAPLDCon99/Papers/P21—Tyson—P.PDF#search=‘nonvolatile%20high%20density%20high%20performance%20phase%20change%20memory’, 8 pages.
47Wicker, Guy et al., Nonvolatile, High Density, High Performance Phase Change Memory, 1999, http://klabs.org/richcontent/MAPLDCon99/Papers/P21-Tyson-P.PDF#search='nonvolatile%20high%20density%20high%20performance%20phase%20change%20memory', 8 pages.
48Wicker, Guy, "A Comprehensive Model of Submicron Chalcogenide Switching Devices," Doctoral Dissertation, Wayne State University, Detroit, MI, 1996.
49Wolf, Stanley, Excerpt from: Silicon Processing for the VLSI Era-vol, 4, pp. 674-679, 2004.
50Wuttig, Matthias, "Towards a Universal Memory?" Nature Materials, Apr. 2005, pp. 265-266, vol. 4.
51Yi, J, H. et al., "Novel Cell Structure of PRAM with Thin Metal Layer Inserted GeSbTe," IEEE IEDM 2003, 4 pages.
52Yonehara, T. et al., "Control of Grain Boundary Location by Selective Nucleation Over Amorphous Substrates," Mat. Res. Soc. Symp. Proc., vol. 106, 1998, pp. 21-26.
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US8080439 *Feb 28, 2008Dec 20, 2011Freescale Semiconductor, Inc.Method of making a vertical phase change memory (PCM) and a PCM device
US8097870 *Mar 12, 2009Jan 17, 2012Seagate Technology LlcMemory cell with alignment structure
US8367464 *Aug 15, 2011Feb 5, 2013Seagate Technology LlcNano-dimensional non-volatile memory cells
US8374018Jul 9, 2010Feb 12, 2013Crossbar, Inc.Resistive memory using SiGe material
US8391049Sep 29, 2010Mar 5, 2013Crossbar, Inc.Resistor structure for a non-volatile memory device and method
US8394670May 31, 2011Mar 12, 2013Crossbar, Inc.Vertical diodes for non-volatile memory device
US8404553Aug 23, 2010Mar 26, 2013Crossbar, Inc.Disturb-resistant non-volatile memory device and method
US8441835Jun 11, 2010May 14, 2013Crossbar, Inc.Interface control for improved switching in RRAM
US8450209Dec 8, 2011May 28, 2013Crossbar, Inc.p+ Polysilicon material on aluminum for non-volatile memory device and method
US8450710May 27, 2011May 28, 2013Crossbar, Inc.Low temperature p+ silicon junction material for a non-volatile memory device
US8467227Nov 4, 2011Jun 18, 2013Crossbar, Inc.Hetero resistive switching material layer in RRAM device and method
US8492195Aug 23, 2010Jul 23, 2013Crossbar, Inc.Method for forming stackable non-volatile resistive switching memory devices
US8519485May 7, 2012Aug 27, 2013Crossbar, Inc.Pillar structure for memory device and method
US8558212Sep 29, 2010Oct 15, 2013Crossbar, Inc.Conductive path in switching material in a resistive random access memory device and control
US8598561 *Jan 11, 2011Dec 3, 2013Kabushiki Kaisha ToshibaNonvolatile memory device and method for manufacturing same
US8599601Feb 15, 2013Dec 3, 2013Crossbar, Inc.Interface control for improved switching in RRAM
US8648327Nov 16, 2012Feb 11, 2014Crossbar, Inc.Stackable non-volatile resistive switching memory devices
US8658476Apr 20, 2012Feb 25, 2014Crossbar, Inc.Low temperature P+ polycrystalline silicon material for non-volatile memory device
US8659929Jun 30, 2011Feb 25, 2014Crossbar, Inc.Amorphous silicon RRAM with non-linear device and operation
US8659933May 29, 2013Feb 25, 2014Crossbar, Inc.Hereto resistive switching material layer in RRAM device and method
US8716098Mar 9, 2012May 6, 2014Crossbar, Inc.Selective removal method and structure of silver in resistive switching device for a non-volatile memory device
US8750019Dec 21, 2012Jun 10, 2014Crossbar, Inc.Resistive memory using SiGe material
US8765566May 10, 2012Jul 1, 2014Crossbar, Inc.Line and space architecture for a non-volatile memory device
US8791010Dec 29, 2011Jul 29, 2014Crossbar, Inc.Silver interconnects for stacked non-volatile memory device and method
US8796658May 7, 2012Aug 5, 2014Crossbar, Inc.Filamentary based non-volatile resistive memory device and method
US8809831Mar 30, 2012Aug 19, 2014Crossbar, Inc.On/off ratio for non-volatile memory device and method
US8815696Dec 29, 2011Aug 26, 2014Crossbar, Inc.Disturb-resistant non-volatile memory device using via-fill and etchback technique
US20110175048 *Jan 11, 2011Jul 21, 2011Kabushiki Kaisha ToshibaNonvolatile memory device and method for manufacturing same
US20110300687 *Aug 15, 2011Dec 8, 2011Seagate Technology LlcNano-dimensional non-volatile memory cells
Classifications
U.S. Classification257/3, 257/E45.002
International ClassificationH01L29/04
Cooperative ClassificationH01L45/148, H01L27/2436, G11C11/5678, H01L45/144, H01L45/1233, H01L45/126, H01L45/06, H01L45/1675, G11C13/0004, G11C2213/79, H01L45/143
European ClassificationH01L45/04, G11C11/56P, H01L27/24
Legal Events
DateCodeEventDescription
Jan 6, 2014FPAYFee payment
Year of fee payment: 4
Oct 6, 2006ASAssignment
Owner name: MACRONIX INTERNATIONAL CO., LTD., TAIWAN
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:LUNG, HSIANG-LAN;REEL/FRAME:018361/0378
Effective date: 20060922